Universidade Federal de Sergipe
Centro de Ciências biológicas e da saúde
Departamento de Ecologia

Guilherme Matos Antônio

AVALIAÇÃO DE EFICIÊNCIA DA IMPLANTAÇÃO DE TÉCNICA DE BIOENGENHARIA DE SOLOS

São Cristóvão
2019.1
Universidade Federal de Sergipe
Centro de Ciências biológicas e da saúde
Departamento de Ecologia

Guilherme Matos Antônio

AVALIAÇÃO DE EFICIÊNCIA DA IMPLANTAÇÃO DE TÉCNICA DE BIOENGENHARIA DE SOLOS

Trabalho de conclusão de curso apresentado ao Departamento de Ecologia da Universidade Federal de Sergipe como parte dos requisitos para obtenção do título de Bacharel em Ecologia, desenvolvido sob a orientação do Prof. Dr. Francisco Sandro Holanda Rodrigues.

São Cristóvão
2019.1
SERVIÇO PÚBLICO FEDERAL
MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE SERGIPE
CONSELHO DO ENSINO, DA PESQUISA E DA EXTENSÃO

RESOLUÇÃO N° 55/2009/CONEPE

ANEXO IV

ATA DA SESSÃO DE APRESENTAÇÃO DA MONOGRAFIA

A Banca Examinadora, composta pelos professores FRANCISCO SANDRO RODRIGUES HOMANZA, LUCIANA GODINHO NEGREIROS e KAIRON ROCHA ANDRADE, sob a presidência do primeiro reuniu-se às 10 horas do dia 09/09/2019, na sala (no auditório) do DCE do Núcleo de Ecologia do CCBS da Universidade Federal de Sergipe, para avaliar a monografia, sob o título **AVANÇO DE EFICIÊNCIA DA IMPLANTAÇÃO DE TÉCNICA DE ENGENHARIA DE SUELOS**, apresentada pelo(a) discente **BUCHELMER MADOES ALVES** do Curso de Ecologia - Bacharelado, matriculado(a) na UFS sob o nº 202115005. Dando início às atividades, o(a) Presidente da Sessão passou a palavra ao (à) discente para proceder à apresentação da monografia. A seguir, o primeiro examinador, Prof.(a) **LUCIANA GODINHO NEGREIROS**, fez comentários e argüiu o(a) discente, que dispôs de igual período para responder ao questionamento. O mesmo procedimento foi seguido com o segundo examinador, Prof.(a) **KAIRON ROCHA ANDRADE**. Dando continuidade aos trabalhos, o(a) Presidente da Banca Examinadora, Prof.(a) **FRANCISCO SANDRO RODRIGUES HOMANZA**, agradeceu os comentários e sugestões dos membros da Banca. Encerrados os trabalhos, a Banca Examinadora retirou-se do recinto para atribuição da nota. Com base nos preceitos estabelecidos pela Resolução 55/2009/CONEPE, que normatiza a elaboração e avaliação das monografias do Curso de Ecologia – Bacharelado, a Banca Examinadora decidiu (aprovar/reprovar) o(a) discente com a média 8.5 (OITO E MEIO). Nada mais havendo a tratar, a Banca Examinadora elaborou essa Ata que será assinada pelos seus membros e, em seguida, pelo(a) discente aprovado(a).

Cidade Universitária “Prof. José Aloísio de Campos, 09 de setembro de 2019

Prof.(a) Orientador(a) – Presidente

1º Examinador

2º Examinador

Discente aprovado
Lista de figuras

Figura 1- Mapa de localização da área de estudo em Amparo de São Francisco, Sergipe. Agosto de 2019. ...9

Figura 3- Moldura para coleta de Banco de sementes. ...12

Figura 4- Infiltrômetro de anel utilizado no experimento para taxa de infiltração.15

Figura 5- Taxa de germinação diária acumulada para cada 100g de solo pelo período do experimento. ...22

Figura 6- Comparação entre o tratamento com bioengenharia de solos e o controle para resistência a penetração. ...24

Figura 7- Taxa de infiltração da área com bioengenharia de solos.26

Lista de Tabelas

Tabela 1 - Classificação quanto á Resistência a penetração do solo (Adaptado da SOIL SURVEY STAFF, 1993). ...14

Tabela 2- Classificação do solo de acordo com a velocidade de infiltração básica.15

Tabela 3 – Distribuição das espécies amostradas e seu hábito...16

Tabela 4- Distribuição das espécies identificadas e resultados da análise fitossociológica da estrutura horizontal. Taxa de Cobertura Linear (CL), Taxa de Cobertura Relativa (CR) Índice Valor de Importância (IVI). ...18

Tabela 5 - Tamanho das plântulas emergidas. ..18

Tabela 6- Resultados para análise química das amostras de solo. M.O - Matéria orgânica, Ca - Calcio, Mg- Magnesio, K - Potássio, Na - Sódio, P - Fósforo, CTC – Capacidade troca de cátions , SB - Soma de bases, V - Saturação de bases; B – Tratamento com bioengenharia de solos, C – Tratamento Controle. ...23
Sumário

1. Introdução ... 5

2. Material e Métodos ... 8
 2.1 Área de estudo .. 8
 2.2 Método de amostragem .. 11
 2.3 Regeneração Natural ... 11
 2.4 Banco de Sementes ... 12
 2.5 Qualidade do Solo .. 13
 2.6 Análises estatísticas ... 16

3. Resultados e Discussão ... 16
 3.1 Regeneração Natural ... 16
 3.2 Banco de sementes .. 20
 3.3 Fertilidade do solo .. 22
 3.4 Resistência à Penetração ... 24
 3.5 Taxa de Infiltração .. 25
 3.6 Metodologia de avaliação de áreas recuperadas com bioengenharia de solos ... 27

