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RESUMO 

A cerveja é produzida a partir da fermentação da cevada e aromatizada pelo 

lúpulo. No Brasil de acordo com a legislação parte da cevada pode ser 

substituída por cereais com alto teor de amido como milho e arroz. A fim de 

atingir altos níveis de produção destes cereais, os pesticidas são utilizados nas 

lavouras para controle de pragas e evitar perdas nas safras. Este trabalho tem 

como objetivo desenvolver uma metodologia para determinação de resíduos dos 

pesticidas acetamiprido, alacloro, ametrina, atrazina, azoxistrobina, carbofurano, 

carbosulfano, cipermetrina, deltametrina, difenoconazol, esfenvalerato, flutriafol, 

parationa-metílica e tiametoxam em cerveja. No procedimento QuEChERS 

foram testados dois adsorventes no passo de clean-up, o PSA e o Florisil que 

apresentaram valores de recuperação 73-101% e 65-103% respectivamente. A 

fim de validar o método analítico foram testados os parâmetros: linearidade e 

sensibilidade, que apresentaram resposta linear com coeficientes de correlação 

entre 0,9024-0,9999 no intervalo de concentração 0,05-2,5 µg mL-1; testes de 

exatidão e precisão foram realizados resultando em valores de recuperação 

entre 29-123% e coeficientes de variação entre 0,3-49,5% para as 

concentrações 0,3, 0,1 e 0,05 µg mL-1; e limites de detecção e limites de 

quantificação 0,003-0,08 µg mL-1 e 0,01-0,12 µg mL-1, respectivamente. Após a 

validação o método foi aplicado em amostras reais de cerveja e nenhum resíduo 

dos pesticidas estudados foi detectado. 

 

Palavras-chave: Cerveja; Cereais; Pesticidas; QuEChERS; GC/MS.   
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ABSTRACT  

Beer is a drink produced from the fermentation of barley and flavored by hops. In 

Brazil according to the legislation part of the barley can be replaced by cereals 

with high content of starch like corn and rice. In order to achieve high levels of 

production of these cereals and to avoid the loss of crops, pesticides are used in 

crops. This work aims to develop a methodology for the determination of residues 

of the pesticides acetamiprid, alachlor, ametryn, atrazine, azoxystrobin, 

carbofuran, carbosulfan, cypermethrin, deltamethrin, diphenoconazole, 

esfenvalerate, flutriafol, methionine-parathion and thiamethoxam in beer. In the 

QuEChERS procedure two adsorbents were tested in the clean-up step, PSA 

and Florisil, which presented recovery values of 73-101% and 65-103%, 

respectively. In order to validate the analytical method, the following parameters 

were tested: linearity and sensitivity, which presented linear response with 

correlation coefficients between 0.9024-0.9999 in the concentration range 0.05-

2.5 μg mL-1; Accuracy and accuracy tests were performed resulting in recovery 

values between 29-123% and coefficients of variation between 0.3-49.5% for the 

concentrations of 0.3, 0.1 and 0.05 μg mL -1; and limits of detection and 

quantification limits 0.003-0.08 μg mL-1 and 0.01-0.12 μg mL-1, respectively. 

After validation, the method was applied in real samples of beer and no residue 

of the pesticides studied was found. 

Keywords: Beer; Cereals; Pesticide; QuEChERS; GC/MS. 
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1 INTRODUÇÃO 
 

Nos dias atuais a indústria cervejeira é um dos mais importantes setores da 

indústria de alimentos e bebidas.  Depois da água e do chá, a cerveja é considerada 

a bebida mais popular, sendo consumida em todo o mundo [1,2]. No Brasil o 

mercado de cervejas é dominado por grandes empresas que basicamente 

comercializam o tipo lager de padrão americano, como em muitos outros países. [3] 

A cerveja é produzida pela fermentação controlada do mosto, um líquido rico 

em açúcares, proveniente da cevada maltada. Como subistituintes da cevada na 

produção de cervejas brasileiras, são empregados cereais como arroz e milho que 

possuem grande quantidade de amido em sua composição. [4] 

Para garantir uma alta produção destes cereais, o uso extensivo de pesticidas 

é uma prática comum. O uso generalizado de pesticidas em cereais pode ocasionar 

à presença de resíduos na cerveja. A preocupação com os resíduos de pesticidas 

em bebidas de malte e cervejas tem aumentado entre os consumidores. A 

transferência de pesticidas para a cerveja depende do processo utilizado na 

produção e das propriedades dos pesticidas, tendo em vista que os pesticidas 

podem estar presentes em qualquer etapa do processamento e alguns destes 

compostos são acumulados através da cadeia alimentar, podendo causar danos 

graves para a saúde humana. [5,6] 

Por razões de segurança alimentar, as Organizações Internacionais 

estabeleceram o Limite Máximo de Resíduos (LMR) para pesticidas em alimentos. 

O LMR é a quantidade máxima de resíduos legalmente permitida em alimentos 

incluindo a substância ativa e metabólitos e são definidos com base na avaliação 

rigorosa para cada pesticida [6,7]. Devido às restrições impostas pelas legislações, 

internacionais e nacionais, envolvendo as quantidades de resíduos de pesticidas 

em alimentos, o desenvolvimento de metodologias analíticas eficientes, rápidas e 

simples são objeto de estudo. [8] 
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O método QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) com 

limpeza de extração de fase sólida dispersiva (d-SPE) é uma técnica de preparação 

de amostras que permite a análise de pesticidas em matrizes complexas. O 

QuEChERS é uma das abordagens de preparação de amostra mais populares na 

área de análise de resíduos de pesticidas nos alimentos. Quando comparado com 

outras técnicas, tem a capacidade de minimizar o número de etapas de preparação 

da amostra, uma vez que envolve apenas duas etapas, a primeira extração por 

partição com acetonitrila e uma mistura de sais e depois etapas de limpeza por 

extração em fase sólida dispersiva (d-SPE). Outras vantagens do método 

QuEChERS em comparação com outras técnicas são suas excelentes 

recuperações, menos tempo para preparação de amostras e menor consumo de 

solventes [9,10,11]. 

Os pesticidas nos alimentos são convencionalmente monitorados e 

quantificados usando cromatografia gasosa. Associado a cromatografia gasosa 

estão os espectrômetros de massas com analisador triplo-quadrupolo, capazes de 

operar em modo de monitoração de reações múltiplas (MRM), com alta 

sensibilidade e alta especificidade para analíse multirresíduo de pesticidas. [6,12]  

Diante deste contexto, a proposta desse trabalho foi desenvolver um método 

analítico efetivo, rápido e de baixo custo para determinação de resíduos dos 

pesticidas acetamiprido, alacloro, ametrina, atrazina, azoxistrobina, carbofurano, 

carbosulfano, cipermetrina, deltametrina, difenoconazol, esfenvalerato, flutriafol, 

parationa-metílica, terbufós e tiametoxam em cerveja utilizando as técnicas de 

extração em fase sólida, QuEChERS e cromatografia a gás/espectrometria de 

massas sequencial. 
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1.1 Cerveja 

A cerveja é uma bebida fermentada à base de amido e aromatizada pelo lúpulo. 

Esta definição simples abrange os quatro ingredientes essenciais, malte de cevada, 

água, lúpulo e fermento (levedura), que são necessariamente utilizados na 

fabricação. O corpo da cerveja é fornecido pela cevada, mais especificamente malte 

de cevada e, em geral, algumas centenas de gramas são usadas para um litro de 

cerveja. [13] 

As principais etapas do processo de fabricação da cerveja (Figura 1) incluem 

brassagem que é a primeira fase, onde existem os processos de moagem do malte, 

mistura com água, aquecimento, transformação enzimática do amido em 

monossacarídeos, filtração, adição do lúpulo, fervura do mosto e resfriamento. A 

fermentação é a etapa que dá continuidade na produção, na qual o mosto, que é 

uma mistura líquida açucarada, juntamente com as leveduras, são responsáveis por 

produzir o etanol através do consumo dos açúcares. Seguindo, a maturação é a 

parte do método em que o produto da fermentação é resfriado a 0 °C, e por 

decantação as leveduras são separadas e o resto dos carboidratos são consumidos 

pelas leveduras remanescentes. Como etapas finais da produção o acabamento, 

que consiste na introdução de estabilizantes na cerveja e o envasamento. [14] 

As propriedades, qualidade e quantidades dos ingredientes juntamente com a 

forma de fases do processo de fermentação afetam fortemente as características 

da cerveja. A fase de fermentação por microorganismos, por exemplo, define o tipo 

de cerveja. Enquanto cervejas lager são fabricadas a baixas temperaturas utilizando 

o processo de fermentação inferior, as cervejas do tipo ale são fermentadas a altas 

temperaturas e a levedura permanece na superfície do líquido durante o processo. 

O produto final engarrafado, isto é, a cerveja, quando comparada a outras bebidas 

obtidas a partir da fermentação, é cerca de seis vezes menos calórica para cada 

100 mL. Cada litro de cerveja pode fornecer 400 a 500 calorias, representando em 

média 1/6 das necessidades calóricas diárias de um adulto. E também é uma 

mistura complexa contendo vários sais inorgânicos e mais de 800 compostos 
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orgânicos. Em 100 gramas de cerveja podem ser encontrados diversos 

componentes (Tabela 1) como proteínas e vitaminas. [15,16,17] 

 

 

 

 

 

 

 

 

 

 

De acordo com a legislação brasileira, parte da cevada maltada pode ser 

substituída por adjuntos cervejeiros (cereais aptos para consumo humano, maltados 

ou não maltados) e carboidratos (açúcares) de origem vegetal [18]. Por possuir uma 

maior velocidade na fermentação por leveduras de cerveja do que os açúcares de 

cevada mais complexos, os açúcares do milho e do arroz são bastante utilizados, 

acelerando o processo de fermentação e aumentando o teor de álcool com 

quantidade mínima de ingredientes e um custo mais baixo para as cervejarias [19]. 

