

PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO CIENTÍFICA - PIBIC

DESENVOLVIMENTO E VALIDAÇÃO DE UM SISTEMA EMBARCADO PARA MONITORAMENTO DE OPERAÇÕES AGRÍCOLAS MECANIZADAS

Área do conhecimento: Ciências Agrárias Subárea do conhecimento: Engenharia Agrícola Especialidade do conhecimento: Mecanização

Relatório Final Período da bolsa: de agosto de 2018 a julho de 2019

Este projeto é desenvolvido sem bolsa de iniciação científica

Orientador:Welington Gonzaga do Vale Autor:Mariana Dias Meneses

SUMÁRIO

- 1. Introdução
- 2. Objetivos
- 3. Metodologia
- 4. Resultados e discussões
- 5. Conclusões
- 6. Perspectivas de futuros trabalhos
- 7. Referências bibliográficas
- 8. Outras atividades

1. Introdução

Surgindo no século XIV, as máquinas e implementos agrícolas possibilitaram uma revolução nas atividades do campo, influenciando diretamente nas técnicas utilizadas, na produção e na vida dos agricultores.

A partir deste momento, a mecanização do campo cresceu gradativamente e com ela a oferta de tecnologia que disponibilizou novos dispositivos para facilitar e melhorar a produção agrícola. No Brasil, a inserção da tecnologia no campo começa na década de 1960 na região Centro-Sul com a produção dos primeiros tratores no país, em seguida, os demais implementos foram inseridos gradualmente nas atividades do campo.

O aumento da utilização de máquinas nas atividades agrícolas trouxe benefícios para os trabalhadores do meio rural e para seus produtos. Segundo Campos (2009), a utilização de maquinário agrícola está presente na maioria das propriedades, não dependendo necessariamente do tamanho dela.

A introdução de máquinas no campo substituiu a mão de obra humana, porém possibilitou um novo leque de empregos na área de beneficiamento da produção, além disso, deixou o trabalho menos oneroso, aumentou a produtividade e deixou o produto com mais qualidade.

Contudo, a gradativa evolução do setor agrícola no país traz consigo uma exigência por técnicas mais desenvolvidas que deverão suprir as exigências do produtor com precisão e eficiência, para que essas demandas sejam alcançadas, é necessário utilizar meios que preservem, controlem, regulem e gerenciem as atividades realizadas com as máquinas, caso contrário, a máxima eficiência não será atingida. Uma análise das operações realizadas com os implementos e das características deles

será imprescindível para garantir um uso adequado das máquinas resultando assim num rendimento máximo com menor custo.

De acordo com Vale (2011), a racionalização das operações agrícolas é obtida a partir da caracterização das operações, modo de execução, seleção dos tratores e equipamentos que executarão as atividades de maneira adequada, na região disponível e no tempo determinado. Essa racionalização permitirá conhecer o desempenho das máquinas e com isso o poder de gerenciar de forma correta as atividades por elas desenvolvidas.

Conhecendo o desempenho dos implementos é possível utilizá-los de modo inteligente, assim, será selecionado o conjunto de máquinas que desenvolverá o trabalho de uma forma eficiente. Essa seleção trará resultados positivos na produtividade e na qualidade do produto. Além disso, é necessário ressaltar que um gerenciamento correto das atividades é essencial em razão do alto investimento que é feito na preparação da lavoura e na implementação do maquinário que varia entre 20% a 40% do total gasto na produção, dependendo da cultura e da necessidade do uso de implementos que ela requer (Frantz, 2011).

Sendo o trator imprescindível para a realização de atividades como preparo de solo, plantio, colheita e tratos culturais, uma análise do seu funcionamento é essencial para a racionalização da produção. Uma característica de suma importância a ser analisada no trator é a atuação dos rodados ao realizar determinado serviço. A patinagem dos rodados é um comportamento que possibilita a movimentação do trator e dos implementos acoplados a ele, o excesso dela pode resultar na compactação do solo, maior consumo de combustível, maior desgaste dos pneus e do sistema de engrenagens.

Em virtude da importância deste atributo, pesquisas são realizadas com o objetivo de mensurar a patinagem do trator. Os métodos mais utilizados são: manual e automático.

