
UNIVERSIDADE FEDERAL DE SERGIPE

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA

COMPUTAÇÃO

Construção e Avaliação de uma Abordagem para Apoiar a

Compreensão e a Manutenção de Software baseada em

Mídias Dinâmicas

Dissertação de Mestrado

Anne Caroline Melo Santos

São Cristóvão - Sergipe

2020

UNIVERSIDADE FEDERAL DE SERGIPE

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA

COMPUTAÇÃO

Anne Caroline Melo Santos

Construção e Avaliação de uma Abordagem para Apoiar a

Compreensão e a Manutenção de Software baseada em

Mídias Dinâmicas

Dissertação de mestrado

apresentada ao Programa de Pós-

Graduação em Ciência da

Computação (PROCC) da

Universidade Federal de Sergipe

(UFS) como parte do requisito para

obtenção do título de Mestre em

Ciência da Computação.

Orientador: Dr. Methanias Colaço Rodrigues Júnior

São Cristóvão - Sergipe

2020

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL
UNIVERSIDADE FEDERAL DE SERGIPE

S237c

Santos, Anne Caroline Melo
 Construção e avaliação de uma abordagem para apoiar a

compreensão e a manutenção de software baseada em mídias
dinâmicas / Anne Caroline Melo Santos ; orientador Methanias
Colaço Rodrigues Júnior. – São Cristóvão, SE, 2020.

129 f. : il.

Dissertação (mestrado em Ciências da Computação) –
Universidade Federal de Sergipe, 2020.

1. Sistemas multimídia. 2. Engenharia de software. 3. Software -
Manutenção. I. Rodrigues Júnior, Methanias Colaço, orient. II. Título.

CDU 004.41.01

AGRADECIMENTOS

Primeiramente, quero agradecer a Deus e a nossa senhora pela graça de

concluir mais uma etapa importante em minha vida, mesmo diante de tantas adversidades,

termino esse ciclo com a sensação de dever cumprido e com o sentimento de gratidão.

Quero agradecer aos meus pais e a minha irmã por sempre acreditarem no

meu potencial e me darem todo o apoio e suporte necessário para que eu continue

crescendo e correndo atrás dos meus objetivos. Vocês são as peças mais importantes da

minha vida, e sempre estarão presentes em todas as minhas conquistas.

A Rebeca pelo apoio e compreensão nos momentos em que precisava dar

vacância as atividades do mestrado, e por sempre me ajudar a enxergar as situações de

uma perspectiva otimista.

Um agradecimento especial ao meu professor e orientador Methanias, que

despertou em mim o interesse em fazer ciência, e que durante esse período, me ensinou

diariamente de forma gentil e objetiva, como eu poderia melhorar enquanto cientista.

Quero agradecer também pela presteza e rapidez com a qual respondia as minhas dúvidas,

e por ter feito dessa jornada mais leve com seu bom humor e positividade. Obrigada

professor!

Agradecer também a 3Tecnos por ter aberto as portas para que pudesse aplicar

o experimento. Agradecer aos voluntários por terem disponibilizado parte do seu tempo

e participarem dessa empreitada. Sem vocês nada disso seria possível. Agradecer a João

Paulo por ter me ajudado na condução do experimento, reunindo todas as condições

necessárias para sua realização. Sua cooperação foi inestimável.

A Edna e a Rafael por terem sido meus parceiros ao longo dessa trajetória,

sendo peças fundamentais para construção da abordagem proposta neste trabalho.

Ao PROCC, na figura da querida Elaine, pela disponibilidade em responder

a todos meus questionamentos.

Por fim, a todos que indiretamente ou diretamente, estiveram envolvidos

nesse processo e contribuíram de alguma forma para que chegássemos até aqui. O meu

mais sincero agradecimento.