4. Considerações finais ... 28

5. Referências Bibliográficas .. 29
Resumo:

A cascata de hidrelétricas ao longo da calha do Rio São Francisco causa variações hidrossedimentológicas que contribuem para os processos erosivos nas margens do rio demandando medidas mitigadoras. A bioengenharia de solos se apresenta por meio de processos tecnológicos e ecológicos utilizando materiais vivos como sementes, plantas e madeira com intuito de estabilização de taludes e controle da erosão. O objetivo deste trabalho é, a partir da avaliação dos resultados de uma obra de bioengenharia de solos, sistematizar uma metodologia para avaliação de obras de recuperação ambiental. A área de estudo compreende um trecho do baixo curso do Rio São Francisco, localizado no Município de Amparo do São Francisco, no estado de Sergipe, onde foram implantadas técnicas de bioengenharia de solos no ano de 2011. Foram selecionados três grupos de indicadores individuais que conjuntamente contribuíram para avaliação de Recuperação de Áreas Degradas (RAD), como a regeneração natural, em que os parâmetros foram projeção horizontal da comunidade vegetal, a qualidade do solo com os parâmetros fertilidade do solo, taxa de infiltração e resistência a penetração e o banco de sementes pelo parâmetro taxa de germinação. Foram amostrados indivíduos de 22 espécies e alto valor para taxa de cobertura linear no talude, mesmo a espécie *mimosa pigra* L. apresentando forte dominância. A resistência a penetração obteve diferença significativa (p < 0,05) para o tratamento com biotecnica em relação ao tratamento sem bioengenharia de solos. A taxa de infiltração foi classificada como muito alta. A análise de fertilidade mostrou diferenças entre os parâmetros testados em relação ao tratamento controle e o tratamento com bioengenharia de solos. A aplicação da metodologia apresentou importantes resultados que permitiram avaliar a proteção e estabilização de taludes que foram degradados por erosão. A análise da fitossociologia e projeção horizontal da comunidade vegetal como indicador para regeneração natural, a análise química do solo referente à fertilidade e os atributos físicos como resistência a penetração e infiltração do solo se mostraram importantes componentes para a avaliação de uma obra de bioengenharia de solos, indicando o equilíbrio estrutural e de estabilidade ecossistêmica do talude recuperado.

Palavras-chave: Recuperação de áreas degradadas, Erosão, Engenharia natural.
1. Introdução

Os recursos naturais estão sendo explorados pelo homem de forma desordenada e inconsequente, principalmente no que tange aos corpos hídricos. A qualidade da água dos rios depende diretamente de fatores físicos, meteorológicos, edáficos e da presença da cobertura vegetal. Entretanto, devido às ações antrópicas a bacia hidrográfica do rio São Francisco tem apresentado baixa qualidade das águas diante das ações que contribuíram para degradação ambiental, como o uso do solo para áreas agrícolas, ocupações irregulares, especulação imobiliária em áreas marginais do rio, desmatamento de mata ciliar e o não cumprimento de leis ambientais (SILVA et al., 2010).

Além dessas ações, os projetos de hidrelétricos e barragens implementadas na bacia hidrográfica do Rio São Francisco proporcionam variações hidrossedimentológicas ao longo do rio. De acordo com HOLANDA et al. (2007), o fluxo e refluxo entre o aquífero e a calha do rio determinada pelo volume de água liberado pela Usina Hidrelétrica de Xingó é o principal fator que contribui para erosão no Baixo Rio São Francisco. A erosão marginal, também é condicionada por eventos climáticos distintos como intensidade do vento e pluviosidade e de eventos hidrológicos, como a variação da vazão do rio, velocidade do fluxo próximo às margens e choque das ondas que atuam na base dos taludes (CASADO et al., 2002).

O Baixo São Francisco apresenta um frequente histórico de instabilidade dos taludes e aceleração dos processos erosivos em suas margens e pode ser considerada extremamente grave, já que o aumento do volume de sedimentos depositados no leito do rio causam danos econômicos, sociais e ambientais, isso pode ser explicado pela baixa variação do nível de água devido à regularização da vazão (BANDEIRA, 2005).

Em solos predominantemente arenosos, o principal fator que influencia a evolução de trabalhos erosivos em talude marginal é a velocidade da vazão do rio que por sua vez, transporta um maior volume de solo devido a maior concentração de energia cinética em contato com as partículas do solo, favorecendo os processos erosivos na parte inferior e média do talude (ROCHA et al., 2018).

De acordo com Moura et al. (2017), após a realização de uma estimativa e avaliação de perdas de solo em solos do Baixo São Francisco, o autor define que áreas
predominantemente ocupadas por NEOSSOLOS Flúvicos apresentaram erodibilidade mais expressivas devido a não agregação desse tipo de solo o que gera carregamento de sedimentos.

Para mitigar esses processos erosivos, é necessário a utilização das técnicas de bioengenharia de solos ou engenharia natural, tais técnicas consistem na integração das técnicas da engenharia civil com o uso de elementos biologicamente ativos, em obras de estabilização de solo e de sedimentos, conjugados com elementos inertes como concreto, madeira, ligas metálicas, polímeros, e mantas confeccionadas com fibras vegetais, que são chamadas de geotêxteis ou biomantas para estabilização e recuperação do talude (GRAY & SOTIR, 1996).

As principais funções do uso de técnicas da bioengenharia de solos consistem na proteção da superfície do solo contra erosão por vento, precipitação, gelo, água corrente, coesão e assim promover a estabilização do solo superficial. Além disso, as funções ecológicas são melhoradas através do regime fluvial, pela melhor capacidade ecossistêmica de interceptação e armazenamento de matéria e energia, melhoria do solo pelas raízes das plantas, equilíbrio microclimático próximo ao solo e integração da estrutura na paisagem. Existem, também, as funções econômicas, como menores custos de construção, manutenção e reabilitação (ZEH, 2007).

O principal agente da bioengenharia de solos é a vegetação, ela apresenta efeitos positivos sobre os taludes, tais como a redução no transporte de sedimentos, o aumento da taxa de infiltração do solo e o controle da erosão marginal (PEREIRA et al, 2008; JONES & HANNA, 2004). Para que o efeito da estabilização do solo seja positivo, devem-se conhecer as características técnicas da vegetação para o melhor aproveitamento e desenvolvimento da estabilização do solo e no controle do processo erosivo (ARAÚJO FILHO et al. 2013).

A vegetação estabelecida pode ser vulnerável à seca, a falta de nutrientes do solo e a alta incidência solar, como também podem sofrer com estresse mecânico de pastagens, ou exigir acompanhamento especial para garantir o sucesso do projeto a longo prazo e tudo isso deve ser considerado (LEWIS, 2000). Algumas espécies como o capim Vetiver (*Chrysopogon zizanioides*) são comumente utilizadas em obras de bioengenharia de solo devido ao seu sistema radicular denso nas primeiras camadas de solo que grampeiam o solo e trazem estabilidade ao talude. Além disso, as raízes trazem adição de matéria orgânica e umidade para o solo que por sua vez contribui para coesão do talude (MACHADO et al., 2018).
Holanda et al., (2010) estudaram a gramínea Brachiaria decumbens e identificaram que essa espécie contribuiu negativamente por ser uma espécie altamente competitiva com outras espécies florestais. Os autores concluíram que espécies devem ser selecionadas por características específicas como desenvolvimento rápido, boa cobertura e apresentar adaptação a variações como eventos de cheias e resistir aos movimentos de massa em situação de fortes processos erosivos.