O método manual resulta na porcentagem de patinagem a partir de uma correlação do número de voltas dadas pelos rodados com e sem carga, apesar de ser um mecanismo confiável, o fato de ser realizado manualmente torna o processo desgastante e impreciso.

Já o método automático, faz utilização de sensores é realizado com auxílio de geradores de pulso e coletores de dados, que irão colher as informações e assim será possível utiliza-las para encontrar a patinagem por meio de equações matemáticas, porém a aparelhagem empregada tem alto custo, demanda mão-de-obra especializada e possui um tempo elevado para o tratamento dos dados.

Em virtude dos pontos negativos acima citados, são necessárias pesquisas que possam criar, testar e validar novos métodos que possam suprir as necessidades referentes a análise do desempenho do trator, realizando ensaios que retornem dados confiáveis, de fácil manuseio e com custo de elaboração acessível.

Dessa forma, o presente projeto tem como objetivo obter os dados de patinagem a partir de um método alternativo utilizando o aparato SAADP (Sistema de Aquisição Automática de Dados de Patinagem), aparelho de baixo custo que deverá obter os resultados sobre patinagem e validá-los a partir de comparação com alguns métodos já existentes. Assim será possível confirmar a eficiência deste dispositivo, que deverá ser de fácil utilização e de baixo custo.

2. Objetivos

- Executar ensaio para avaliação da patinagem dos rodados do trator em operação de tração;
- Validar os resultados obtidos pelo SAADP (Sistema de Aquisição Automática de Dados de Patinagem) comparando-os com os obtidos por métodos tradicionais de determinação de patinagem dos rodados do trator.

3. Metodologia

3.1. Patinagem

Os testes de patinagem foram realizados na Universidade Federal de Sergipe ao lado do Complexo Laboratorial de Biologia e Engenharia Florestal.

Usando um trator John Deere modelo 5603 (Figura 1) com suas características descritas na Tabela 1 e um reboque agrícola acoplado no mesmo, foi usada uma rotação de 1500 rpm, o trajeto percorrido foi de 75 metros em um noesolo quartzarênico com cobertura vegetal de gramíneas.

Figura 1: trator acoplado ao reboque agrícola.

Tabela 1. Características do trator.

Trator modelo John Deere 5603 4x2			
Potência do motor na rotação nominal	78 cv a 2.300 rpm		
Faixa de rotação com potência constante	2.000 – 2.400 rpm		
Torque máximo	265 Nm a 1.600 rpm		
Pneus	7.50-16 F2 e 16.9-30 R1		
Massa (com lastro)	4.500 kg		

Com o intuito de obter a patinagem do trator foi utilizado um sensor indutivo. O mesmo foi acoplado na roda traseira do trator, este sensor é composto por três cabos, vermelho, azul e preto, correspondendo a ligação VCC, OUT e GND, respectivamente. Segundo as instruções do fabricante, o sensor foi utilizado para contabilizar o número de voltas realizadas pelos rodados do trator. Para utilizá-lo o

sensor foi posicionado com o auxílio de um tripé magnético a uma distância mínima de 4mm dos parafusos da roda (Figura 2), distância esta aferida com um paquímetro. No momento em que o parafuso passa pelo sensor causa uma interferência no campo eletromagnético e é gerado um pulso. Essa informação foi convertida pelo código da SAADP em número de vezes que o parafuso passou pelo sensor. Os testes foram realizados com velocidade de 5 Km/h e com oito repetições.

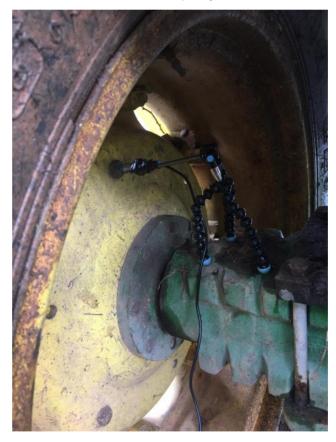


Figura 2:localização do sensor indutivo no eixo traseiro do trator.