Figura 1 – Resumo do processo de fabricação da cerveja. FONTE: A química da 
cerveja [14] 
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1.1.1 Cereais não maltados, milho e arroz 
 

As culturas de cereais compreendem mais de 60% da produção agrícola no 

mundo. Entre os cereais, o arroz e o milho são dois dos mais importantes. O Brasil 

é hoje um dos maiores exportadores mundiais de grãos, particularmente para 

culturas como o  milho (Zea mays). [20,21] 

O milho é o grão mais produzido e consumido no mundo. A produção mundial 

dos grãos, segundo estimativas para a safra 2015/16, atingiu um total de 985,6 

milhões de toneladas, concentrada em três principais países produtores: Estados 

Unidos, China e Brasil. A produção destes países foi de 345,1, 225,0, 79,0 milhões 

Componentes Quantidade (g) 
Glicídios 3,8 
Proteínas 0,3 

Cálcio 5 

Fósforo 0,3 

Ferro 0,1 

Água 88 a 92 

Álcool 3 a 8 

Gás carbônico 0,3 a 0,6 

Riboflavina (Vitamina B2) 0,03 

Niacina 0,2 

Tiamina (Vitamina B1)  0,002 a 0,006 

Ácido Pantotênico (Vitamina B12) 0,04 a 0,08 

Ácido Fosfórico 0,05 a 0,07 

Glicerol 0,1 a 0,3 

Tabela 1 – Componentes encontrados na cerveja para cada 100 g. FONTE : 
[17] 
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de toneladas, respectivamente, representando 65,86% da produção mundial. O 

mercado do milho é dominado por quatro países: EUA, Brasil, Ucrânia e Argentina, 

que representam aproximadamente 83% das exportações mundiais [22].  

Como uma das culturas mais importantes do mundo, o milho é amplamente 

utilizado nos setores alimentar, químico, farmacêutico, agrícola e industrial, devido 

ao seu elevado teor de amido. A composição química média do grão de milho é de 

72% de amido, 9,5% proteínas, 9% fibra e 4% de óleo. O amido de milho, modificado 

ou clivado, é utilizado na preparação de alimentos tais como a cerveja, produção de 

drogas, fabricação de papel, indústria têxtil, refinação de petróleo, entre outros usos. 

[23,24] 

O arroz (Oryza sativa) é a terceira cultura mais produzida do mundo, ocupando 

cerca de 13% da área cultivada (164 milhões ha). É um alimento básico muito 

importante de mais de três bilhões pessoas no mundo, sendo um dos alimentos 

mais relevantes para a nutrição, especialmente na Ásia que é responsável por 89% 

da produção mundial, seguida pelo Hemisfério Ocidental (5%), onde o Brasil é líder 

com 35% da área cultivada na América do Sul. O arroz representa 21% da ingestão 

energética humana per capita, mas é também uma importante fonte protéica. Os 

grãos de arroz branco polido, que correspondem à principal forma de consumo 

deste cereal, têm em média 90% de amido, 0,6% de fibra e 0,5% de minerais e 

proteínas presentes nos grãos em quantidades variando de 4,3 a 18,2% [25,26]. O 

processo de polimento do grão integral do arroz resulta na diminuição do teor de 

nutrientes, com exceção do amido, o que produz diferenças na composição entre o 

arroz polido e o integral. Outro processo de transformação aplicado aos grãos de 

arroz e a parbolização, que consiste em uma forma de processamento hidrotérmico 

onde os grãos são colocados em água com temperatura acima de 58 °C, logo em 

seguida passam por uma gelatinização parcial ou total do amido e secagem. Como 

consequência desse procedimento substâncias hidrossolúveis, como vitaminas e 

minerais, migram para o centro do grão, deixando o arroz parbolizado mais nutritivo 

que o arroz polido [27].  
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As áreas plantadas com arroz irrigado são cultivadas intensivamente, ou seja, 

sem rotação, devido a dificuldades associadas ao uso dessas áreas para outras 

atividades. Este uso intensivo favorece o surgimento e proliferação de pragas, ervas 

daninhas e doenças, levando à necessidade de aplicação de pesticidas para 

garantir a rentabilidade da safra. Muitos destes insumos químicos (fertilizantes, 

herbicidas, inseticidas e fungicidas) são aplicados diretamente na camada de água 

ou pulverizados nas plantas a partir dos quais podem chegar à água, resultando no 

transporte de resíduos para áreas fora dos campos, se a aplicação não for 

gerenciada da maneira recomendada . O risco de os pesticidas serem transportados 

das culturas para as águas superficiais e os recursos das águas subterrâneas 

representa uma ameaça para a qualidade da água nas regiões de produção de arroz 

irrigado. [28] 

 

1.2 Pesticidas 

 

A grande produção de commodities agrícolas no Brasil como cerais traz também 

a utilização de tecnologias para o controle de doenças e aumento da produtividade, 

como o amplo uso de pesticidas. De acordo com a Legislação Brasileira, o registro 

de pesticidas é regulamentado pelo Decreto nº 4074/2002. Isto é uma 

responsabilidade partilhada entre o Ministério da Agricultura, Pecuária e 

Abastecimento (MAPA), Ministério do Meio Ambiente (MMA), e Ministério da Saúde. 

São caracterizados como pesticidas os produtos que promovem processos 

químicos, físicos ou biológicos e são utilizados nos setores de manufaturação, 

estocagem e aprimoramento de produtos agrícolas [29,30,31].  

O Ministério da Agricultura atualmente autoriza a utilização 380 ingredientes 

ativos como pesticidas utilizados em mais de 1.670 produtos fitofarmacêuticos 

formulados do mercado. Desde 2008, o Brasil lidera o consumo de pesticidas, uma 

posição anteriormente ocupada pelos Estados Unidos. [32] 
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Uma das medidas que devem ser atendidas com a finalidade de minimizar 

possíveis riscos à saúde dos consumidores é o Limite Máximo de Resíduos (LMR) 

que corresponde à concentração máxima de resíduos de pesticidas, desde sua 

produção até o consumo, expressa em miligramas do pesticida ou de seus resíduos 

por quilo do alimento analisado (mg.kg-1). No Brasil de acordo com a legislação, a 

instituição responsável pela fiscalização desses limites, além de avaliar e classificar 

toxicologicamente os pesticidas é a Agência Nacional de Vigilância Sanitária 

(ANVISA), que coordena o Programa de Análise de Resíduos de Pesticidas em 

Alimentos (PARA). A instauração de uma lei que prevê a utilização de cada pesticida 

com seus respectivos intervalos de segurança é de suma importância para um país 

como o Brasil que além de ser um dos maiores consumidores mundiais de 

pesticidas, possui milhares de hectares plantados com cerais [31,33,34]. A Tabela 

2 mostra os valores dos LMR definidos pela ANVISA e pelo Codex Alimentarius para 

os pesticidas selecionados nas culturas de grãos, tendo em vista os cereais que 

podem possivelmente levar a contaminação para a cerveja produzida com cereais 

não maltados após o processo de fabricação. 

A classificação do potencial de risco ambiental de um pesticida é fundamentada 

em estudos físico-químicos, toxicológicos e ecotoxicológicos. Portanto um pesticida 

pode ser classificado quanto o perigo ambiental, em classes que variam de I a IV: 

produtos altamente perigosos ao meio ambiente (Classe I), produtos muito 

perigosos ao meio ambiente (Classe II), produtos perigosos ao meio ambiente 

(Classe III) e produtos pouco perigosos ao meio ambiente (Classe IV) (Tabela 3). 

[35] 

A utilização de diferentes cereais na produção da cerveja brasileira traz junto a 

problemática dos resíduos de pesticidas que podem ser transferidos dos grãos para 

o produto final [36]. Além disso estes resíduos podem permanecer na cerveja 

produzida a partir de outros ingredientes tratados com pesticidas, possivelmente 

provenientes de outras matérias-primas como o lúpulo e a água utilizada na cadeia 

produtiva [37]. 
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Pesticida 

LMR (mg kg-1) 

ANVISA Codex Alimentarius 

Milho Arroz Cevada Milho Arroz Cevada 
Acetamiprido 0,05  - 1 0,01 - - 

Alacloro 0,2 - - - - - 
Ametrina 0,04 - - - - - 
Atrazina    0,25 - - - - - 

Azoxistrobina 0,01 1,5 0,6 0,02 5 1,5 
Carbofurano 0,1 - - 0,05 0,1 - 
Carbosulfano 0,02 - - 0,05 0,05 - 
Cipermetrina 0,05 2 - 0,05 2 2 
Deltametrina 1 - 1 0,02 - - 

Difenoconazol 0,01 - 0,3 - - - 
Esfenvalerato 1 - - - - - 

Flutriafol 0,05 - 0,1 0,01 - - 
Parationa-metílica 0,1 - - - - - 

Terbufós 0,05 - - 0,01 - - 
Tiametoxam  0,02 0,4 0,3 0,05 - 0,4 

Tabela 2 – Valores de limites máximos de resíduos para pesticidas nos cereais milho, arroz e cevada. FONTE : [38] [39] 
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Tabela 3 – Classificação dos pesticidas selecionados para o trabalho quanto ao grupo químico, à classificação toxicológica 
e o modo de ação. FONTE : [38] 

 

Pesticida Modo de Ação Grupo químico Classificação 
toxicológica 

Acetamiprido  Inseticida   Neonicotinóide  Classe III  

Alacloro Herbicida  Cloroacetanilida  Classe III  

Ametrina Herbicida  Triazina  Classe III  

Atrazina    Herbicida Triazina Classe III  
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Azoxistrobina Fungicida  Estrobilurina  Classe III  

Carbofurano 

Inseticida 

Cupinicida, 

Acaricida e 

Nematicida 

Metilcarbamato de 

benzofuranila Classe I 

Carbosulfano 

Inseticida, 

Acaricida e 

Nematicida 

Metilcarbamato de 

benzofuranila Classe II 

Cipermetrina 
Inseticida e 

Formicida 
Piretróide Classe II 

Deltametrina 
Inseticida e 

Formicida 
Piretróide Classe II 

Difenoconazol Fungicida Triazol Classe I 
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Esfenvalerato Inseticida Piretróide Classe II 

Flutriafol Fungicida Triazol Classe III  

Parationa-metílica 
Inseticida e 

Acaricida 
Organofosforado Classe I 

Terbufós 
Inseticida e 

Nematicida 
Organofosforado Classe I 

Tiametoxam  Inseticida Neonicotinóide Classe III 
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 Devido a algumas propriedades como persistência, solubilidade em água, 

bioacumulação e toxicidade potencial, os pesticidas podem estar presentes em 

diferentes frutas, vegetais e cereais.  As propriedades físico-químicas (Tabela 4) 

podem explicar o curso dos pesticidas e ajudar a conhecer comportamento deles 

frente a alguns parâmetros que podem ser utilizados no desenvolvimento do método 

de extração. Algumas propriedades utilizadas neste trabalho foram: solubilidade, 

coeficiente de partição (Kow), pKa e pressão de vapor. [8,42]  

A solubilidade é uma propriedade importante para os processos envolvendo 

pesticidas, pois atua no comportamento, transporte e destino desses compostos, 

indicando a tendência do pesticida em solubilizar em meio aquoso. [40] 

 O coeficiente de partição é uma relação medida (no equilíbrio) da massa 

dissolvida de uma substância entre camadas iguais de n-octanol e água. Os valores 

de Kow são freqüentemente expressos como log Kow e os valores variam de -3 a 7. 