Em um trabalho sobre aptidão técnica de espécies utilizadas em obras de bioengenharia de solos, Sutili (2007), levanta que os modelos de intervenção recomendados para esses tipos de obras podem ser adaptados e transferidos a diferentes realidades regionais tanto no uso de equipamentos como também na utilização técnica de diferentes espécies.

No estudo de Holanda et al. (2009), com o uso de geotêxteis, associados a retentores de sedimentos e crescimento de espécies vegetais de desenvolvimento rápido, essas espécies implantadas asseguram proteção ao solo e contribuíram para o processo de revegetação, a análise do perfil transversal do talude, dessa área, demostrou a importância dessas técnicas no controle da erosão e estabilização do talude. Nesse estudo, também foi discutido a contribuição do enrocamento em taludes em situações de intenso trabalho erosivo.

Também com geotêxteis associados a retentores, Holanda et al., 2007 evidencia a eficiência de obras de bioengenharia de solos como facilitador do crescimento da vegetação ciliar e também como mitigador de processos erosivos como o solapamento da base do talude marginal. Nesse trabalho, o autor destaca o uso de materiais que são fotodegradáveis para condução de equilíbrio geomorfológico e ecológico do rio.

A utilização de obras de bioengenharia de solos não é apropriada para qualquer tipo de erosão; em alguns casos, um simples espalhamento de uma camada protetora de palha sem ervas daninhas pode ser satisfatório, porém depende muito do estado em que a erosão se encontra. (LEWIS, 2000).

sucessão ecológica precisa ser avaliada

Para que uma avaliação de recuperação de áreas degradadas seja satisfatória deve-se considerar indicadores de avaliação e monitoramento. Desta forma, podemos decidir a necessidade de alterar ou interferir o projeto inicial a fim de acelerar o processo de sucessão natural, ou até mesmo, dispensar intervenções de manejo. Assim, o grande desafio é definir o que deve ser medido em diferentes projetos de restauração natural (MARTINS et al., 2013).
Em projetos de avaliação de recuperação é de suma importância existir métodos que meçam a estrutura da comunidade vegetal pois a partir do seu estabelecimento, o ambiente se mostra susceptível a chegada da fauna e consequentemente ao aumento da complexidade estrutural ecossistêmica. Assim, o sistema se garante equilibrado a partir da recuperação de processos ecossistêmicos (RUIZ-JAEN & AIDE, 2005).

O objetivo deste trabalho foi sistematizar uma metodologia para avaliação de obras de recuperação ambiental, a partir do estudo de caso dos resultados de uma área implantada com técnicas de bioengenharia de solos.

2. Material e Métodos

2.1 Área de estudo

Para a realização desse estudo, que possibilitasse a sua validação, foi selecionada uma área onde foram implantadas técnicas de bioengenharia de solos, inicialmente com visita de reconhecimento em junho de 2018, e posteriormente em junho de 2019 foi possível levantar as variáveis para a definição de protocolo para monitoramento dessas técnicas.

O local estudado compreende um trecho da margem do Rio São Francisco, no seu baixo curso, localizado no Município de Amparo do São Francisco, no estado de Sergipe, cujas coordenadas UTM são N= 731443.0 e E = 8877410.0 (Figura 1), onde foram implantadas técnicas de bioengenharia de solos no ano de 2011.

O clima do local, segundo a classificação de Köppen, é do tipo Am, com pluviosidade e temperatura média anual de 744 mm/ano e 25°C, respectivamente e o solo é classificado como NEOSSOLO Flúvico, de acordo com o Sistema Brasileiro de Classificação de Solos (HOLANDA, 2000).

A textura do solo foi classificada como argilo-siltosa nas camadas superiores e nas camadas inferiores franco-arenosa, essa granulometria distinta se deve ao tipo de solo (NEOSSOSOLO Flúvico) que em seu processo de formação ocorre a deposição de sedimentos aluviais de origem variada ao longo do tempo sem uma relação pedogenética definida. A fração de areia nas camadas mais inferiores ocasiona uma maior quantidade de espaços vazios e fazendo com que as partículas fiquem mais distantes umas das outras, provocando redução na coesão do solo, o que gera agregados com baixa estabilidade e consequentemente uma maior erobilidade de solos para o talude dessas áreas que sofrem frequentemente com processos erosivos (ARAUJO-FILHO et. al, 2013).

Em outro trabalho essa área já foi utilizada para três experimentos de bioengenharia de solos. O primeiro, a parede enrocada juntamente com biomanta composta de fibra de coco
fixada com o plantio de estacas vivas de Aroeira (*Schinus terebenthifolius* Raddi) e Sabiá (*Mimosa caesalpiniaefolia* Benth). O segundo experimento foi a técnica de cordões vegetados de capim vetiver na base do talude em conjunto com camada de arbustos de Aroeira e sabiá, também retentores de sedimento (ARAÚJO-FILHO et al., 2013).

O terceiro experimento foi o enrocamento vegetado, que consiste no uso de rochas para proteção da base dos taludes instáveis e associado a outras técnicas que usam estacas vegetais ou geotêxteis, garantem uma menor produção de sedimentos, certificando a eficiência dessa técnica na estabilização do talude (Figura 2). No Baixo Rio São Francisco foi realizado o experimento da seguinte forma: Após a implementação das camadas de rochas na base do talude para proteção, foi fixado estacas vivas de sabiá (*Mimosa caesalpiniaefolia Benth*) e o realizado o plantio da gramínea vetiver (*Vetiveria Zizanioides L Nash*) para proteção e estabilização do solo. No topo do talude foi utilizado retentores de sedimento de fibras vegetais envolvidos por malha de polipropileno fotodegradável (ARAÚJO-FILHO et al., 2013).

2.2 Método de amostragem

O principal objetivo em uma Projeto de Recuperação de Áreas Degradadas (PRAD) é verificar se os objetivos iniciais do projeto foram atingidos de acordo com o planejamento do projeto (BRANCALION et al., 2013). Desse modo, este trabalho foca em uma metodologia para avaliação de consolidação do talude, visando controle efetivo da erosão aliado ao processo de recuperação ecológica, através do uso da técnica de bioengenharia de solos, especificamente Enrocamento Vegetado.