RESUMO

Contexto: A Engenharia de Software (ES) tem utilizado documentação textual para

representar os requisitos do usuário. Para algumas pessoas, estas descrições podem não

ser suficientes para entender o que precisa ser desenvolvido, sendo necessária a utilização

de outros meios de visualização. Objetivo: Este trabalho objetivou propor e analisar uma

abordagem multimídia, para apoiar a compreensão e manutenção de software, como

alternativa às técnicas tradicionais de documentação de requisitos, avaliando se a

utilização do plug-in CodeMedia aumenta a efetividade da compreensão e manutenção

de software. Método: Inicialmente, foi realizado um mapeamento sistemático para

identificar as abordagens que promoviam o uso de multimídia na Engenharia de

Requisitos (ER), como suporte aos processos de compreensão e manutenção de software.

Por fim, foi realizado um experimento controlado na indústria para avaliar a efetividade

da abordagem proposta. Resultados: Para o estado da arte, foi identificada uma grande

variedade de abordagens que promoviam o uso de multimídia na ER, dentre elas: TRECE,

MURMER, Wiki System Multimedia, Storytelling, UTOPIA, bem como abordagens sem

nomes explícitos. Com a execução do processo experimental, evidenciou-se que a

abordagem multimídia apresentou os melhores resultados em termos de eficácia e nível

de satisfação do cliente. No que se refere à média de tempo de codificação e ao nível de

compreensão do código, a abordagem multimídia se mostrou menos eficiente.

Conclusão: Após ser analisado o estado da arte, evidenciou-se que houve consenso

favorável quanto ao uso de multimídia em ER. Os estudos selecionados demonstraram

ser favoráveis à adoção de multimídia para persistir os requisitos do usuário. Com a

avaliação experimental, foi constatado que a abordagem multimídia foi mais eficaz em

termos de acertos na codificação e nível de satisfação do cliente com o produto final,

tornando-a uma opção a ser considerada para Levantamento, Registro, Validação e

Verificação dos requisitos de usuário.

Palavras-chave — Multimídia, Engenharia de Requisitos, Documentação de Software,

Compreensão e Manutenção de Software e Engenharia de Software Experimental.

ABSTRACT

Context: Software Engineering (SE) has used textual documentation to represent the user

requirements. For some people, textual descriptions may not be enough to understand

what needs to be developed, requiring the use of other means of visualization. Objective:

This work aimed to propose and analyze a multimedia approach, to support the

comprehension and maintenance of software, as an alternative to the traditional

requirements documentation techniques, evaluating whether the use of the CodeMedia

plug-in increases the effectiveness of understanding and maintaining systems. Method:

Initially, a systematic mapping was carried out to identify the approaches that promoted

the use of multimedia resources in Requirements Engineering, as a support in the process

of comprehension and maintaining software. Finally, a controlled experiment was carried

out in the industry to assess the efficiency and effectiveness of the proposed multimedia

approach. Results: For the state of the art, a wide variety of approaches were identified

that promoted the use of multimedia in RE, among them: TRECE, MURMER, Wiki

System Multimedia, Storytelling, UTOPIA, as well as approaches without explicit names.

With the execution of the experimental process, it became evident that the multimedia

approach presented the best results, especially in terms of effectiveness and level of

customer satisfaction. Regarding the average coding time and the level of comprehension

of the code, the multimedia approach proved to be less efficient. Conclusion: After

analyzing the state of the art, it was evidenced that there was a favorable consensus

regarding the use of multimedia in RE. The selected studies have shown to be favorable

to the adoption of multimedia to persist software requirements. With the experimental

evaluation, it was found that the multimedia approach was more effective in terms of

correct coding and level of customer satisfaction with the final product, making it an

option to be considered for Survey, Registration, Validation and Verification of user

requirements.

Keywords - Multimedia, Requirements Engineering, Software Documentation, Software

Comprehension and Maintenance and Experimental Software Engineering.