Onde menores valores indicam compostos polares e valores maiores compostos 

apolares, que por sua vez são bioacumulativos através das gorduras dos seres 

vivos. [41] 

O pKa determina o grau de ionização na água, ou em sistemas biológicos para 

pesticidas ionizáveis, e por sua vez, sua lipofilicidade. Os pesticidas iônicos se 

comportam de forma diferente de pesticidas não iônicos. Esse conhecimento 

também é importante para realizar  extrações de pesticidas em meios aquosos. [42] 

A pressão de vapor de uma substância é definida como a pressão parcial de um 

produto químico, na fase gasosa em equilíbrio com o produto químico sólido puro 

ou líquido. As pressões de vapor são muito dependentes da temperatura. Esses 

parâmetros governam a distribuição entre o líquido e a fase gasosa. [41] 
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Tabela 4 –Propriedades físico-químicas dos pesticidas selecionados para o trabalho. FONTE: [38] [39] 

Pesticida Estrutura Química 

 

Solubilidade  
(g L-1) 

 log Kow pKa 
(25 °C) 

Pressão de vapor 
(mPa) (25 ºC) 

 

Acetamiprido 

 

 Água 0,0042,  
Acetona, 
Metanol, 

Acetonitrila, 

0,8  0,7 1,7x10-4 

Alacloro 

 

 Água 0,242,  
Acetona, 
Etanol, 

Acetato de 
etila, 

3,52 - 2,9 

Ametrina 

 

 Água 0,200 , 
Acetona 500, 
Metanol 450* 

2,98  4,10 0,365 

Atrazina    

 

 Água 0,033*, 
Metanol 15, 
Acetato de 

etila 24, 

2,50  1,7* 0,039 
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Tabela 4 - Continuação 

 
    

Azoxistrobina 

 

 Água 0,006* 
Metanol 20,  
Acetato de 
etila 130, 

Acetonitrila 
340 

2,50 - 1,1x10-7 

Carbofurano 

 

 
Água 0,320*, 

Acetona, 
acetonitrila 

2,32 - 0,031 

Carbosulfano 

 

 Água 0,0003, 
Acetona, 

Acetonitrila 
3,30 - 0,041 

Cipermetrina 

 

 
Água 4x10-6, 

Metanol, 
Acetona 

6,94 - 2,3x10-4 
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Tabela 4 - Continuação 

 

    

Deltametrina 

 

 Em água 
1,4x10-3,  
Acetona 

6500, 
Metanol 405  

6,20 - <1,33x10-2 

Difenoconazol 

 

 
Água 0,016, 
Etanol 330, 

Acetona 610*  
4,20 1,1* 3,3 x10-5 

Esfenvalerato 

 

 Água 2x10-6 , 
Acetona,  

Acetato de 
etila, Metanol 

70-100* 

6,22  - 2x10-4  

Flutriafol 

 

 
Água 0,13*, 

Acetona 190, 
Metanol 69* 

2,30* 1,9 7,1x10-6 
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Tabela 4 - Continuação 

     

Parationa-
metílica 

 

 Água 0,055*, 
Metanol, 

Acetato de 
Etila, 

Acetonitrila 

3,00 7,15 0,2  

Terbufós 

 

 Água 4,5x10-

3, Metanol, 
Acetato de 

Etila, 
Acetonitrila 

4,52 - 34,6 

Tiametoxam  

 

 Água 4,1,  
Acetona 48, 
Acetato de 
Etila 7,0, 

Metanol 13 

-0,13 - 6,6x10-6 

* 20°C
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1.3 QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) 

 

Com o objetivo de sobrepor as limitações dos métodos de análise para 

resíduos de pesticidas existentes, em meados de 2003, Anastassiades et al. 

introduziram um procedimento de preparo de amostra para extração 

multirresíduo de pesticidas denominado QuEChERS (Quick, Easy, Cheap, 

Effective, Rugged, Safe), que de acordo com os autores deve ser pronunciado 

como catchers. [43] 

Originalmente, o método QuEChERS foi desenvolvido para a extração de 

resíduos de pesticidas em frutas e legumes, mas como resultado das vantagens 

inerentes ao método, se expandiu rapidamente para a extração de diferentes 

grupos de compostos de matrizes ambientais, agroalimentares e bioanalíticas. A 

sigla QuEChERS traduzida do inglês significa rápido, fácil, barato, eficaz, robusto 

e seguro, mostrando as vantagens sobre a tradicional extração líquido-líquido.  

[44] 

Este método foi baseado na extração em microescala utilizando acetonitrila 

como solvente extrator, com a absorção de água por sais como MgSO4, 

passando por uma a etapa de partição, onde ocorre a separação líquido-líquido 

utilizando NaCl com intuito de promover o efeito “salting out”, e o passo de 

limpeza em que é aplicado a d-SPE utilizando o adsorvente  amina primário-

secundário (PSA) [45,46] (Figura 2).  

Diferente das metodologias de limpeza envolvendo SPE que utilizam 

cartuchos ou colunas, a Extração em Fase Sólida Dispersiva (Dispersive Solid 

Phase Extraction, d-SPE) que foi desenvolvida juntamente com o QuEChERS, 

traz a possibilidade de que limpeza e a redução de água residual sejam 

efetuados rapidamente. A etapa de remoção de água resulta na formação de um 

extrato mais apolar, facilitando a precipitação de interferentes polares. O PSA é 

o adsorvente utilizado na etapa de limpeza, e consegue reter os interferêntes da 

matriz. Devido aos grupos amino primário e secundário, a estrutura bidentada do 

PSA tem um elevado efeito quelante, facilitando a retenção de ácidos graxos e 



 

 

 

 

 

30 

de compostos polares da matriz.  Após etapas de agitação e centrifugação o 

extrato está apto para análise cromatográfica. [43,45] 

 

 

Combinando os procedimentos convencionais de extração, isolamento e 

limpeza numa única etapa, este método evita a homogeneização, a filtração, o 

grande volume de transferência de solventes, a evaporação/condensação e as 

trocas de solventes necessárias para a determinação cromatográfica.[45,46]   

 
 
 
 
 
 
 
 
 

Figura 2 -  Fluxograma das etapas do método QuEChERS original.  Fonte: 
Borges, Figueiredo e Queiroz (2015) [45] 



 

 

 

 

 

31 

1.4 Cromatografia Gasosa / Espectrometria de Massas 

A cromatografia é considerada um método físico-químico de separação, 

onde os componentes a serem separados são distribuídos entre duas fases: uma 

fase estacionária que é fixa em grande área superficial, e a outra um fluido que 

percola através dela, sendo denominada fase móvel [42]. Com a existência de 

modernos métodos de análise, a cromatografia possui certamente um lugar de 

destaque no que compete à separação, identificação e quantificação de 

compostos químicos. [50]. 

Desde o início dos anos 1970, a determinação mais rotineira de resíduos de 

pesticidas foi conduzida pela CG com diferentes detectores, captura de elétrons, 

detector de nitrogênio-fosforo, detector fotométrico de chama, etc. Durante os 

anos seguintes, estes detectores foram rapidamente substituídos pelo 

acoplamento da espectrometria de massas, dado que estes equipamentos são 

muito específicos e fornecem informação estrutural para conseguir a 

confirmação da identidade do composto. [51] 

Nos últimos anos a determinação de resíduos de pesticidas foram realizadas 

principalmente em espectrometria de massas sequencial. A espectrometria de 

massas sequencial permite ao espectrômetro de massas isolar um íon e 

fragmentá-lo para obter seu espectro de massas novamente. Alguns dos 

espectrômetros de massas capazes de realizar MS/MS somente com massa 

nominal são o triplo quadrupolo (QqQ), a armadilha de íons (IT). O modo MS 

para análise quantitativa incluiu o monitoramento de íons selecionados (SIM) e 

o monitoramento de reações múltiplas (MRM). O modo MRM tem superioridade 

em comparação com o modo SIM, pois oferece maior sensibilidade devido à 

melhora nos níveis de ruído com o aumento da relação sinal/ruído e é 

especialmente usado para analisar amostras de matrizes complexas, como 

alimentos e plantas. Alternativamente, o GC-MS/MS no modo MRM tem sido 

usado para a pesquisa e determinação de resíduos de pesticidas, a fim de 

alcançar alta seletividade e baixos limites de detecção. [51,52] 

Na análise MRM, os íons precursores são selecionados no primeiro 

quadrupolo e fragmentados numa câmara de colisão. Dependendo do analito, 
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são produzidos íons de produtos únicos a partir da câmara de colisão e apenas 

são detectados íons do produto selecionados. O padrão de fragmentação e os 

íons resultantes são dependentes das estruturas químicas dos analitos alvos de 

modo que a análise de MRM é mais específica do que a SIM que é comumente 

usada no MS quadrupolo simples. [53] 

 

1.5 Validação do método cromatográfico   

A validação de um método é um processo constante que começa desde o 

início do planejamento da estratégia analítica e continua durante todo o seu 

desenvolvimento. Um processo de validação bem definido e documentado 

oferece evidências objetivas de que os métodos e os sistemas são adequados 

para o uso desejado. [54]  

Considerada uma parte essencial na avaliação do método, a validação tem 

o objetivo de determinar se um método analítico é adequado para sua finalidade. 