Foram selecionados três conjuntos de indicadores individuais que contribuíram para a PRAD na área que foi implantada técnica de bioengenharia de solos, a regeneração natural que traz a influência da vegetação e seu sistema radicular para o talude; o banco de sementes para renovação ecossistêmica e a qualidade do solo que por sua vez, carrega parâmetros de consolidação e qualidade física do solo.

2.3 Regeneração Natural

Na regeneração natural foi avaliado o estrato herbáceo através do método de interseção na linha (CANFIELD et al. 1941, 1950) para determinação da composição e da cobertura linear das espécies. O método consiste em traçar linhas sobre a vegetação a ser amostrada e anotar o comprimento que a linha é interceptada por uma espécie, que é dividido pelo comprimento total das espécies inventariadas sob a linha, estimando a proporção da área coberta por aquela espécie, assim, obtendo a proporção de área coberta por determinada espécie. Foi possível a visualização da projeção horizontal da linha na qual eram considerados todos os indivíduos com hábito herbáceo ou subarbustivo. Foram registradas a ocorrência e o comprimento que cada espécie ocupa na área ao longo das linhas amostradas. As espécies foram coletadas independentemente de estarem com material reprodutivo e foram levadas para Universidade Federal de Sergipe para identificação por meio de comparação com material já existente no Herbário ASE. A área total que foi dividida tinha 28,60 m de
comprimento abrangiando toda a técnica enrocamento vegetado e a linha foi passada a 2,65 m a partir da base do talude paralelamente ao rio.

A partir dos dados florísticos coletados nas linhas, foi calculada a Taxa de Cobertura Linear (CL), que é a soma linear da extensão de uma espécie amostrada dividida pelo total de metros amostrados, a Taxa de Cobertura Relativa (CR), que é a soma linear da extensão de uma espécie amostrada dividida pelo total de metros amostrados com espécie, a Densidade Relativa (DR), que é o número de indivíduos de uma espécie amostrada dividido pelo número total de indivíduos amostrados e o Índice de Valor de Importância (IVI), que é a soma da taxa de cobertura relativa e da densidade relativa.

2.4 Banco de Sementes

Para reconhecimento do banco de sementes foi lançada aleatoriamente uma moldura de 0,50m x 0,50 m (totalizando 0,25 m²) na parcela do talude (figura 3), que já havia sido definida anteriormente, na qual foi coletado material da superfície, contendo um misto de serapilheira, solo, sementes, matéria orgânica, em uma profundidade de 5 cm e acondicionados em sacos plásticos identificados (BUTLER & CHAZDON, 1998).

Figura 3- Moldura para coleta de Banco de sementes.
Foram coletadas quatro amostras de duas áreas do talude (vegetação cerrada e vegetação mais densa). Após a coleta do material, as amostras foram secas ao ar livre e em seguida peneiradas para retirada da serrapilheira. Foi realizado um teste de germinação em que foram retiradas quatro réplicas com 100g de material para cada amostra e dispostas em caixa GERBOX de plástico identificadas. Logo após, foi adicionada água destilada para elevar a umidade, com correção da umidade nas amostras, para trazer uniformidade para as mesmas. Desta maneira, foi possível observar a germinação de sementes existentes em condições iguais para todas as réplicas, permitindo que o experimento pudesse prosseguir para as próximas etapas, ficando 2 semanas em um germinador de sementes J-Prolab Mangelsdorf, com avaliações recorrentes nos dias 4, 7, 11 e 14º. com o intuito de avaliar o número de plântulas emergidas, a velocidade de germinação (VG), o tamanho das plântulas e, quando possível, a identificação botânica, visto que as plântulas emergidas foram retiradas do experimento e levadas para casa de vegetação.

A fim de verificar a taxa de germinação foi realizada também a contagem de sementes a cada 100g de solo, para cada tratamento com 4 repetições; porém, não houve dados conclusivos visto que não ocorreu germinação devido ao fotoblastismo negativo ou neutro das sementes testadas.

2.5 Qualidade do Solo

Foram coletadas amostras de solo em profundidade de 0-20, 20-40 e 40-60 cm do perfil estratigráfico, com um auxílio de um trado holandês, em duas áreas (uma com presença da técnica de bioengenharia de solos e outra sem a técnica de bioengenharia de solos), para determinação da fertilidade do solo por meio dos parâmetros químicos (EMBRAPA, 2009).

Aliado a isso, foi mensurada a Resistência à Penetração (RP) por meio de penetrômetro de impacto (modelo IAA/ PLANALSUCAR STOLF), que consiste em apoiar a haste graduada no solo em posição vertical, com a ponteira contra o solo, pressionando verticalmente e de forma constante. Desta forma, a medida que a escala graduada for aprofundando-se no solo de acordo com as batidas do peso, registra-se a contagem das batidas e a profundidade marcada na haste.

Assim, foi coletado dados de três amostras com três repetições cada, em pontos aleatórios, mas ainda dentro da área de estudo e uma amostra controle fora da área estudada.
Os resultados obtidos em impactos dm-1 foram convertidos em resistência dinâmica por meio da fórmula (STOLF, 1983):

\[RP = 5,6 + 6,89 \times (N) \]

Em que

- \(RP \) = Resistência à penetração em kgf cm\(^{-2}\)
- \(N \) = Número de impactos do peso metálico.

Os resultados foram obtidos em kgf cm\(^{-2}\) e depois multiplicados pela constante 0,0980665 para transformação em MPa. Em conjunto, com auxílio de um trado holandês, foram retiradas amostras de solo para determinar a sua umidade de acordo com recomendações da EMBRAPA (1997). Os resultados de RP obtidos foram classificados de acordo com a Tabela 1 adaptada de SOIL SURVEY STAFF (1993).

Tabela 1 - Classificação quanto à Resistência à penetração do solo (Adaptado da SOIL SURVEY STAFF, 1993).