LISTA DE FIGURAS

Fig 1. The Steps of a Systematic Mapping Process. ... 31

Fig 2. Results obtained from the search process... 37

Fig 3. Distribution of primary studies by Evaluation Method. 44

Fig 4. Distribution of primary studies by Type of Publication. 45

Fig 5. Distribution of articles by country. .. 46

Fig 6. Distribution of articles by publication year. ... 47

Fig 7. Distribution of articles by author. .. 48

Figure 1. Operating Architecture of the Multimedia Approach. 75

Figure 2. Menu for Adding Documentation. .. 76

Figure 3. Adding Files... 77

Figure 4. File Selection Screen. ... 78

Figure 5. Link File to Requirement.. 79

Figure 6. Multimedia Documentation. ... 79

Figure 7. Reproduction and Visualization of Multimedia Resources. 80

Figure 8. Folder Structure. .. 81

Figure 9. Age. ... 88

Figure 10. Gender. .. 89

Figure 11. Academic Training ... 89

Figure 12. Preferred Learning Mode. .. 89

Figure 13. Methods for Requirements Documentation. .. 90

Figure 14. Profession/Position. .. 90

Figure 15. Area of Operation. .. 91

Figure 16. Years of experience in the language used in the experiment. 91

Figure 17. Number of Systems. ... 92

LISTA DE TABELAS

Table 1. EMPIRICAL METHODS ... 32

Table 2. PICO MODEL .. 32

Table 3. RESEARCH QUESTIONS ... 33

Table 4. PICO MODEL CATEGORIES AND TERMS IDENTIFIED FOR

BIBLIOGRAPHIC SEARCH ... 34

Table 5. SEARCH STRING .. 34

Table 6. SEARCH STRATEGY.. 35

Table 7. SELECTION CRITERIAS .. 35

Table 8. CLASSIFICATION... 36

Table 9. APPROACHES ... 38

Table 10. IMPACTS ... 42

Table 11. DISTRIBUTION OF PRIMARY STUDIES BY IMPACT 44

Table 12. SCENARIOS .. 46

Table 13. OUTCOMES ... 48

Table 1. Software Maintenance Tasks. ... 85

Table 2. Time spent to execute tasks without the support of the multimedia approach. 99

Table 3. Time spent to execute taks supported by the multimedia approach. 100

Table 4. Average hits for each task implemented without the multimedia approach

support. ... 102

Table 5. Average hits for each task implemented with the multimedia approach support.

 ... 104

LISTA DE ABREVIATURA E SIGLAS

RE Requirements Engineering

JBCS Journal of the Brazilian Computer Society

SE Software Engineering

PRS Preferred Representation Systems

IRT Item Response Theory

RS Representation Systems

PICO Population, Intervention, Control, and Outcomes (Results)