Onde após o desenvolvimento do método analítico e antes de sua aplicação na 

análise de amostras reais é indispensável que o mesmo seja submetido à 

avaliação de diferentes parâmetros de qualidade, de modo a assegurar que nas 

condições em que será utilizado, fornecerá informações que demonstrem 

resultados confiáveis e interpretáveis sobre a amostra.  [54, 55, 56] 

Os parâmetros a serem validados variam em função do tipo de 

procedimento, de acordo com as características a serem estudadas e o método 

a aplicar. Os conceitos mais importantes para validação do método analítico, em 

geral, são linearidade, sensibilidade, precisão, exatidão, recuperação, 

repetibilidade, limite de detecção e limite de quantificação. [57] 

 

1.5.1 Linearidade 

A linearidade representa à capacidade do método em fornecer resultados 

diretamente proporcionais à concentração do composto analisado, dentro de 

uma faixa de concentração estipulada. Pode ser determinada através da 
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correlação entre o sinal medido (área ou altura do pico) e a massa ou 

concentração da espécie a ser quantificada, é dada pelo coeficiente de 

correlação do gráfico obtido pela equação da reta de comportamento linear y = 

ax + b. A ANVISA recomenda um coeficiente de correlação igual a 0,99, 

enquanto o Instituto Nacional de Metrologia, Normalização e Qualidade Industrial 

(INMETRO) aceita valores acima de 0,90. [54] 

 

1.5.2 Seletividade 

A capacidade de um método em analisar, de forma distinta, as substâncias 

em foco na presença de componentes que podem interferir com a sua 

determinação como outros ingredientes ativos, impurezas e produtos de 

degradação, bem como diferentes compostos com propriedades similares que 

possam estar, possivelmente, presentes em uma amostra complexa é chamada 

de seletividade. Se a seletividade não for assegurada, a linearidade, a exatidão 

e a precisão estarão seriamente prejudicados. [54, 55]  

Na avaliação da seletividade o efeito da matriz é um importante parâmetro a 

ser estudado e é considerado uma supressão (inesperada) ou um aumento da 

resposta do analito devido a constituintes da matriz. O grau do efeito da matriz 

pode ser influenciado por uma variedade de fatores, que incluem a concentração 

de analito, as propriedades químicas do analito, a concentração da matriz nos 

extratos da amostra e as condições operacionais do sistema GC-MS. Na análise 

de GC-MS, os efeitos da matriz estão relacionados ao bloqueio de sitios ativos 

por componentes da matriz co-extraídos não voláteis que se depositam na 

entrada do sistema cromatográfico durante repetidas análises. A redução do 

número de sitios ativos no sistema de GC conduzem a sinais de analito 

aumentados na presença da matriz em relação aos padrões em solventes, 

resultando em quantificações imprecisas. [58, 59]  

Para o estudo do efeito matriz podem ser confeccionadas duas curvas 

analíticas, em uma os analitos são preparados diretamente no extrato da matriz 

e outra no solvente, onde logo após a aquisição dos valores dos coeficientes 

angulares das retas é feito o cálculo da razão entre esses valores. Quando a 
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razão obtida for superior a 1 o efeito da matriz é positivo, enquanto que valores 

inferiores a 1 indicam que o efeito da matriz é negativo [60] 

 

1.5.3 Precisão e exatidão 

A precisão de um procedimento analítico expressa a proximidade entre uma 

série de medidas obtidas a partir de várias alíquotas da mesma amostra nas 

condições prescritas. O processo para determinar precisão de um procedimento 

analítico é realizado por análise de um número suficiente de replicatas de uma 

amostra para poder calcular estimativas estatisticamente válidas de desvio 

padrão ou desvio padrão relativo. Já a exatidão de um método analítico expressa 

a proximidade entre o valor que é aceito como um valor verdadeiro convencional 

ou um valor de referência aceito e o valor encontrado. É determinada pela 

aplicação do método a amostras às quais quantidades conhecidas de analito 

foram adicionadas. Estes devem ser analisados em relação a soluções padrão 

e em branco para garantir que não exista nenhuma interferência. A precisão é 

então calculada a partir dos resultados do teste como uma porcentagem do 

analito recuperado pelo ensaio. [61] 

O processo para determinar a precisão neste trabalho foi realizado a partir 

de ensaios de repetibilidade, onde o mesmo método foi utilizado, para a mesma 

amostra, no mesmo laboratório, pelo mesmo operador, utilizando o mesmo 

equipamento com análises na modalidade intradia e com os resultados 

apresentados em termos dos coeficientes de variação obtidos das análises. [62] 

 

1.5.4 Limite de detecção e limite de quantificação 
 

O limite de detecção (LD) é definido como a menor concentração de um 

analito em uma amostra que pode ser detectada, não quantificada. É um teste 

limite que especifica se um analito está ou não abaixo de um determinado valor. 

Já o limite de quantificação (LQ) é definido como a menor concentração de um 

analito em uma amostra que pode ser determinada com precisão e exatidão 

aceitáveis nas condições operacionais indicadas do método. A determinação de 

LD e LQ pode ser realizada por três modos diferentes: método visual, método da 
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relação sinal-ruído, método baseado em parâmetros da curva analítica; onde a 

seleção do método a ser utilizado deve levar em consideração à técnica analítica 

utilizada e o grau de confiabilidade estatística necessária [63, 64]. 

 

1.6 Revisão da literatura 

 Esta revisão descreve alguns trabalhos envolvendo técnicas de extração 

incluindo SPE e o QuEChERS, aplicadas à cerveja e seus processos de 

produção para determinação de pesticidas, de acordo com a Tabela 5. 

A SPE foi utilizada como método de extração por HACK et al1997 [65] na 

determinação de 6 pesticidas (atrazina, desetilatrazina, deisopropilatrazina, 

hidroxiatrazina, terbutilazina e deetanoterbutilazina) em amostras de cerveja por 

HPLC-DAD e GC-MS, com o intuito de investigar o comportamento destes 

compostos durante a produção de cerveja.  

HENGEL et al, 2002 [66] propuseram um método por GC-MS que utilizou 

SPE como procedimento de extração para a determinação de sete pesticidas 

(clorfenapir, quinoxifena, tebuconazol, fenarimol, pyridaben e Z-dimethomorph) 

no lúpulo durante o processo de fabricação da cerveja. 

NAVARRO et al. 2007 [67] utilizaram HPLC-DAD para avaliar dois herbicidas 

de dinitroanilina (trifluralina e pendimetalina) e três inseticidas organofosforados 

(malationa, fenitrotiona e metidationa), em cevada durante a fermentação 

primária da cerveja. Os resultados deste trabalho mostram que os resíduos de 

fenitrotiona, malationa e trifluralina afetaram o crescimento e a ação do fermento 

na fase de fermentação, influenciando a cinética e causando lentidão a partir da 

fase alta. Por outro lado, a presença de resíduos de metamina e pendimetalina 

acelerou a taxa de fermentação durante as fases baixa e alta de fermentação. 

Uma maior quantidade de açúcares residuais (glicose, frutose, maltose e 

maltotriose) foi encontrada após a fermentação nas amostras tratadas com 

fenitrotion e trifluralina. Portanto, diferenças significativas no extrato e 

porcentagem de açúcares convertidos em álcool e CO2 (atenuação) foram 

encontradas nas cervejas. Finalmente, o pH e a cor da cerveja diferiram 

significativamente da amostra em branco. 
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NAVARRO et al, 2007 [68] utilizaram partição líquido-líquido assistida por 

ultrassom e GC-MS com o objetivo de determinar 7 pesticidas (pendimetalina, 

trifluralina, fenitrotion, malationa, nuarimol, myclobutanil, propiconazol) 

comumente usados na cevada e a transferência destes para o malte utilizado na 

produção da cerveja. Foi possível concluir que os resíduos de pesticidas solúveis 

em água na cevada tendem a ser eliminados na maior quantidade após a 

imersão em água. Por outro lado, os resíduos hidrofóbicos permanecem no grão 

embebido em água. Os processos de germinação e cozimento também 

contribuiram para reduzir a concentração de resíduos no malte, embora em 

menor grau.  Finalmente, o armazenamento do malte não reduziu 

significativamente os resíduos de pesticidas. 

 NAVARRO et al. 2007 [69] reportaram um estudo com o objetivo de avaliar 

a influência de fungicidas das classes pirimidina e triazol, durante a fermentação 

da cerveja.  

Com o objetivo compreender o destino de 324 pesticidas que podem estar 

presentes durante a fabricação de cerveja INOUE et al. 2011 [70] utilizaram 

QuEChERS como metodologia de extração. As amostras foram analisadas por 

LC-MS/MS em certas etapas do processo de fabricação de cerveja, tais como 

trituração, fervura e fermentação. Em conclusão, a maioria dos pesticidas 

reduziu os índices residuais após a infusão e não foram detectados na cerveja. 

Apenas uma parte desses pesticidas foram identificados. 

Kong et al, 2016 [37] aplicaram o QuEChERS para determinar os pesticidas 

triadimefon, Malationa, diclorvos e seus metabolitos (triadimenol e malaoxon) em 

produtos de cevada e cerveja durante o armazenamento, maltagem, moagem, 

trituração, fervura, arrefecimento e fermentação. Triadimefon e a malationa 

foram degradados para triadimenol e malaoxon no campo antes da colheita, e 

estes  pesticidas exibiram diferentes taxas de degradação. As concentrações de 

diclorvos e os resíduos de malationa foram significativamente menores na 

cerveja após o processamento.  
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A utilização da metodologia QuEChERS foi seguida da aplicação de LC-MS 

no trabalho de KONG et al, 2016 [71]. Este estudo teve como objetivo investigar 

os efeitos do processo de fabricação comercial (maltagem, moagem, trituração, 

fervura, refrigeração e fermentação) nos resíduos de triadimefon e triadimenol e 

desenvolver uma metodologia de superfície de resposta para otimizar a 

eficiência de remoção de resíduos dos pesticidas. Além disso, amostras de 

cerveja de marcas comerciais foram analisadas para resíduos de triadimefon e  

triadimenol. 
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Tabela 5 –Trabalhos reportando a utilização de QuEChERS e cromatografia para análise de pesticidas em cerveja.  

Referência  
Quantidade de 

matriz  Analito 
Método de 
extração Adsorvente (g) 

Análise 
instrumental 

HACK et al. [65] 5 mL de cerveja  6 triazinas SPE Poliestireno-
divinilbenzeno LC-DAD e GC-MS  

HENGEL et al. [66] 100 mL de 
cerveja e mosto 7 pesticidas SPE 0,5 g de HLB GC-MS 

NAVARRO et al. [67] 250 mL de mosto 2 dinitroanilinas e 3 
organofosforados - - LC-DAD 

NAVARRO et al. [68] 5 g de cevada e 
malte 

2 dinitroanilinas, 2 
organofosfoardos, 1 

pirimidina, e 2 
triazóis 

LLE-
Ultrassom - GC-MS 

NAVARRO et al. [69] 300 mL de mosto 2 pirimidinas e 2 
triazóis - - LC-DAD 

INOUE et al. [70] 10 g de cerveja e 
malte 324 pesticidas QuEChERS PSA e C18 LC-MS 

KONG et al. [71] 10 mL de cerveja 
e 5 g de cevada 2 triazóis QuEChERS 0,05 g de PSA  LC-MS 

KONG et al. [37] 10 mL de cerveja 
e  5 g de cevada 

2 organofosforados, 
2 triazóis  QuEChERS 0,05 g de PSA LC-MS 
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2 OBJETIVOS 

2.1 Objetivo Geral 

Desenvolver metodologia analítica para determinação de resíduos de 

pesticidas em cerveja brasileira. 