<table>
<thead>
<tr>
<th>Classe</th>
<th>Resistência à penetração (Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremamente baixa</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Muito baixa</td>
<td>0,01 - 0,1</td>
</tr>
<tr>
<td>Baixa</td>
<td>0,1 – 1,0</td>
</tr>
<tr>
<td>Moderada</td>
<td>1,0 – 2,0</td>
</tr>
<tr>
<td>Alta</td>
<td>2,0 – 4,0</td>
</tr>
<tr>
<td>Muito Alta</td>
<td>4,0 – 8,0</td>
</tr>
<tr>
<td>Extremamente alta</td>
<td>> 8,0</td>
</tr>
</tbody>
</table>
Também foram coletados dados de taxa de infiltração do solo, através da metodologia proposta por BERNARDO, SOARES & MANTOVANI (2008), que consiste em um infiltrômetro de anel (figura 4), composto por dois anéis de diferentes diâmetros (20 e 40 cm) e 15 cm de altura, instalados concentricamente ao solo para determinação das curvas de retenção. Em seguida foi adicionado água, ao mesmo tempo, nos dois anéis e registra-se a infiltração vertical ao longo do tempo, com um auxílio de uma régua e cronômetro. Assim as leituras foram realizadas nos intervalos de 5,5,5,5,10,10,10,10,10,10,30,30,30,30,30,30 minutos, totalizando 259 minutos desde o início do teste. Assim, a partir dos dados coletados em campo foi possível determinar a Velocidade Básica de Infiltração (VIB).

Figura 4- Infiltrômetro de anel utilizado no experimento para taxa de infiltração.

O solo foi classificado de acordo com a tabela 2 (adaptada de CARVALHO & SILVA, 2006).

Tabela 2- Classificação do solo de acordo com a velocidade de infiltração básica.

<table>
<thead>
<tr>
<th>Classificação</th>
<th>Velocidade de infiltração básica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solo de VIB baixa</td>
<td>VIB < 5 mm.h⁻¹</td>
</tr>
<tr>
<td>Solo de VIB média</td>
<td>5 < VIB < 15 mm.h⁻¹</td>
</tr>
<tr>
<td>Solo de VIB alta</td>
<td>15 < VIB < 30 mm.h⁻¹</td>
</tr>
<tr>
<td>Solo de VIB muito alta</td>
<td>VIB > 30 mm.h⁻¹</td>
</tr>
</tbody>
</table>
2.6 Análises estatísticas

Os resultados foram submetidos à análise de variância (ANOVA) a fim de verificar diferenças significativas entre os tratamentos. Os dados de RP e umidade foram submetidos ao teste t de student a 5% de significância.

3. Resultados e Discussão

3.1 Regeneração Natural

Os resultados apresentados mostram um total de 32 indivíduos de 22 espécies diferentes, distribuídas em 10 famílias botânicas com maior representação de hábito de vida herbácea, seguido de plantas arbustivas (Tabela 3). Essa variação estrutural e de composição se deve a alta frequência de alterações que ocorrem em vegetação de mata ciliar como processos erosivos e também em mudanças na dinâmica de processos fluvimórficos de deposição de sedimentos (LIMA & ZAKIA 2001).

Tabela 3 – Distribuição das espécies amostradas e seu hábito.

<table>
<thead>
<tr>
<th>Família/ Espécie</th>
<th>Hábito</th>
<th>Família/ Espécie</th>
<th>Hábito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiosperma</td>
<td>-</td>
<td>Mimosa pigra L.</td>
<td>Arbusto</td>
</tr>
<tr>
<td>Não identificada sp1</td>
<td>Erva</td>
<td>Euphorbiaceae</td>
<td>-</td>
</tr>
<tr>
<td>Não identificada sp2</td>
<td>Erva</td>
<td>Croton heliotropifolius Kunth</td>
<td>Arbusto</td>
</tr>
<tr>
<td>Não identificada sp3</td>
<td>Arbusto</td>
<td>Croton hirtius</td>
<td>Erva</td>
</tr>
<tr>
<td>Não identificada sp4</td>
<td>Arbusto</td>
<td>Croton sp.</td>
<td>Erva</td>
</tr>
<tr>
<td>Não identificada sp5</td>
<td>Erva</td>
<td>Lamiaceae</td>
<td>-</td>
</tr>
<tr>
<td>Não identificada sp6</td>
<td>Trepadeira</td>
<td>Hyptis sp.</td>
<td>Erva</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>-</td>
<td>Não identificada sp8</td>
<td>Arbusto</td>
</tr>
</tbody>
</table>
Os dados deste trabalho mostram que o hábito de vida mais frequente foi a forma herbácea (erva) com a frequência de 10 indivíduos, resultado também encontrado por SANTOS-FILHO et al. (2011) em um levantamento florístico feito no estado do Ceará em áreas de restinga. O autor destaca a importância desta forma de vida na fácil colonização de novas áreas, devido a fisionomia das espécies que garantem boas condições de luminosidade, se tornando um importante fator para sucessão ecológica.

Analisando os resultados dos parâmetros fitossociológicos da estrutura horizontal (Tabela 4) podemos perceber que as espécies com maiores valores de Taxa de Cobertura Linear, Densidade Relativa, Taxa de Cobertura Relativa e Índice Valor de Importância foram a *Mimosa pigr* L. da família Fabaceae com 42,47; 0,25; 56,03 e 56,28 respectivamente e a espécie *Croton heliotropiifolius Kunth* da família Euphorbiaceae com 5,79; 0,09; 7,69 e 7,73 respectivamente.
Tabela 4 - Distribuição das espécies identificadas e resultados da análise fitossociológica da estrutura horizontal. Taxa de Cobertura Linear (CL), Taxa de Cobertura Relativa (CR) Índice Valor de Importância (IVI).