UML Unified Modeling Language

OOP Object-oriented programming

BPMS Business Process Management System

JSON JavaScript Object Notation

GQM Goal, Question-Metric

TAM Technology Acceptance Model

CDOC Crypted Document

SUMÁRIO

1. INTRODUÇÃO ... 14

1.1. Problemática e Hipóteses .. 15

1.2. Justificativa .. 18

1.3. Objetivos da Pesquisa .. 18

1.3.1. Objetivo Geral.. 19

1.3.2. Objetivos Específicos ... 19

1.4. Metodologia ... 19

1.5. Organização da Dissertação .. 20

2. DISCUSSÃO .. 22

3. MAPEAMENTO SISTEMÁTICO ... 27

3.1. Introduction ... 29

3.2. Related works .. 30

3.3. Methodology .. 31

3.3.1. Research Secondary Questions and Terms Selection 31

3.3.2. Search String and Selection Strategy .. 34

3.3.3. Data Extraction and Analyses ... 36

3.4. Results and Discussion .. 37

3.4.1. Research Questions .. 38

3.4.2. Approaches Overviews .. 51

3.5. Syntheses and analysis, and lessons learned ... 56

3.6. Threats do validity... 59

3.7. Conclusions .. 59

3.8. References .. 61

4. AVALIAÇÃO EXPERIMENTAL .. 68

4.1. Introduction ... 69

4.2. Methodology .. 71

4.3. Related works .. 72

4.4. CodeMedia Tool .. 73

4.4.1. Architecture ... 74

4.4.2. Features .. 76

4.4.2.1. Attach Multimedia Resources to the Code.. 76

4.4.2.2. Reproduction of Multimedia Resources .. 80

4.4.2.3. Storage and Maintenance of Multimedia Requirements 80

4.4.2.4. Folder Structure... 81

4.5. Experimental Evaluation .. 82

4.5.1. Goal Definition ... 82

4.5.2. Planning ... 83

4.5.2.1. Context Selection.. 83

4.5.2.2. Hypothesis Formulation .. 83

4.5.2.3. Variables Selection ... 85

4.5.2.4. Description of Tasks in the Experiment .. 85

4.5.2.5. Selection of Participants and Objects.. 87

4.5.2.6. Experimental Design .. 92

4.5.2.7. Instrumentation ... 94

4.6. Experiment Steps ... 96

4.6.1. Preparation .. 96

4.6.2. Execution .. 97

4.6.2.1. Data Collection ... 97

4.6.3. Data Validation .. 98

4.7. Results and Discussion .. 98

4.8. Threats to Validity ... 108

4.8.1. Threats to Construction Validity... 108

4.8.2. Threats to Internal Validity ... 109

4.8.3. Threats to External Validity .. 110

4.9. Conclusion and Future Works .. 110

References.. 112

5. CONCLUSÃO ... 116

5.1. Resultados e Contribuições ... 117

5.2. Trabalhos Futuros ... 119

REFERÊNCIAS .. 120

APÊNDICES ... 123

APÊNDICE A - Formulário de Caracterização da Amostra 123

APÊNDICE B – Pergunta de Avaliação do Nível de Compreensão do Código 126

APÊNDICE C - Questionário de Avaliação de Nível de Satisfação do Cliente . 127

APÊNDICE D – Questionário de Avaliação de Nível de Compreensão de Software

 129

14

1. INTRODUÇÃO

A Engenharia de Requisitos (ER) é uma atividade fundamental no processo de

desenvolvimento de software. Por meio desta atividade, é possível organizar a base teórica para

a construção de qualquer sistema, oferecendo suporte às fases iniciais do seu ciclo de vida

(CALAZANS & MARIANO, 2016). Um dos papéis da ER é a identificação das necessidades

e requisitos do produto de software, o qual depende do atendimento a estes e da satisfação das

necessidades do usuário para obter sucesso (MENTEN, SCHEIBMAYR & KLIMPKE, 2010).

Tradicionalmente, a ER, assim como outras atividades da Engenharia de Software

(ES), têm usado recursos textuais para catalogar e registrar os artefatos produzidos durante o

desenvolvimento de software, apesar de existirem outros recursos para enriquecer a

documentação, como imagens, áudio e vídeo (BRUNI et al., 2012). A resistência em adotar

outros meios para armazenar e apresentar a documentação de software acaba sendo prejudicial

para a construção de sistemas, dado que, para algumas pessoas, os recursos textuais podem não

ser suficientes para entender o que precisa ser desenvolvido, prejudicando o entendimento,

acompanhamento e, consequentemente, a execução das tarefas. As pesquisas baseadas em

psicologia embasam essa tese, ao afirmar que indivíduos, em contextos específicos, podem ter

canais preferenciais para os processos de compreensão e aprendizagem (COLAÇO JÚNIOR et

al., 2017).