2.2 Objetivos Específicos 

• Identificar os pesticidas utilizados nas culturas de milho e arroz;  

• Desenvolver condições cromatográficas para análise dos pesticidas por 

GC-MS/MS; 

• Desenvolver método de extração e clean-up para os resíduos de 

pesticidas em cerveja por QuEChERS; 

• Validar o método; 

• Aplicar o método em amostras reais. 

 

3 MATERIAIS E MÉTODOS 

3.1 Materiais 

Béquer (100 mL), balão volumétrico (1;2;5;10 e 50 mL), proveta (5, 25 e 100 

mL), vial (1; 5; 10 e 40 mL), balão de fundo redondo (50 mL), seringa de vidro 

(20mL), tubos de polipropileno (2 mL e 50 mL), micropipetas de volumes variados 

10-100 µL e 100-1000 µL, pipetas volumétricas (10 mL e 50 mL) bastão de vidro, 

espátula, pinça. 

3.2 Reagentes 

Acetonitrila grau HPLC (J.T Baker), Metanol grau HPLC (Merck), Acetato de 

Etila para cromatografia gasosa (Merck), Ácido acético glacial (Tedia), Acetato 

de sódio anidro grau p.a (Pr Químicos), Sulfato de magnésio hepta hidratado 

grau p.a (Vetec Química Fina), C18  (Sigma, USA) 200-400 mesh, Florisil (J.T 

Baker) 100-200 mesh, Alumina neutra (Sorbent Technologies) 50-200 µm, Silica-

gel (Vetec Química Fina) 70-200 mesh. 
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3.3 Padrões e Soluções 

Foram obtidos padrões certificados dos pesticidas: Alacloro (Fluka), Atrazina 

(Fluka) Ametrina (Riedel-de Haen), Acetamiprido (Riedel-de Haen), Azoxitrobina 

(Riedel-de Haen), Carbofurano (Fluka), Carbosulfano (Fluka), Cipermetrina 

(Fluka), Deltametrina (Fluka), Difenoconazol (Accustandard), Esfenvalerato 

(Fluka), Flutriafol (Accustandard), Terbufós (Fluka), Tiametoxam (Accustandard). 

A partir dos compostos sólidos soluções estoques foram preparadas na 

concentração de 1000 µg mL-1 em metanol. Em seguida foi preparada uma 

solução dos padrões com concentração de 100 µg mL-1, que foi utilizada para 

preparar soluções de trabalho para a curva analítica (0,05; 0,1; 0,25; 0,5; 1; 1,5; 

2,5 µg mL-1) e para os ensaios de recuperação. Essas soluções foram 

armazenadas em freezer. 

3.4 Equipamentos 

Balança analítica (Sartorius BL 2105), Evaporador rotatório (Fisatom 802D), 

Sistema para SPE vacum manifold (Varian, Walnut Creck, CA, EUA), 

cromatógrafo à gás 2010 Plus acoplado a espectrômetro de massas modelo 

TQ8040 Shimadzu (Quioto, Japão), Agitador mecânico (IKA), centrífuga 

(Universal), lavadora ultrassônica (Unique USC-1400). 

3.5 Condições cromatográficas de análise 

O sistema utilizado foi um cromatógrafo a gás 2010plus acoplado a um 

espectrômetro de massas TQ8040 Shimadzu (Quioto, Japão), com auto injetor 

AOC5000 plus e coluna SBL-5MS (30 m x 0,25 mm, 0,25 µm). A temperatura 

para o injetor foi de 300°C. A rampa de temperatura foi configurada com 100°C 

(1 min); taxa de aquecimento 15 °C min-1 até 300°C que perdurou até 25 minutos. 

O gás de arraste foi He (pureza 99,999%) com vazão de 1,18 mL min-1, modo de 

injeção splitless e volume de injeção de 1 µL. Inicialmente o espectrômetro de 

massas operou no modo SCAN e posteriormente em modo MRM com 

temperatura da fonte de íons 250°C, temperatura da interface 280°C, tempo de 
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corte do solvente 5 min e intervalo de 40 – 550 m/z. Fonte de ionização por 

elétrons. 

 

3.6 Obtenção das amostras  

As amostras de cerveja foram adquiridas no comércio do município de 

Aracaju, Sergipe, e armazenadas no Laboratório de Análise de Compostos 

Orgânicos Poluentes (LCP) da Universidade Federal de Sergipe sob temperatura 

ambiente. 

3.7 Preparação da amostra 

A cerveja foi submetida a um processo de degaiseficação com auxílio de 

ultrassom durante 15 minutos a fim de eliminar CO2 contido na amostra. 

3.8 Fortificação das Amostras 

A contaminação das amostras de cervejas comerciais foi efetuada em balão 

volumétrico após o processo de preparação, a fim de aferir maior segurança e 

menores erros envolvidos com vidrarias descalibradas.  

Para o QuEChERS dois níveis de fortificação foram utilizados. Na extração 

envolvendo PSA no passo de clean-up 10 mL de cerveja foram fortificados com 

500 µL da solução dos pesticidas de concentração 1 µg mL-1 antes da etapa de 

partição com acetonitrila, obtendo uma concentração de fortificação 0,05 µg mL-

1. Para a extração com Florisil na etapa de clean-up, 10 mL de cerveja foram 

fortificados com 300 µL da solução dos pesticidas de concentração 1 µg mL-1 

antes da etapa de partição com acetonitrila alcançando 0,03 µg mL-1 como 

concentração de fortificação. 

 

 

 

 

CONDICIONAMENTO COM 
SOLVENTE
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3.9 Extração em QuEChERS 

Foram transferidos aliquotas de 10 mL para um tubo de centrífuga de 

polipropileno de 50 mL sequencialmente foram adicionados 10 mL de acetonitrila 

com 1% de ácido acético e os tubos foram agitados durante 1 min em vortex. Em 

seguida, foi adicionado sulfato de magnésio anidro (6,0 g) e acetato de sódio (1,5 

g). Após a adição dos sais, os tubos foram agitados durante 1 min e 

imediatamente centrifugados durante 5 min a 1500 rcf. Em seguida, 1 mL do 

sobrenadante foi transferido para um tubo Eppendorf de 2 mL para o passo de 

clean-up por dois procedimentos: 

   Clean-up 1: 50 mg de PSA, 50 mg de C18 e 150 mg de MgSO4 anidro. 
 
   Clean-up 2: 50 mg de Florisil, 50 mg de C18 e 150 mg de MgSO4 anidro. 

Em ambos os procedimentos de limpeza, a mistura foi agitada durante 1 min 

e centrifugada durante 5 min a 1500 rcf. Em seguida, o sobrenadante foi 

evaporado em fluxo lento de N2 e retomado para 1 mL em acetato de etila para 

análise em GC-MS/MS. A representação do processo de extração está mostrado 

na Figura 3. 

Figura 3 – Etapas do processo de extração QuEChERS. 



 

 

 

 

 

43 

4 RESULTADOS E DISCUSSÃO 
 

4.1 Seleção dos pesticidas 

Os pesticidas envolvidos nesse trabalho são aplicados nas culturas de arroz 

e milho (Tabela 3) a fim de controlar as pragas nestes cereais. Foram relatados 

no documento do PARA do ano de 2015 com seus respectivos Limites Máximos 

de Resíduos (LMR). [38] 

4.2 Desenvolvimento do método cromatográfico 

Experimentos preliminares foram conduzidos com o objetivo de encontrar as 

melhores condições instrumentais que permitiriam a identificação dos analitos, 

como os tempos de retenção (tR) de cada composto (Tabela 6), possibilitando 

avaliar previamente a separação e os espectros de massas dos pesticidas, a fim 

de encontrar os picos mais intensos, que foram obtidos em modo de varredura 

linear (SCAN) para posteriormente serem utilizados no desenvolvimento do 

modo MRM de análise. A partir de soluções estoque dos padrões, foram 

preparadas diluições variando em concentrações de 0,05 – 5 µg mL-1 em 

metanol, levando em consideração as solubilidades (Tabela 4) de cada um dos 

analitos, que depois foi evaporado em fluxo de N2 e em seguida as soluções 

foram retomadas em acetato de etila.  

A partir das análises dos padrões individuais, foi observado a presença de 

mais de um pico para alguns dos pesticidas, que foram: cipermetrina, 

esfenvalerato e difenoconazol. Para cipermetrina que pertence ao grupo dos 

piretóides tipo 1 foram detectados 4 picos, que estão ligados a presença de 

enantiômeros de ambos diasteroisómeros cis e trans [72]. Onde cada um dos 

picos foi identificado de acordo com seu tempo de retenção, onde, Cipermetrina 

1 está em 16,75 min, Cipermetrina 2 em 16.90 min, Cipermetrina 3 em 17,00 min 

e Cipermetrina 4 em 17.06 min. O esfenvalerato que faz parte do grupo dos 

piretróides tipo II apresentou 2 picos referentes a isomerização, sendo 

nomeados como, Esfenvalerato 1 com tempo de retenção em 18,34 min e 

Esfenvalerato 2 aparecendo em 18,75 min. [73] 
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A presença de dois picos referentes ao pesticida difenoconazol está 

relacionada aos seus isômeros cis e trans [74] que foram idenficados como, 

difenoconazol 1 com tempo de retenção de 19,40 min e difenoconazol 2 em 

19,55 min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pesticida tR (min) 

Carbofurano 9,13 
Atrazina 9,23 

Terbufós 9,41 

Alacloro 10,29 

Parationa metílica 10,30 

Ametrina 10,38 

Tiametoxan 11,26 

Flutriafol 11,97 

Carbosulfano 13,62 

Acetamiprido 13,84 

Cipermetrina 1 16,55 

Cipermetrina 2 16,69 

Cipermetrina 3 16,79 

Cipermetrina 4 16,85 

Esfenvalerato 1 18,09 

Esfenvalerato 2 18,49 

Difenoconazol 1 19,11 

Difenoconazol 2 19,25 

Deltametrina 19,71 

Azoxitrobina 20,19 

Tabela 6 –Tempos de retenção para os pesticidas analisados.  
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Na Figura 4 pode ser observado o perfil cromatográfico obtido no modo 

SCAN da análise em GC-MS/MS de uma solução dos pesticidas com 

concentração de 5 µg mL-1.   