Para mensurar a quantidade de voltas dadas pelos rodados primeiramente foi mensurado o perímetro da roda, 4,2 metros, em seguida o percurso foi realizado e

os dados salvos em um cartão micro SD no formato de blocos de notas (txt.). Após concluída a etapa dos testes em campo, os dados foram organizados em tabelas para realizar as próximas etapas do cálculo da patinagem.

No primeiro momento foi utilizada a Equação 1 para obter o número de voltas realizadas no percurso. Dividido o número de vezes que o sensor captou a interferência do parafuso com o número de parafusos existentes. Este trator possui três parafusos na roda, deste modo, para saber quantas voltas os rodados efetuaram, o número de interferências foi dividido por três.

 N° de voltas = N° de interferências / 3 (Eq.1)

Em seguida foi utilizada a Equação 2 para mensurar a distância percorrida pelo trator ao multiplicar o resultado anterior pelo perímetro da roda.

Distância percorrida = N° de voltas * Perímetro da roda (Eq.2)

A partir desta distância percorrida e em posse da distância estabelecida com a trena, foi possível adquirir a patinagem dos rodados.

Em todos os testes foram obtidas patinagens conforme a metodologia padrão descrita na norma EP496.2 (AMERICAN SOCIETY OF AGRICULTURAL ENGINEERS - ASAE, 2003), as quais foram comparadas estaticamente com as patinagens obtidas pelo sistema.

3.2. Materiais utilizados

O aparato utilizado é composto por materiais encontrados no mercado local, com o intuito de serem facilmente adquiridos e com um preço acessível. A Tabela 2 lista todos os produtos adquiridos para a montagem e realização dos testes em campo.

Tabela 2. Materiais utilizados para realização dos testes.

Material	Imagem	Caracterização
Jumpers		Conjunto de cabos para conexão dos sensores à palca.
MicroSD	ASTA BELLING TO	MicroSD Sandisk com memória interna de 16GB.
Arduino Mega	HEGA 2560	Microcontrolador com 54 pinos digitas de entrada e saída, 16 entradas analógicas, 4 UART's e uma entrada USB.
ProtoShield	SOLD STATE OF THE	Auxilia na prototipagem do sistema, criando barramentos para alimentação e comunicação.

Material	Imagem	Caracterização		
Ethernet- MicroSD Shield		Permite conexão através de rede ethernet e possui slot para microSD.Permite conexão de 14 pinos digitas para o microcontrolador.		
Bateria	EETPOWER (C Q) (Bateria de chumbo de 12V e 7Ah usada para alimentar os sensores. Marca GetPower modelo GP12-7		
Cabo-garra (jacaré)		Par de cabos para alimentação.		

Material **Imagem** Caracterização Bateria Bateria de para Elgin com alimentação do arduino. conector. Sensor Sensor que detecta a indutivo interferencia de metais a LJ12A3-4uma distancia de 4mm. Z/BX Alimentado por corrente continua de 12V. Tripé Tripé com base magnetica magnético de fixação

3.3. Análise estatística

Foi utilizado o Delineamento Inteiramente Casualizado (DIC), com oito repetições para cada percurso de 75m. Os dados foram registrados com a velocidade de trabalho de 5 km/h.

Os resultados foram analisados estatisticamente usando os programas Excell® para calcular os resultados de patinagem e, para análise de comparação das médias dos tratamentos, foi utilizado o programa Minitab18.

4. Resultados e discussões

4.1. Patinagem

De acordo com a Tabela 3, observa-se que para um α = 0,05 o teste F aplicado às médias indica um F calculado menor que o F crítico, não rejeitando a hipótese de não haver diferença estatisticamente significativa entre as médias obtidas pelo sistema e o método padrão. Portanto, segundo a análise de variância para as médias de patinagem obtidas pelo sistema de aquisição e pela metodologia ASAE 2003, os resultados foram iguais, o que demonstra um resultado satisfatório.

Tabela 3. Análise de variância das médias dos resultados das oitos repetições em John Deere modelo 5603 em solo com cobertura vegetal de gramíneas.

Fonte	GL	SQ (Aj.)	QM (Aj.)	Valor F	Valor-P
Metodos	1	0,6806	0,6806	0,77	0,396
Erro	14	12,4238	0,8874		
Total	15	13,1044		,	

Na tabela 4 estão agrupados os resultados adquiridos nos testes.