Dado o exposto, é necessário levar em consideração, na hora da elaboração da

documentação de software, que as pessoas possuem diferentes formas de percepção da

informação. Isso faz toda a diferença na comunicação e aprendizagem, visto que, a depender

das preferências cognitivas, algumas pessoas podem compreender melhor por meio da gravação

de áudio ou vídeo, do que por meio da leitura de um documento, e vice-versa (CHEN et al.,

2020). Desta forma, o uso de multimídia pode ser uma forma de oferecer às pessoas diferentes

canais cognitivos para observar e interpretar a documentação, atuando como um catalisador

para a interação rápida das partes interessadas e entendimento do que precisa ser desenvolvido

(GARTNER & SCHNEIDER, 2012). Em outras palavras, a multimídia pode preencher a lacuna

entre as origens, a terminologia e a educação das partes interessadas, como também,

proporcionar percepções mais próximas da realidade (CREIGHTON, OTT & BRUEGGE,

2006).

15

Neste trabalho, multimídia pode ser entendida como uma forma eficaz de expressar

as informações, usando a tecnologia digital para lidar com o texto, voz e imagem (CHANGBAI,

1998); um tipo de campo relevante para a integração de texto, gráficos, imagens estáticas ou

em movimento, som de animação e outras mídias (FLUCKIGER, 1997); uma combinação de

uma ampla gama de recursos audiovisuais como meios de comunicação.

Em (KARRAS, KIESLING & SCHNEIDER, 2016), foi verificado que quando os

requisitos foram persistidos em formato multimídia, ao invés de notações textuais, houve um

aumento de 80 pontos percentuais na qualidade dos requisitos. Embora as cenas gravadas em

vídeo possam proteger o viés do analista, que realiza a gravação e a edição de vídeo, estas ainda

são mais objetivas do que a dependência de atas escritas ou mesmo da memória pessoal do

analista (HAUMER et al., 2000). Em resumo, independentemente da quantidade de canais

cognitivos ou da ordem utilizada para estimular estes canais, a possibilidade de apresentar os

requisitos de usuário por meio de vários meios de comunicação possibilita um incremento ao

processo de compreensão, permitindo que os desenvolvedores optem pela ordem preferida para

se comunicar e aprender (COLAÇO JÚNIOR et al., 2017).

Por todos esses aspectos, o objetivo deste trabalho é apresentar o resultado da

construção e experimentação de uma abordagem multimídia acoplada ao código fonte, para

apoiar a compreensão e manutenção de software, como alternativa às técnicas tradicionais de

documentação de requisitos. O escopo da abordagem foi construído tomando como referência

as lacunas das ferramentas identificadas durante a realização de um mapeamento sistemático,

cujo objetivo foi identificar e caracterizar as abordagens que promoviam o uso de multimídia

na ER.

Para automatizar a abordagem, foi desenvolvido um plug-in denominado

CodeMedia, integrado ao VisualStudio, que permite a vinculação direta de trechos de código a

mídias dinâmicas (áudio e vídeo) capturadas durante o desenvolvimento do software,

especialmente durante a atividade de ER. Este plug-in foi avaliado em um processo

experimental, do ponto de vista de eficiência e eficácia, seguindo as diretrizes de (BASILI,

1996), (SANTOS, COLAÇO JÚNIOR & SOUZA, 2018) e (OLIVEIRA & COLAÇO JÚNIOR,

2018).

Na próxima seção, será introduzida a problemática e hipóteses relacionadas à

pesquisa em questão.

1.1. Problemática e Hipóteses

16

Os artefatos tradicionais da ER (documento de requisitos, casos de uso, atas ou

outros registros das reuniões, diagramas UML de vários tipos, etc.) têm sido utilizados como

prática comum para Levantamento, Registro, Validação e Verificação dos requisitos,

funcionando como direcionamento durante o ciclo de desenvolvimento e manutenção de

software.

Estes artefatos podem não fornecer resultados concretos podendo prover requisitos

incorretos, pouco claros, ambíguos e não verificáveis (BRILL, SCHNEIDER & KNAUSS,

2010). Essa lacuna de comunicação, associada à dificuldade de compreensão apresentada por

alguns profissionais na interpretação da documentação textual, prejudica o entendimento do

que está sendo desenvolvido (COLAÇO JÚNIOR et al., 2017), e ameaça a usabilidade da meta

de produto de software, consistindo na produtividade de subobjetivos (em termos de eficiência),

eficácia e satisfação (KARRAS et al., 2017).