 

Mesmo apresentando co-eluição do alacloro e parationa metílica os 

parâmetros cromatográficos de análise foram considerados adequados para o 

desenvolvimento do método MRM de análise. 

 

 

 

 

1 

 

Figura 4 – Cromatograma da corrente total de íons de uma solução padrão dos 

pesticidas na concentração de 5 µg mL-1 em acetato de etila. Identificação dos 

picos: 1) Carbofurano, 2) Atrazina, 3) Terbufós, 4) Alacloro, 5) Parationa metílica, 

6) Ametrina, 7) Tiametoxan, 8) Flutriafol, 9) Carbosulfano, 10) Acetamiprido, 11) 

Cipermetrina 1, 12) Cipermetrina 2, 13) Cipermetrina 3, 14) Cipermetrina 4, 15) 

Esfenvalerato 1, 16) Esfenvalerato 2, 17) Difenoconazol 1, 18) Difenoconazol 2, 

19) Deltametrina, 20) Azoxitrobina. Para condições cromatográficas ver tópico 

3.5. 

 

(min) 
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4.3 Desenvolvimento do método de MRM  

O uso da espectrometria de massas sequencial permite a análise sem 

separação cromatográfica completa de analitos desde que é incomum encontrar 

moléculas que eluem no mesmo tempo de retenção e compartilham a mesma 

transição MS/MS, ainda assim podem ser identificados e quantificados no modo 

de monitoramento de reações múltiplas (MRM) devido a diferentes fragmentos 

de íons. No entanto, se faz necessário um certo grau de separação para permitir 

a programação de várias transições MRM em diferentes segmentos de tempo ao 

longo do cromatograma [75]. Geralmente, a transição iônica de baixa intensidade 

é utilizada para fazer análise qualitativa e a transição iônica de alta intensidade 

é aplicada à análise quantitativa. No entanto, a transição iónica de alta resposta 

também pode ser aplicada à análise qualitativa. [76] 

 Inicialmente a otimização das transições dos íons foi realizada com padrões 

dos pesticidas em solvente orgânico em modo SCAN a fim de observar os íons 

com maior intensidade, seguindo, as transições selecionadas foram monitoradas 

em uma solução contendo uma mistura dos padrões na concentração de 5 µg 

mL-1 para estimar a viabilidade das transições dos íons selecionados. Após a 

seleção do íon precursor, o espectro de íons do produto foi adquirido na análise 

MS/MS de varredura completa. Os íons produto mais intensos foram 

selecionados para cada íon precursor para compor as transições do MRM, 

levando a uma melhor sensibilidade, além de melhor resolução e forma de pico. 

O último parâmetro otimizado foi a energia de colisão, em que valores diferentes 

foram testados (3-45 V). A seleção de energia de colisão foi baseada na 

intensidade relativa do íon precursor e os íons produto. Se a energia da colisão 

for aumentada gradativamente, a intensidade dos íons produzidos será menor 

do que a intensidade dos íons que são produzidos sob a melhor energia de 

colisão. A Tabela 8 mostra os valores das três transições mais intensas e valores 

de energia de colisão (CE) para cada um dos 15 pesticidas. 
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O método MRM mostrou ser eficiente na identificação dos pesticidas alacloro 

e parationa metílica que coeluem no tempo de 10,38 min (Figura 5), tendo em 

vista que possibilita uma análise simultânea com boa separação dos picos.  

 

 

 

 

 

 

Figura 5 – Cromatograma em modo MRM para os pesticidas: 1) 

Carbofurano; 2) Atrazina; 3) Terbufós; 4) Alacloro; 5) Parationa metílica; 

6) Ametrina; 7) Tiametoxan; 8) Flutriafol; 9) Carbosulfano; 10) 

Acetamiprido; 11) Cipermetrina; 12) Esfenvalerato; 13) Difenoconazol; 

14) Deltametrina; 15) Azoxistrobina. Condições cromatográficas no item 

3.5. 

(min) 
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Pesticida 
Ion 1 Ion 2 Ion 3 

Transição 1 
(m/z) 

CE 
(V) Transição 2 (m/z) CE Transição 3 (m/z) CE 

Carbofurano 164,00>149,10 9  164,00>103,10 27  164,00>131,10 18  

Atrazina 200,00>122,10 9  200,00>132,10 9  200,00>71,10 18  

Alacloro 188,00>160,10 9  188,00>131,10 24  188,00>146,10 15  

Parationa metílica 109,00>79,00 9  109,00>81,10 9  109,00>93,10 9  

Ametrina 227,00>185,10 6  227,00>58,10 15  227,00>170,10 12  

Tiametoxan 212,00>139,10 12  212,00>182,10 6  212,00>125,10 9  

Flutriafol 123,00>95,10 15  123,00>75,10 24  123,00>69,10 30  

Carbosulfan 160,00>104,10 9  160,00>57,10 15  160,00>62,00 18  

Acetamiprido 152,00>116,10 18  152,00>89,10 27  152,00>125,10 15  

Cipermetrina 1 181,00>152,20 24  181,00>127,10 24  181,00>77,20 27  

Cipermetrina 2 163,00>127,10 6  163,00>91,10 15  163,00>109,10 18  

Cipermetrina 3 181,00>152,20 24  181,00>127,10 27  181,00>151,10 24  

Cipermetrina 4 163,00>127,10 6  163,00>91,20 18  163,00>108,90 18  

Esfenvalerato 1 125,00>89,10 18  125,00>99,10 21  125,00>63,10 27  

Esfenvalerato 2 125,00>89,10 18  125,00>99,10 18  125,00>63,00 27  

Difenoconazol 1 265,00>202,00 21  265,00>139,10 27  265,00>209,00 18  

Difenoconazol 2 265,00>202,10 18  265,00>139,20 27  265,00>209,00 15  

Deltametrina 181,00>152,10 24  181,00>127,10 27  181,00>77,00 30  

Azoxitrobina 344,00>329,10 15  344,00>183,10 21  344,00>156,20 30  

       

Tabela 7 – Valores para as transições mais intensas com suas respectivas 
energias de colisão.  
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4.4 Desenvolvimento do método de extração QuEChERS 

Este método é baseado em uma extração com acetonitrila e partição com 

adição de sal. O passo de limpeza com uma extração de fase sólida dispersiva 

(d-SPE) promove extratos mais limpos. Além do PSA que é o principal 

adsorvente usado em d-SPE, o Florisil foi testado como alternativa de adsorvente 

para o passo de limpeza junto com C18. 

Para os ensaios iniciais foi utilizado um kit da Waters que segue o método 

de extração da Association of Analytical Communities (AOAC) 2007.01. O Kit é 

composto de um tubo de polipropileno de 50 mL contendo 6 g de MgSO4 e 1,5 

g de acetato de sódio. Para o passo de clean-up, um tubo de polipropileno de 2 

mL contendo 150 mg de MgSO4, 50 mg de PSA e 50 mg de C18. Como solvente 

de extração foi utilizado 15 mL de acetonitrila com 1% de ácido acético.  O 

volume da amostra foi de 10 mL.   

A adição do MgSO4 na etapa de partição favorece a remoção da água 

contida na amostra. A reação de hidratação deste sal é exotérmica, alcançando 

uma temperatura entre 40 e 45 ºC durante as etapas de extração/partição da 

amostra e este aquecimento favorece a extração dos compostos apolares. A 

adição do acetato de sódio está ligada diretamente com a formação do tampão 

com pH entre 4 e 5 junto com o ácido acético adicionado à acetonitrila, tornando 

a extração mais compatível com o pH da cerveja que é em torno de 4. [77] 

A Figura 6 mostra o cromatograma referente ao processo de extração em 

que foi utilizado PSA junto com o C18 no passo de clean-up do extrato. O C18 

tem a capacidade de extrair compostos apolares e de média polaridade, efetivo 

em remover lipidios. O PSA tem a capacidade de remover ácidos orgânicos 

polares, pigmentos polares, alguns açúcares e ácidos graxos [78].Pode ser 

observado a eficiência do clean-up tendo em vista que apenas um dos 

interferentes que foram detectados está próximo do tempo de eluição do 
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alacloro, parationa metílica e ametrina, o qual pode ser excluído com a aplicação 

do método MRM. 

Em seguida foi executado o ensaio para testar a recuperação dos pesticidas 

no nível de fortificação de 0,05 µg mL-1. Os resultados das recuperações são 

mostrados na Figura 7. Nesse teste foram obtidos valores dentro da faixa (70 %-

120 %) para a maioria dos pesticidas com exceção do acetamiprido, que 

alcançou o valor de 24 %. Esse baixo valor pode estar associado a instabilidade 

térmica dos carbamatos, fazendo com que o composto degrade devido as altas 

temperaturas envolvidas na análise em CG. [79] 

Outra proposta para o passo de clean-up foi utilizar o Florisil como 

adsorvente no lugar do PSA, tendo em vista suas propriedades polares. A 

quantidade de Florisil utilizada para este ensaio foi de 50 mg, sendo que os 

demais parâmetros para o passo de d-SPE não foram alterados. 
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Figura 6 – Cromatograma da extração em QuEChERS da cerveja onde foi 

empregada a combinação de adsorventes PSA + C18 no passo de clean-up. 
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Figura 7 - Recuperação para extração da cerveja em QuEChERS utilizando 

PSA + C18 no passo de clean-up com nível de fortificação de 0,05 µg mL-1. 
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Conforme foi observado na Figura 8, o Florisil mostrou ser muito eficiente na 

remoção dos interferentes, efetuando uma limpeza mais efetiva que o PSA, 

mostrando que sua utilização é satisfatória para a matriz em questão. 

O teste de recuperação envolvendo o Florisil no passo de d-SPE foi 

executado com nível de fortificação em 0,03 µg mL-1.  

A Figura 9 mostra que a maioria dos compostos alcançaram bons resultados 

de recuperação. O carbosulfano por sua vez não foi detectado. A atrazina e a 

ametrina com recuperações de 66 % e 65 %, respectivamente, também não 

alcançaram o intervalo desejado, que pode estar relacionado ao nível de 

concentração utilizado. 