<table>
<thead>
<tr>
<th>Família/ espécie</th>
<th>CL</th>
<th>DR</th>
<th>CR</th>
<th>IVI</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiosperma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Não identificada sp1</td>
<td>0,56</td>
<td>0,03</td>
<td>0,74</td>
<td>0,77</td>
<td>-</td>
</tr>
<tr>
<td>Não identificada sp2</td>
<td>0,84</td>
<td>0,03</td>
<td>1,10</td>
<td>1,14</td>
<td>-</td>
</tr>
<tr>
<td>Não identificada sp3</td>
<td>0,66</td>
<td>0,03</td>
<td>0,87</td>
<td>0,91</td>
<td>-</td>
</tr>
<tr>
<td>Não identificada sp4</td>
<td>3,24</td>
<td>0,03</td>
<td>4,28</td>
<td>4,31</td>
<td>-</td>
</tr>
<tr>
<td>Não identificada sp5</td>
<td>1,39</td>
<td>0,03</td>
<td>1,84</td>
<td>1,87</td>
<td>-</td>
</tr>
<tr>
<td>Não identificada sp6</td>
<td>0,42</td>
<td>0,03</td>
<td>0,55</td>
<td>0,58</td>
<td>-</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>3,7</td>
<td>0,6</td>
<td>4,88</td>
<td>4,94</td>
<td></td>
</tr>
<tr>
<td>Não identificada sp7</td>
<td>0,56</td>
<td>0,03</td>
<td>0,74</td>
<td>0,77</td>
<td>-</td>
</tr>
<tr>
<td>Smallanthus sp.</td>
<td>3,14</td>
<td>0,03</td>
<td>4,14</td>
<td>4,17</td>
<td>-</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>1,15</td>
<td>0,03</td>
<td>0,55</td>
<td>0,58</td>
<td></td>
</tr>
<tr>
<td>Commelina benghalensis</td>
<td>0,42</td>
<td>0,03</td>
<td>0,55</td>
<td>0,58</td>
<td>Naturalizada</td>
</tr>
<tr>
<td>Cucurbitaceae</td>
<td>1,15</td>
<td>0,03</td>
<td>1,52</td>
<td>1,55</td>
<td></td>
</tr>
<tr>
<td>Momordica charantia</td>
<td>1,15</td>
<td>0,03</td>
<td>1,52</td>
<td>1,55</td>
<td>Naturalizada</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>44,84</td>
<td>0,31</td>
<td>59,15</td>
<td>56,28</td>
<td></td>
</tr>
<tr>
<td>Ingá sp. 1</td>
<td>0,66</td>
<td>0,03</td>
<td>0,87</td>
<td>0,91</td>
<td>-</td>
</tr>
<tr>
<td>Ingá sp. 2</td>
<td>1,71</td>
<td>0,03</td>
<td>2,25</td>
<td>2,29</td>
<td>-</td>
</tr>
<tr>
<td>Mimosa pigra L.</td>
<td>42,47</td>
<td>0,25</td>
<td>56,03</td>
<td>56,28</td>
<td>Exotica</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>8,93</td>
<td>0,15</td>
<td>11,78</td>
<td>11,93</td>
<td></td>
</tr>
<tr>
<td>Croton heliotropifolius Kunth</td>
<td>5,79</td>
<td>0,09</td>
<td>7,64</td>
<td>7,73</td>
<td>Nativa</td>
</tr>
<tr>
<td>Croton hirtus</td>
<td>1,05</td>
<td>0,03</td>
<td>1,38</td>
<td>1,41</td>
<td>Nativa</td>
</tr>
</tbody>
</table>
A espécie *Mimosa pigra* L. é um arbusto de raiz pivotante de ampla distribuição, ocorrendo no neotrópico e África tropical, com registro no Norte, Nordeste, Centro-Oeste e Sudeste do Brasil. *M. pigra* é comumente infestante de pastagens, áreas desocupadas e margens de coleções de água doce. É conhecida por formações densas que impedem o acesso de animais a água, o que não ocorre diferente na área de estudo deste trabalho, visto que essa espécie ocupa cerca de 43% da linha amostrada e possui o maior IVI, que é o parâmetro que indica a importância ecológica da espécie, tornando a *M. pigra* uma potencial invasora desse ambiente (SILVA et al., 2014, KISSMANN & GROTH, 1992).

A família Euphorbiaceae apresenta alta diversidade de espécies e diferenças de hábitos garantindo maior capacidade de adaptação a variações do ambiente, como a formação vegetal que traz uma estrutura rala e de baixo porte. A espécie *Croton heliotropifolius* Kunth também foi encontrada em outros estudos de levantamento florístico e fitossociológico para o estado de Sergipe (OLIVEIRA et al., 2013).
Em geral, espécies exóticas por serem agressivas e se difundirem rapidamente interferem na recuperação dos processos ecológicos do ecossistema, pois é um risco para as espécies que já estão adaptadas aos recursos e condições da região, visto que as invasoras ocupam nichos e competem com as espécies nativas e muitas vezes ocasionam problemas de bioinvasão como impedir o processo regenerativo natural (ESPÍNDOLA et al., 2005).

É importante ressaltar também que a área de estudo era visitada constantemente por animais de grande porte proveniente de atividades agropecuárias próximas que ali se alimentavam e consequentemente pisoteavam a vegetação em processo de recuperação no talude.

As funções hidrológicas da cobertura vegetal na zona ripária consistem na redução do escoamento direto que influencia no aumento da vazão após uma chuva. A quantidade de água contribui para aumento da vazão na estação seca, e a vegetação auxilia para qualidade da água com a filtragem de nutrientes e sedimentos e a interação direta com o ecossistema aquático como processos de deposição de partículas e sedimentos. Com isso, nota-se a importância que a cobertura relativa total de 75,80% traz com o uso da técnica de bioengenharia de solos (LIMA & ZAKIA 2001, SANTOS 2016).

Foi observada forte presença de macrófitas aquáticas na base do talude, que juntamente com a vegetação já formada fornece importante atração para fauna, tanto pela biomassa como também pela oferta de recursos. Foi destacado o aumento da biodiversidade da fauna e da flora que consequentemente desenvolve os serviços ecossistemáticos e também contribuem para minimizar os processos erosivos.

3.2 Banco de sementes

Ao longo da extensão do enrocamento vegetado foram formados dois ambientes: uma mata fechada com a presença de espécies arbóreas, que reduz a incidência solar, com forte presença de serapilheira, que contribui para ciclagem de nutrientes e retenção de umidade, a Vegetação cerrada (VC). O outro ambiente é uma área que possui alta incidência solar e presença de vegetação menos densa, tratamento (VMD). A partir dos resultados encontrados neste trabalho, podemos perceber a importância da recuperação do talude pelas técnicas de
bioengenharia de solos, visto que não houve diferença entre a taxa de germinação entre áreas tão distintas.

Não foi observada diferença significativa ($p > 0,05$) para o tamanho das plântulas ($p = 1,3$) e para velocidade de germinação ($p = 0,49$) do material submetido aos testes de germinação. No tratamento Vegetação Cerrada (VC), os dados iniciais se apresentaram abaixo dos valores em comparação com o tratamento para a Vegetação Menos Densa (VMD) (Figura 5). Entretanto, para tamanho das plântulas emergidas, a Vegetação cerrada apresentou valores maiores (Tabela 5).

Os valores para Velocidade de Germinação - VG nos primeiros dias de experimento foram constantes até a duração de doze dias. Após isso, os valores para VG aumentaram significativamente, provavelmente pela ocorrência de desligamento da BOD por falta de energia no laboratório, que de forma involuntária pode ter criado condições ideais para as sementes florestais emergirem.