Para lidar com estas limitações, alternativas vêm sendo propostas. Dentre estas, foi

averiguada a existência de abordagens que promovem o uso de multimídia na ER, para apoiar

a compreensão e manutenção de software.

Diante deste cenário, este trabalho propõe o desenvolvimento e experimentação de

uma abordagem para aumentar a eficácia e a eficiência da compreensão e manutenção de

software. Será feita uma avaliação da compreensão e manutenção de software, perfazendo

experimentos controlados feitos na indústria, para analisar a efetividade de uma ferramenta que

encapsula e automatiza parte da abordagem, o plug-in CodeMedia. Este plug-in mesclará as

características citadas, provendo a visualização da documentação do software por meio de

mídias dinâmicas (áudio e vídeo) acopladas ao código-fonte.

Tendo em vista os fatos mencionados, foram elaboradas as seguintes questões

principais de pesquisa:

• RQ1 - A utilização da abordagem multimídia, automatizada pelo uso do plug-in

CodeMedia, pode reduzir o tempo de codificação dos programadores no processo de

manutenção de software?

• RQ2 - A utilização da abordagem multimídia, automatizada pelo uso do plug-in

CodeMedia, pode reduzir erros na codificação para manutenção de software?

• RQ3 - A utilização da abordagem multimídia, automatizada pelo uso do plug-in

CodeMedia, pode aumentar o nível de compreensão de software pelos programadores no

processo de manutenção de software?

17

• RQ4 - A utilização da abordagem multimídia, automatizada pelo uso do plug-in

CodeMedia, pode aumentar o nível de satisfação do cliente com a solução desenvolvida, do

ponto de vista de usabilidade da tarefa entregue?

A fim de avaliar tais questões, foram utilizadas as seguintes métricas: média de

tempo de codificação das demandas; média de acertos para cada demanda implementada; nível

de compreensão de software; e nível de satisfação do cliente.

Dessa forma, para a primeira questão de pesquisa elencada, a hipótese que foi

testada e sua respectiva hipótese alternativa foram:

Hipótese 1

• Hipótese nula H0: A codificação para a manutenção de software, com e sem a

utilização da abordagem multimídia, têm a mesma eficiência.

• H0: μ(tempoCodificaçãoComAbordagemMultimídia) =

μ(tempoCodificaçãoSemAbordagemMultimídia).

• Hipótese alternativa H1: A codificação para manutenção de software, com a

utilização da abordagem multimídia, é mais eficiente do que a codificação realizada sem a

utilização da abordagem.

• H1: μ(tempoCodificaçãoComAbordagemMultimídia) <

μ(tempoCodificaçãoSemAbordagemMultimídia).

Para a segunda questão de pesquisa elencada, a hipótese que foi testada e sua

respectiva hipótese alternativa foram:

Hipótese 2

• Hipótese nula H0: A codificação para manutenção de software, com e sem a

utilização da abordagem multimídia, têm a mesma eficácia.

• μ(médiaAcertosCodificaçãoComAbordagemMultimídia) =

μ(médiaAcertosCodificaçãoSemAbordagemMultimídia).

• Hipótese alternativa H1: A codificação para manutenção de software, com

utilização da abordagem multimídia, é mais eficaz do que a codificação realizada sem a

utilização da abordagem.

• μ(médiaAcertosCodificaçãoComAbordagemMultimídia) >

μ(médiaAcertosCodificaçãoSemAbordagemMultimídia).

Para a terceira questão de pesquisa elencada, a hipótese que foi testada e sua

respectiva hipótese alternativa foram:

Hipótese 3

18

• Hipótese nula H0: O nível de compreensão de software dos desenvolvedores e a

utilização da abordagem multimídia não possuem uma correlação.