 

 

 

 

 

 

Figura 8 - Cromatograma da extração em QuEChERS da cerveja onde foi 

empregada a combinação de adsorventes Florisil + C18 no passo de clean-up. 
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Figura 9 - Recuperação para extração da cerveja em QuEChERS utilizando Florisil + C18 no 

passo de clean-up com nível de fortificação de 0,03 µg mL-1. 
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A fim de controlar o volume da amostra que seria utilizada para o processo 

de secagem em nitrogênio após o processo de extração e antes da análise por 

cromatografia, tendo em vista que o volume de 1 mL da amostra utilizado no 

procedimento de clean-up com o tubo de 2 mL não era recuperado totalmente 

foi realizado um ensaio onde o passo de d-SPE foi modificado. Neste ensaio foi 

utilizado um tubo de polipropileno de 15 mL contendo 400 mg de C18, 400 mg 

de Florisil, 1,2 g de MgSO4 e 8 mL da amostra foram retiradas do passo de 

partição para esse procedimento. A figura 10 mostra o cromatograma referente 

a este ensaio, onde pode ser observado que poucos interferentes são vistos 

próximos aos tempos de retenção dos pesticidas. 

Os valores de recuperação que foram realizados com nível de concentração 

de 0,05 µg mL-1 para esse teste podem ser observados na figura 11. As 

recuperações para os pesticidas com exceção do calbosulfano com valor de 45% 

ficaram dentro do intervalo (70-120%) ideal.  

Além de cromatogramas livres de interferentes, bons valores de recuperação 

foram alcançados tanto para os ensaios utilizando PSA como adsorvente na 

etapa de limpeza quanto para o Florisil. O QuEChERS apresentou baixo tempo 

de extração mostrando ser um método eficiente para a matriz alvo deste 

trabalho. 

 

Figura 10 - Cromatograma da extração em QuEChERS da cerveja onde foi 

empregada a combinação de adsorventes Florisil + C18 em tubo de 15 mL no 

passo de clean-up. 
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Figura 11 - Recuperação para extração da cerveja em QuEChERS utilizando Florisil + C18 no 

passo de clean-up em tubo de 15 mL com nível de fortificação de 0,05 µg mL-1. 



 

 

 

 

56 

4.5 Validação do método cromatográfico 

4.5.1 Linearidade 

Para observar o comportamento dos pesticidas no GC-MS/MS e suas 

respectivas linearidades em diferentes concentrações (0,05; 0,1; 0,25; 0,5; 1; 

1,5; 2,5 µg mL-1) foram produzidas curvas analíticas em acetato de etila (Tabela 

8). Pode ser notado que em sua maioria os pesticidas tiveram uma boa resposta 

às condições de análise apresentando coeficientes de correlação maiores que 

0,99, com exceção do acetamiprido, difenoconazol 1, difenoconazol 2, 

deltametrina e azoxistrobina.  

 

Tabela 8 – Curvas analíticas para os pesticidas com intervalo de concentração, 
equações da reta e coeficiente de correlação. 

 

Pesticida Concentração 
(µg mL-1) 

Equação da reta Coeficiente de 
correlação 

Carbofurano 0,05 - 2,5 y = 51764x - 3130,3 0,9985 
Atrazina 0,05 - 2,5 y = 14848x - 119,4 0,9997 
Terbufós 0,05 - 2,5 y = 2328,2x + 23,152 0,9923 
Alacloro 0,05 - 2,5 y = 56746x + 668,84 0,9991 
Parationa metílica 0,05 - 2,5 y = 19838x - 2452,2 0,9926 
Ametrina 0,05 - 2,5 y = 39884x - 945,5 0,9999 
Tiametoxan 0,05 - 2,5 y = 17742x – 2073 0,9916 
Flutriafol 0,05 - 2,5 y = 178313x - 2713,9 0,9999 
Carbosulfano 0,05 - 2,5 y = 5874x - 599,52 0,9952 
Acetamiprido 0,1 - 1,5 y = 18235x - 3288,5 0,9024 
Cipermetrina 1 0,05 - 2,5 y = 13846x – 1423 0,9936 
Cipermetrina 2 0,05 - 2,5 y = 15816x - 1784,5 0,9935 
Cipermetrina 3 0,05 - 2,5 y = 11810x - 1157,8 0,9966 
Cipermetrina 4 0,05 - 2,5 y = 14666x - 1332,9 0,9962 
Esfenvalerato 1 0,05 - 2,5 y = 9402,9x - 577,35 0,9941 
Esfenvalerato 2 0,05 - 2,5 y = 14614x - 1237,9 0,9956 
Difenoconazol 1 0,05 - 2,5 y = 13560x - 1750,3 0,9827 
Difenoconazol 2 0,05 - 2,5 y = 15882x - 2516,1 0,9818 
Deltametrina 0,05 - 2,5 y = 12923x - 1634,9 0,9876 
Azoxitrobina 0,05 - 2,5 y = 26488x - 3501,3 0,9851 
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4.5.2 Seletividade 

Neste trabalho a avaliação do efeito da matriz foi realizada pela construção 

de duas curvas analíticas: uma a partir da diluição da solução padrão no solvente 

orgânico Acetato de etila e outra pela diluição em extrato da cerveja obtido a 

partir do processo de extração por QuEChERS. Os pontos da curva no extrato 

da matriz foram produzidos através da diluição de 100 µL de solução padrão em 

900 µL do extrato, com o intuito de controlar a diluição dos possíveis compostos 

interferentes e não obter resultados falsos para o estudo. [80] 

Os dados obtidos das curvas analíticas podem ser observados na Tabela 9. 

Para estabelecer os intervalos de concentração utilizados nas curvas 

analíticas foi observada a melhor linearidade das curvas, buscando atender os 

LMR’s indicados pela ANVISA e o Codex Alimentarius, reportados na tabela 2. 

Com os valores dos coeficientes angulares apresentados na tabela 8 foram 

calculadas as razões entre os mesmos (RCA). Para os pesticidas alacloro, 

ametrina, tiametoxan, esfenvalerato 1, esfenvalerato 2, difenoconazol 2, 

deltametrina e azoxistrobina foram observados valores que mostram uma 

influência negativa do efeito matriz oriunda da supressão do sinal analítico em 

decorrência de compostos presentes na cerveja e também da instabilidade 

térmica de alguns destes pesticidas, fazendo com que esses compostos possam 

ser perdidos no caminho entre o injetor até a coluna como no caso do piretróide 

deltametrina. Os elevados valores de efeito matriz estão associados sobretudo 

com as baixas concentrações em que as curvas analíticas foram preparadas. 

[59] 

Os valores de RCA para os pesticidas carbosulfano, acetamiprido mostram 

que estes sofrem um grande efeito matriz positivo pela co-eluição de 

interferentes no mesmo tempo de retenção aumentando o sinal destes 

compostos. Já os pesticidas carbofurano, atrazina, parationa metílica, flutriafol, 

carbosulfano, acetamiprido, cipermetrina 1, e difenoconazol 1 sofrem levemente 

com um efeito matriz positivo. 
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De modo geral, a intensidade dos sinais analíticos, sofreram 

aumento/diminuição embora que sutil para a maioria dos pesticidas, mas ainda 

assim foram adotadas como referência as quantificações dos pesticidas a partir 

da calibração no extrato da matriz. 
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Tabela 9 – Curvas analíticas para os pesticidas com intervalo de concentração, equações da reta, coeficiente de correlação 
e    razão dos coeficientes angulares. 

 
Intervalo de 

concentração (µg mL-1) 
Equação da reta 

(Matriz) R² 
Equação da reta 

(Solvente) R² RCA 
Carbofurano 0,02-0,4 y = 3316,9x + 98,97 0,9937 y = 3723x - 46,236 0,9985 1,12 
Atrazina 0,02-0,4 y = 13000x + 46,277 0,9943 y = 14510x + 37,883 0,9941 1,11 
Alacloro 0,02-0,3 y = 39031x + 234,46 0,9984 y = 50267x - 413,23 0,9981 0,77 
Parationa metílica 0,02-0,4 y = 10947x - 69,698 0,9804 y = 9505x - 132,55 0,9904 1,15 
Ametrina 0,02-0,3 y = 29520x + 79,079 0,9947 y = 35146x - 247,25 0,9917 0,84 
Tiametoxan 0,02-0,3 y = 16059x + 134,86 0,9920 y = 27835x - 461,21 0,9944 0,57 
Flutriafol 0,02-0,3 y = 97160x + 106,23 0,9933 y = 87633x - 257,11 0,9970 1,10 
Carbosulfan 0,02-0,4 y = 6299,9x - 74,541 0,9906 y = 3416,5x - 46,656 0,9939 1,84 
Acetamiprido 0,02-0,3 y = 11308x - 42,327 0,9900 y = 8265,1x - 124,3 0,9958 1,36 
Cipermetrina 1 0,02-0,4 y = 7789x - 59,711 0,991 y = 7065,6x - 86,159 0,9995 1,10 
Cipermetrina 2 0,02-0,4 y = 7271,5x - 71,621 0,9903 y = 6843x - 123,15 0,9993 1,06 
Cipermetrina 3 0,02-0,4 y = 6189,1x - 57,502 0,9900 y = 5871,3x - 88,492 0,9995 1,05 
Cipermetrina 4 0,02-0,4 y = 6571,5x - 87,416 0,9892 y = 6497,9x - 129,72 0,9985 1,01 
Esfenvalerato 1 0,02-0,3 y = 6650,2x + 2,1456 0,9846 y = 10815x - 214,78 0,9894 0,61 
Esfenvalerato 2 0,02-0,4 y = 6765,9x - 37,584 0,9897 y = 7691,8x - 71,567 0,9979 0,88 
Difenoconazol 1 0,02-0,4 y = 13208x - 140,05 0,9808 y = 10971x - 155,72 0,9904 1,20 
Difenoconazol 2 0,02-0,3 y = 10092x - 20,47 0,9937 y = 11619x - 212,9 0,9866 0,87 
Deltametrina 0,02-0,4 y = 5541,9x - 27,139 0,9920 y = 6204x - 144,86 0,9912 0,89 
Azoxistrobina 0,02-0,3 y = 20695x - 152,04 0,9884 y = 26410x - 508,49 0,9956 0,78 
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4.5.3 Exatidão e precisão 
 

Para os testes de exatidão e precisão foram utilizados os intervalos de 

concentração definidos no estudo de efeito matriz e com a finalidade de 

assegurar eficiência de extração para níveis de concentração baixos, o método 

foi aplicado para as concentrações 0,3; 0,1 e 0,05 µg mL-1. A Tabela 10 

apresenta os valores de recuperação média e dos coeficientes de variação (CV) 

para cada pesticida. 