Tabela 5- Tamanho das plântulas emergidas.

<table>
<thead>
<tr>
<th>Tratamento/Dias</th>
<th>5</th>
<th>8</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetação Menos Densa</td>
<td>2,3</td>
<td>0,0</td>
<td>0,0</td>
<td>1,1</td>
</tr>
<tr>
<td>Vegetação cerrada</td>
<td>3,2</td>
<td>1,9</td>
<td>2,2</td>
<td>0,4</td>
</tr>
</tbody>
</table>

A Figura 5 mostra que a taxa de germinação é um valor crescente para as duas áreas comparadas, podendo ser associada a um avanço positivo no processo de recuperação que, devido a proteção do solo ocasionada pela vegetação, confere um aumento na quantidade de sementes (NASCIMENTO, 2009).
Com o propósito de estudar o comportamento germinativo da espécie aroeira (*Myracrodruon urundeuva* Allemão), Silva et al. (2002), destaca que o requerimento de luz para germinação está interligado com a temperatura ótima da espécie, visto que eram sementes com fotoblastismo negativo. Para este trabalho, como havia o desconhecimento sobre a identificação das sementes, não foi possível a determinação do fotoblastismo para o teste de taxa de germinação, computando como resultados não ideais para os objetivos do estudo.

3.3 Fertilidade do solo

Os resultados obtidos para fertilidade em diferentes profundidades são apresentados na Tabela 6.
Tabela 6- Resultados para análise química das amostras de solo. M.O - Matéria orgânica, Ca - Calcio, Mg - Magnesio, K - Potássio, Na - Sódio, P - Fósforo, CTC – Capacidade troca de cátions , SB - Soma de bases, V - Saturação de bases; B – Tratamento com bioengenharia de solos, C – Tratamento Controle.

<table>
<thead>
<tr>
<th>Amostra</th>
<th>pH</th>
<th>M.O</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>P</th>
<th>CTC</th>
<th>SB</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 (0-20 cm)</td>
<td>6,20</td>
<td>1,69</td>
<td>5,83</td>
<td>2,01</td>
<td>0,26</td>
<td>0,22</td>
<td>4,89</td>
<td>9,62</td>
<td>8,11</td>
<td>84,29</td>
</tr>
<tr>
<td>B2 (20-40 cm)</td>
<td>7,44</td>
<td>1,56</td>
<td>6,04</td>
<td>2,21</td>
<td>0,18</td>
<td>0,18</td>
<td>6,42</td>
<td>9,75</td>
<td>8,43</td>
<td>86,48</td>
</tr>
<tr>
<td>B3 (40-60 cm)</td>
<td>7,22</td>
<td>1,07</td>
<td>5,48</td>
<td>1,97</td>
<td>0,10</td>
<td>0,27</td>
<td>4,23</td>
<td>8,89</td>
<td>7,55</td>
<td>85,00</td>
</tr>
<tr>
<td>C1 (0-20 cm)</td>
<td>6,46</td>
<td>1,07</td>
<td>7,00</td>
<td>3,10</td>
<td>0,11</td>
<td>0,82</td>
<td>3,80</td>
<td>12,16</td>
<td>10,21</td>
<td>84,00</td>
</tr>
<tr>
<td>C2 (20-40 cm)</td>
<td>6,41</td>
<td>0,98</td>
<td>6,58</td>
<td>2,59</td>
<td>0,09</td>
<td>0,60</td>
<td>3,43</td>
<td>11,23</td>
<td>9,26</td>
<td>82,48</td>
</tr>
<tr>
<td>C3 (40-60 cm)</td>
<td>6,45</td>
<td>1,03</td>
<td>7,15</td>
<td>2,30</td>
<td>0,08</td>
<td>0,61</td>
<td>3,21</td>
<td>11,51</td>
<td>9,53</td>
<td>82,81</td>
</tr>
</tbody>
</table>

Conforme Ribeiro et al.(1999), podemos interpretar e classificar os dados obtidos da seguinte forma: Para o pH, o tratamento com bioengenharia de solos em comparação com o controle, obteve valores maiores a partir da profundidade de 20cm, classificando-os como alcalino fraco, os demais resultados podem ser classificados como acidez fraca. O pH é a variável que mais está correlacionada com outras variáveis de fertilidade do solo como Fósforo, Matéria orgânica, Nitrogênio, Alumínio, Hidrogênio mais alumínio e Fósforo. Isso se deve pela ionização do H dos grupos carboxílicos existentes nos micronutrientes que podem ter correlação positiva ou negativa (SZYMCZAK et al., 2012).

Para matéria orgânica podemos perceber maiores valores para TB, porém nos dois tratamentos e em todas as profundidades, os valores são classificados como baixo. Para Calcio e Magnésio os valores foram menores que o tratamento controle, entretanto, todos os valores são classificados como muito bom. Para potássio e fósforo, foram encontrados maiores valores para o tratamento com bioengenharia de solos. Os ensaios de CTC, Soma de Base Trocáveis e Saturação de Base são classificados como muito bom.

A Matéria orgânica é a principal variável de fertilidade para determinar a fragilidade do ambiente. Com a M.O aumenta a infiltração de água no solo proporcionando a redução de escoamento superficial e a consequente chegada de processos erosivos. Por uma visão ecossistêmica, vale lembrar que a retenção de água e nutrientes no solo disponibilizada para a planta é influenciada pela presença de matéria orgânica (KOBİYAMA et al., 2002).
Potássio e fósforo são importantes variáveis para o solo, pois estão diretamente ligados com o desenvolvimento do sistema radicular. Cálcio e Magnésio obtiveram valores menores que o tratamento controle que podem ser atribuídos a absorção da própria vegetação a esses importantes micronutrientes.

3.4 Resistência à Penetração

A Resistência à penetração (RP) e umidade do solo do tratamento com bioengenharia de solos foram significativamente diferentes (p < 0,05) quando comparados ao tratamento controle (p = 0,001 e p = 0,009 respectivamente).

O maior valor de RP para o tratamento com a biotécnica foi de 6,59 Mpa na profundidade de 24-26 cm e o menor foi de 0,55 Mpa nos primeiros 4 cm de profundidade diferentemente do tratamento controle que obteve o maior valor de 25,20 Mpa e o menor de 3,62 Mpa nas profundidades 62-64 cm e 0-2 cm, respectivamente (Figura 6).