• r = 0

• Hipótese alternativa H1: O nível de compreensão de software dos

desenvolvedores e a utilização da abordagem multimídia possuem uma correlação.

• r ≠ 0

Para a quarta questão de pesquisa elencada, a hipótese que foi testada e sua

respectiva hipótese alternativa foram:

Hipótese 4

• Hipótese nula H0: O nível de satisfação do cliente com a solução entregue não

está correlacionado com a utilização da abordagem multimídia.

• r = 0

• Hipótese alternativa H1: O nível de satisfação do cliente com a solução entregue

está correlacionado com a utilização da abordagem multimídia.

• r ≠ 0

É importante frisar que as hipóteses nulas (H0) são as hipóteses que pretendia-se

refutar e as hipóteses alternativas (H1) são aquelas que, dentro do contexto do experimento, não

seriam rejeitadas.

1.2. Justificativa

As abordagens existentes para Levantamento, Registro, Validação e Verificação

dos requisitos de usuário têm se mostrado insuficientes para registrar os requisitos de forma

completa, consistente e correta. Estudos realizados mostraram que 40% dos defeitos

identificados em projetos de software são oriundos do registro incorreto dos requisitos.

Abordagens vêm sendo propostas para lidar com as questões mencionadas, incluindo técnicas

baseadas em vídeo (BOULILA, HOFFMANN & HERRMANN, 2011).

Por conseguinte, faz-se necessário experimentar outras abordagens que permitam

que os interessados no produto usem diferentes canais de aprendizagem e comunicação,

possibilitando um melhor diálogo, divulgação, entendimento e apresentação das informações,

dentro de um contexto de compreensão e manutenção de software.

1.3. Objetivos da Pesquisa

Para realização desta pesquisa, têm-se os seguintes objetivos geral e específicos.

19

1.3.1. Objetivo Geral

Este trabalho objetivou propor e analisar uma abordagem multimídia, para apoiar a

compreensão e manutenção de software, como alternativa às técnicas tradicionais de

documentação de requisitos, avaliando se a utilização do plug-in CodeMedia, criado para

viabilizar a abordagem, aumenta a efetividade da compreensão e manutenção de sistemas.

1.3.2. Objetivos Específicos

Para possibilitar a realização do objetivo geral, podemos enumerar os seguintes

objetivos específicos:

● Mapeamento Sistemático para identificar e caracterizar o conjunto de

estudos primários publicados, os quais abordam o uso de multimídia na

Engenharia de Requisitos (ER), como suporte para a compreensão e

manutenção de software;

● Requisitos da abordagem multimídia, baseados em resultados e lacunas

encontrados na literatura;

● Plug-in CodeMedia, para visualização da documentação do software por

meio de mídias dinâmicas (áudio e vídeo), acopladas diretamente ao código-

fonte;

● Experimento controlado in vivo, para avaliar o uso do CodeMedia como

facilitador no processo de compreensão e manutenção de software.

1.4. Metodologia

Este trabalho é um estudo experimental que avaliou o desempenho de uma

Abordagem Multimídia para Levantamento, Registro, Validação e Verificação dos requisitos

de usuário, usando mídias dinâmicas (áudio e vídeo) integradas ao código-fonte. A fim de

avaliar tais questões, foram utilizadas as seguintes métricas: (i) média de tempo de codificação

das demandas, (ii) média de acertos para cada demanda implementada, (iii) nível de

compreensão de código e (iv) nível de satisfação do cliente.