Com relação ao sistema desenvolvido, este se mostrou novamente confiável, visto que a patinagem obtida pelo sistema não diferiu estatisticamente da patinagem obtida pelo método padrão.

Tabela 4. Avaliação da patinagem obtida pelo sistema Arduino (SAADP) e pelo método padrão (ASAE).

Métodos	N	Média
ASAE	8	4,23 A
SAADP	8	3,81 A

^{*}Médias seguidas por letras minúsculas iguais nas colunas e maiúsculas nas linhas não diferem entre si estatisticamente.

4.2. Orçamento

A Tabela 5 reúne os componentes utilizados para confecção do protótipo indicando os respectivos custos.

Tabela 5. Custos dos componentes utilizados na confecção do protótipo.

Material	Un	Qt	Preço Unitário	Preço Total
Pacote de fios jumpers	Un	2	R\$8,00	R\$16,00
MicroSD card	Un	1	R\$30,00	R\$30,00
Arduino Mega At2560 com cabo USB	Un	1	R\$65,00	R\$65,00
ProtoShield.	Un	1	R\$15,00	R\$15,00
Ethernet-MicroSD Shield W5100.	Un	1	R\$55,00	R\$55,00
Sensor Indutivo LJ12A3-4-Z/BX	Un	1	R\$20,00	R\$20,00
Total				R\$201,00

Para confecção do aparato estima-se um gasto para aquisição dos componentes no valor total de R\$201,00.

5. Conclusões

Os resultados deste projeto demonstram a confiabilidade da SAADP, visto que não houve diferença estatística entre as patinagens obtidas por este e pelo sistema padrão convencionalmente utilizado.

Utilizando um método alternativo foi possível atingir os objetivos almejados por este projeto conciliando a versatilidade, com precisão e um preço mais acessível.

Considerando os resultados retornados pelo sensor indutivo, manejados com as equações anteriormente citadas e com o método ASAE 2003 foi possível validar este novo método alcançando dados confiáveis que atendem aos parâmetros estabelecidos pelo método tradicional de obtenção manual.

Desta forma, concluímos que o projeto conseguiu atingir seus objetivos executando e validando um novo método que irá retornar dados que facilitarão a racionalização do maquinário utilizado nas atividades da produção agrícola. Tudo isto de forma rápida, precisa e de bom custo benefício.

6. Perspectiva de futuros trabalhos

Investir na mudança dos tratamentos utilizados no experimento podem trazer análises mais diversificadas e completas sobre o comportamento do trator.

Para garantir um estudo mais completo seria relevante adicionar novos sensores para que eles possam trabalhar de maneira conjunta e retornar dados que possam deixar a análise das atividades realizadas pelo trator mais completa, por exemplo, sensores de localização e consumo.

Além disto, seria vantajoso trabalhar com a aquisição de dados para as diferentes atividades cumpridas com o trator e com implementos variados. Podendo fazer comparações entre os implementos utilizados e as atividades desempenhadas, por exemplo, comparar a patinagem ao usar a grade e ao usar o arado no preparo do solo, mensurar os parâmetros citados na tarefa de pulverização e semeadura, entre outros. Além disto, um estudo sobre a influência do tipo de solo e sua cobertura com o consumo de diesel e com a patinagem do trator.

7. Referências bibliográficas

AMERICAN SOCIETY OF AGRICULTURAL ENGINEERS (ASAE). (2003) Agricultural machinery management – ASAE Standards EP496.2 FEB03. St. Joseph: 367-372. ASAE

CAMPOS, F. H. Desenvolvimento de um programa computacional destinado à unidade móvel de ensaio na barra de tração (UMEB) para a avaliação do desempenho de tratores. 2009;

FRANTZ, U. G. Análise de desempenho em tração de rodado simples e duplo em um trator agrícola. 2011:

VALE, W. G. Desempenho operacional e energético de um trator agrícola durante as operações de roçagem, aração e semeadura. 2011. 2017 f. Tese (Doutorado em Produção Vegetal) - Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 2011.