Na Figura 6 podemos perceber uma pequena variação de RP em profundidades baixas, porém, a partir de 40 cm ocorre uma maior variação entre os tratamentos. Esse resultado provavelmente se deve ao tipo de solo da região (NEOSSOLO flúvico) que ao atravessar uma camada mais arenosa se encontra menor resistência, enquanto que quanto mais argilosa é a composição do solo, maior a resistência a penetração (ROSOLEM et al., 1999).

Figura 6- Comparação entre o tratamento com bioengenharia de solos e o controle para resistência a penetração.
Nos primeiros 10 cm de profundidade o tratamento com bioengenharia de solos não ultrapassou 3,50 Mpa, porém, esse valor já impõe dificuldade para penetração das raízes das plantas, pois está acima do valor crítico (2,50 Mpa) para desenvolvimento das raízes (CAMARGO & ALLEONI, 1997).

A umidade no tratamento com bioengenharia de solos foi de 18,64% enquanto que no tratamento controle foi de 6,21% concordando com Machado et al. (2018), em que a RP também é inversamente proporcional à umidade. O resultado apresentado se explica pelo acréscimo da matéria orgânica, que devido a presença da vegetação facilita a infiltração de água no solo e diminui a resistência à penetração, que, consequentemente, diminui o escoamento e a erosão. Esse comportamento não acontece no tratamento controle, que sem as raízes das plantas, o solo está desprotegido e suscetível a perda de sedimentos por escoamento, favorecendo processos erosivos. Em CORADO NETO et al., (2015) trabalhando com RP em períodos secos e chuvoso, também em um NEOSSOLO flúvico, evidenciaram que a umidade tem alta influência na resistência à penetração.

A resistência do solo é o fator que mais influência no crescimento radicular, pois as raízes da vegetação tentam encontrar caminhos de baixa resistência para sua penetração durante seu crescimento. Com isso, favorece a recuperação do talude através do seu reforço mecânico proporcionando uma maior força de coesão e resistência ao cisalhamento do solo. Por sua vez, um talude compactado apresenta maior resistência à penetração e consequente perda de solo para escoamento (runoff) o que promove a erosão marginal. Com isso, RP se mostra um importante indicador para estabilização de talude (EHLERS et al., 1983).

De acordo com a classificação (Tabela 1) podemos categorizar a RP do tratamento com bioengenharia de solos como Muito Alfa (4,0 – 8,0) enquanto que o tratamento controle pode ser identificada como Extremamente Alta (>8,0).

3.5 Taxa de Infiltração

A infiltração é o processo que a água penetra a superfície do solo e tem correlação direta com escoamento superficial, que integra os processos de erosão e inundação. Após a passagem da água a camada superior atinge alto teor de umidade, enquanto as camadas
inferiores atingem baixo teor de umidade. Assim, a lâmina de água que atravessa a superfície por unidade de tempo é a Velocidade de Infiltração Básica (VIB).

Na Figura 7 podemos perceber que a taxa de infiltração no início do teste apresenta grande variação de VIB e logo após, tende a um valor constante. Essa variação pode ser explicada por fatores como a carga hidráulica, ou seja, a espessura da lâmina de água que atua como uma força para infiltração, a umidade inicial do solo e o tipo de solo em que foi realizado o teste.

A VIB do solo amostrada foi de 164 mm/h sendo classificada como muito alta (VIB > 30 mm.h-1) de acordo com a tabela 2. A cobertura vegetal influencia a infiltração por quatro processos, sendo o primeiro a presença do sistema radicular das plantas cria caminhos preferenciais para a água. O segundo processo, é a redução do impacto das gotas de chuva. O terceiro processo é que a vegetação possibilita um maior aporte de matéria orgânica que em decomposição contribui para atividade microbiana, formando caminhos para movimento de água. Por último, a redução da velocidade de escoamento superficial (TUCCI & CLARKE, 1997).

Figura 7- Taxa de infiltração da área com bioengenharia de solos.
3.6 Metodologia de avaliação de áreas recuperadas com bioengenharia de solos

A metodologia empregada fundamenta a avaliação dos resultados do uso de técnicas de bioengenharia de solos adequadamente a partir da identificação da contribuição da vegetação que auxilia na contenção de taludes, uma vez que a cobertura vegetal dá o suporte contra ações erosivas como o vento e a água da chuva; além disso, as raízes contribuem oferecendo reforço mecânico contra cisalhamento e posteriormente processos erosivos.

O banco de semente atua na renovação da regeneração natural resultando em um aspecto de resiliência ecossistêmica para o ambiente. Ressalta-se a importância dos nutrientes no solo para desenvolvimento das plantas, daí a grande importância para a análise de fertilidade.

No tocante as raízes, podemos citar a dificuldade encontrada no seu desenvolvimento que pode ser medida através da resistência à penetração do solo o que possibilita o conhecimento do grau de compactação solo.

A velocidade de infiltração reflete os importantes processos ecossistêmicos como a retenção de água utilizada posteriormente pelas plantas e está atrelado também ao escoamento superficial da água no solo, e que pode também ser interpretada pela resistência à penetração do solo.

Solos compactados possuem maior grau de escoamento superficial que se reflete em significativas perdas de massa e nutrientes resultando na intensificação dos processos erosivos atuantes. Uma vez que o desafio dessas metodologias é ligar a indicadores físicos do solo com a ecologia, os indicadores presentes nesse trabalho foram contemplados de forma satisfatória para uma avaliação de técnicas de bioengenharia de solos.
4. Considerações finais

A análise da fitossociologia e projecção horizontal da comunidade vegetal como indicador para regeneração natural, a análise química do solo referente à fertilidade e os atributos físicos como resistência a penetração e infiltração do solo se mostraram importantes componentes para uma avaliação do equilíbrio estrutural e de estabilidade ecossistêmica do talude recuperado.

O banco de sementes se mostrou um aspecto importante, para a avaliação, e a adoção por outras metodologias como essa, proporcionará resultados mais consistentes.

As metodologias abrangem importantes processos de recuperação de áreas degradadas em combinação com recuperação de taludes por bioengenharia de solos e se apresenta bem estruturada, atendendo parâmetros essenciais para o entendimento integrado do ambiente, servindo como base para a aplicação em trabalhos futuros.
5. Referências Bibliográficas

CANFIELD, R. 1950. Sampling range by the line interception method. Southwestern Forest and Range Experiment Station.