Os valores de recuperação e coeficientes de variação obtidos para os 

pesticidas na concentração 0,3 µg mL-1 indicam que o método proposto 

apresenta ótima exatidão e precisão para esse nível de concentração, tendo em 

vista que os resultados estão dentro da faixa 70-120% e inferior a 20% 

respectivamente. [54]  

Para a maioria dos pesticidas na concentração 0,1 µg mL-1 as médias de 

recuperação tiveram valores entre 70-120% com excessão dos pesticidas 

cipermetrina 1, cipermetrina 2, cipermetrina 3, cipermetrina 4 e esfenvalerato 1 

que obtiveram valores de recuperação abaixo do intervalo, por outro lado, foram 

obtidos resultados insatisfatórios para o parâmetro coeficiente de variação para 

maioria dos pesticidas com valores superiores a 20%. Na concentração 0,05 µg 

mL-1 os valores de recuperação encontrados para os pesticidas foram muito 

abaixo do intervalo desejado.  

À medida em que o nível de concentração da fortificação é reduzido são 

observados baixos valores de recuperação para o menor valor concentração 

utilizado e elevados valores de CV para a concentração intermediária são 

observados, esses resultados foram bastante influenciados por uma baixa de 

sensibilidade no equipamento de cromatografia gasosa que era constantemente 

utilizado em várias baterias de analise com amostras distintas ocasionando uma 

saturação de compostos interferentes. 
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Tabela 10 – Recuperação média e coeficientes de variação do método 
QuEChERS para determinação de pesticidas em cerveja (n=5). 

 

 
Fortificação 

(µg mL-1) 

Recuperação 
Média % 

CV % 

Carbofurano 
0,3           
0,1           
0,05 

88            
96*           
95 

10     
10,4*    
3,9 

Atrazina 
0,3           
0,1           
0,05 

80            
82*           
95 

0,3    
19*     
7,7 

Alacloro 
0,3           
0,1           
0,05 

83            
84*           
52 

2,9    
22*     
6 

Parationa metílica 
0,3           
0,1           
0,05 

87            
92*           
90 

4,5    
19*     
16 

Ametrina 
0,3           
0,1           
0,05 

79            
81*           
52 

1       
25*     
3,8 

Tiametoxan 
0,3           
0,1           
0,05 

82            
83*           
47 

2,5    
25*     
3,6 

Flutriafol 
0,3           
0,1           
0,05 

83            
87*           
50 

1,3    
21*     
6,3 

Acetamiprido 
0,3           
0,1           
0,05 

83            
74*           
48 

1,8    
19,6*    
22,8 

Cipermetrina 1 
0,3           
0,1           
0,05 

123          
76*           
39 

15     
20*     
11,8 

Cipermetrina 2 
0,3           
0,1           
0,05 

102          
60*           
59 

12     
15,1*    

10 

Cipermetrina 3 
0,3           
0,1           
0,05 

97            
57*           
29 

12     
15,6*    
4,7 

Cipermetrina 4 
0,3           
0,1           
0,05 

117          
65*           
28 

7,7    
26,9*    
11,5 

Esfenvalerato 1 
0,3           
0,1           
0,05 

108          
67*           
41 

22,2    
8,1*    
29 
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Continuação da tabela 10 

Esfenvalerato 2 
0,3           
0,1           
0,05 

112          
74*           
44 

9,3    
24*     
26,2 

Difenoconazol 1 
0,3           
0,1           
0,05 

87            
89*           
50 

7,2    
23,4*    
16,1 

Difenoconazol 2 
0,3           
0,1           
0,05 

82            
76*           
61 

6,4    
39,05*  
16,8 

Deltametrina 
0,3           
0,1           
0,05 

89            
95*           
71 

6,1    
7,1*    
33,7 

Azoxistrobina 
0,3           
0,1           
0,05 

94            
94*           
55 

10,5    
30*     
6,1 

                         *(n=3) 

 

 

4.5.4 Limite de quantificação e Limite de detecção. 
 

O cálculo dos limites de detecção e quantificação neste trabalho foram 

realizados utilizando o método baseado em parâmetros da curva analítica, por 

ser o mais confiável estatisticamente para métodos cromatográficos. Foram 

utilizados o coeficiente linear (s) e coeficiente angular (S), ambos das curvas 

analíticas dos pesticidas na matriz utilizadas no estudo do efeito matriz para os 

cálculos de LD e LQ [64], como pode ser visto nas seguintes equações: 

𝐿𝐷 = 3𝑥 𝑠𝑆                    𝐿𝑄 = ͳͲ𝑥 𝑠𝑆 
A tabela 11 apresenta os resultados obtidos dos LD e LQ do método 

proposto para a determinação dos pesticidas na cerveja.  
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Tabela 11 – Limite de detecção (LD) e Limite de quantificação (LQ) para o 
método QuEChERS. 

 

Os limites de detecção e quantificação encontrados para os pesticidas 

variaram de 0,003-0,08 µg mL-1 e 0,01-0,12 µg mL-1 respectivamente, os quais 

podem ser considerados satisfatórios visto que apresentam baixos valores de 

concentração para cada composto. 

 

4.6 Aplicação do método em amostras reais 

Após a validação, o método proposto foi aplicado a 9 rótulos (Antarctica, 

Bavaria, Brahma, Crystal, Devassa, Itaipava, Schin, Skol) de cervejas 

produzidas no Brasil com intuito de verificar a presença de resíduos dos 

 

Limite de Detecção 
(µg mL-1) 

Limite de Quantificação 
(µg mL-1) 

Carbofurano 0,03 0,08 
Atrazina 0,01 0,04 
Alacloro 0,02 0,06 
Parationa metílica 0,02 0,06 
Ametrina 0,01 0,03 
Tiametoxan 0,025 0,08 
Flutriafol 0,003 0,01 
Carbosulfano 0,035 0,12 
Acetamiprido 0,01 0,04 
Cipermetrina1 0,03 0,1 
Cipermetrina2 0,03 0,1 
Cipermetrina3 0,03 0,1 
Cipermetrina4 0,03 0,1 
Esfenvalerato1 0,02 0,05 
Esfenvalerato2 0,02 0,05 
Difenoconazol1 0,03 0,1 
Difenoconazol2 0,03 0,1 
Deltametrina 0,015 0,05 
Azoxitrobina 0,02 0,05 
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pesticidas utilizados neste trabalho. A tabela 12 mostra os resultados obtidos 

para cada uma das cervejas.  
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                      Tabela 12 – Resultados da aplicação do método QuEChERS na análise de pesticidas em amostras reais. 

 

Pesticida 
Rótulo da Cerveja 

Skol Brahma Antarctica Bavaria Crystal Kaiser Devassa Schin Itaipava 
Carbofurano <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Atrazina <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Alacloro <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Parationa metílica <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Ametrina <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Tiametoxan <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Flutriafol <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Carbosulfano <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Acetamiprido <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cipermetrina 1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cipermetrina 2 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cipermetrina 3 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Cipermetrina 4 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Esfenvalerato 1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Esfenvalerato 2 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Difenoconazol 1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Difenoconazol 2 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Deltametrina <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
Azoxitrobina <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD 
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Os resultados obtidos mostram que não foram encontrados nenhum resíduo 

dos pesticidas em nenhum dos rótulos de cerveja utilizados nesse trabalho. A 

ausência dos pesticidas no produto final cerveja pode estar ligada as diversas 

fases de processamento na produção da bebida, causando eliminação dos 

resíduos durante a produção. [37,71]   

 

5 CONCLUSÕES 
 

As condições cromatográficas adotadas junto com o desenvolvimento do 

método de MRM para GC-MS/MS permitiram a obtenção de bons resultados de 

separação dos compostos em análise, proporcionando uma análise simultânea 

dos 14 pesticidas em estudo (acetamiprido, alacloro, ametrina, atrazina, 

azoxitrobina, carbofurano, carbosulfano, cipermetrina, deltametrina, 

difenoconazol, esfenvalerato, flutriafol, parationa metílica e tiametoxan)   com  

separação eficaz destes analitos e excelente resposta linear com exceção do 

acetamiprido, difenoconazol, deltametrina e azoxistrobina que apresentaram 

coeficientes de correlação abaixo de 0,99.  

A técnica de extração QuEChERS apresentou valores de recuperação para 

os pesticidas com concentração de 0,05 µg mL-1 na faixa de 73-101% onde foi 

aplicada a combinação do PSA e C18 na fase de clean-up, já para a combinação 

Florisil e C18 com concentração dos pesticidas de 0,03 µg mL-1 a faixa de 

recuperação foi de 65-103%. Em ambos os casos o carbosulfano apresentou 

valores muito baixos de recuperação devido à instabilidade térmica dos 

carbamatos. Estes resultados de recuperação associados com a limpeza 

proporcionada pelo passo de d-SPE, pouca quantidade de amostra e adsorvente 

utilizada, baixos volumes dos solventes e rapidez, mostra a aptidão do 

QuEChERS como método de extração para pesticidas em cerveja. 

Os parâmetros de validação estudados apresentaram índices satisfatórios 

incialmente para assegurar a determinação de resíduos dos pesticidas 

acetamiprido, alacloro, ametrina, atrazina, azoxitrobina, carbofurano, 

carbosulfano, cipermetrina, deltametrina, difenoconazol, esfenvalerato, flutriafol, 
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parationa metílica e tiametoxan por extração em QuEChERS. Devido a 

problemas na sensibilidade do aparelho de cromatografia gasosa algumas 

análises foram afetadas, principalmente os ensaios de precisão e exatidão para 

as concentrações 0,1 µg mL-1 e 0,05 µg mL-1 que mostraram valores diferentes 

dos esperados de recuperação e coeficientes de variação, que estão fora dos 

limites ideais de 70-120% e abaixo de 20% respectivamente, tornando 

necessário novos experimentos para esse parâmetro com as condições ideias 

do aparelho de cromatografia.  

Nos testes em amostra real realizados em nove rótulos (Antarctica, Bavaria, 

Brahma, Crystal, Devassa, Itaipava, Schin, Skol) de cervejas brasileiras nenhum 

dos pesticidas em estudo foram detectados. 

 

 

 

 

 

6 PERSPECTIVAS DO TRABALHO 
 

• Avaliar a eficiência de adsorvente alternativo na etapa de limpeza do 

extrato de cerveja. 
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