Além do ponto de vista experimental, este trabalho também se caracteriza como

exploratório, uma vez que, inicialmente, foi realizado um mapeamento sistemático da literatura,

publicado em (SANTOS, M. C. A; COLAÇO JÚNIOR, M; ANDRADE, C. E, 2020), com o

20

objetivo de encontrar pesquisas sobre o uso de multimídia no processo de desenvolvimento e

manutenção de software, em especial na Engenharia de Requisitos (ER). A análise desses

estudos orientou a construção da abordagem multimídia proposta neste trabalho, bem como

demonstrou a ausência da aplicação de uma metodologia rigorosa e experimental nas avaliações

publicadas. Afastando-se desta lacuna, nosso experimento consistiu no planejamento,

instrumentação, parceria com a indústria e seleção de participantes, preparação do ambiente,

execução, coleta de dados e validação estatística dos resultados.

Na execução do experimento, os participantes foram submetidos a dois tipos de

tratamento: codificação de tarefas de manutenção reais com e sem o suporte da abordagem

multimídia. O design experimental pode ser visualizado na seção 4.5.2.6. Por conseguinte, para

auxiliar os cálculos e verificar se havia diferenças significativas na eficácia e eficiência dos

tratamentos, foi utilizada análise de correlação e três testes estatísticos: Shapiro-Wilk, Wilcoxon

e Teste T.

Em resumo, este trabalho conduziu um experimento, o qual tem o seu método

descrito de forma autocontida, no seu planejamento, detalhado no capítulo 4, com 4 etapas

macro: planejamento com seleção de recursos e treinamento; operação com execução do

experimento e entrevistas, coleta de dados e validação; comparação dos tratamentos baseada na

significância estatística; e análise dos resultados.

1.5. Organização da Dissertação

Este documento está organizado de acordo com a Instrução Normativa Nº

05/2019/PROCC, a qual permite que a Dissertação seja “uma compilação de artigos científicos

submetidos ou publicados em veículos com Qualis, desde que seja contextualizada com seções

de Introdução, Discussão, Conclusão e Referências, não limitada a estas”. São 5 capítulos que

fornecem uma base conceitual e experimental para o entendimento sistêmico. Os tópicos a

seguir descrevem o conteúdo de cada um dos capítulos:

• O Capítulo 1 apresenta esta Introdução, explicando as justificativas,

juntamente com as hipóteses levantadas;

• O Capítulo 2 traz uma síntese narrativa do Mapeamento Sistemático,

juntamente com uma discussão do experimento;

• O Capítulo 3 replica um Mapeamento Sistemático aceito e publicado no

Journal of Software: Evolution and Process;

21

• O Capitulo 4 apresenta um artigo submetido ao Journal of the Brazilian

Computer Society (JBCS), resumindo todo o trabalho efetuado nesta

pesquisa. São descritos o Planejamento, Operação e Resultados do

Experimento;

• Finalmente, no capítulo 5, é apresentada uma compilação de conclusões,

contribuições e sugestões de trabalhos futuros.

22

2. DISCUSSÃO

Neste capítulo, será apresentada uma discussão dos resultados obtidos durante a

realização do Mapeamento Sistemático e da Avaliação Experimental.

Com relação ao Mapeamento Sistemático, foi verificado que a utilização de

multimídia na ER é considerada desde 1992. Isso indica que essa linha de pesquisa já vem sendo

estudada há algum tempo. Nesse período, diversas soluções têm sido propostas para incorporar

mídias dinâmicas ao processo de solicitação e manutenção dos requisitos, porém, o número de

estudos publicados ainda é baixo. Isso pode indicar duas coisas: (1) que a área já produziu

resultados definitivos; ou (2) que a área está falhando em atingir seus objetivos. O segundo caso

é o mais provável, uma vez que multimídia e evolução de software são tópicos muito

importantes na moderna engenharia de software; e multimídia para ER é uma área de pesquisa

ampla e relativamente jovem, que tem muito a oferecer à comunidade de pesquisa de

Engenharia de Software.

Os resultados também mostraram que as publicações referentes ao uso de mídias

dinâmicas na ER envolvem profissionais de diferentes nacionalidades e são desenvolvidas em

diferentes países. Isso denota que a busca por melhorias na documentação de requisitos e na

comunicação entre os stakeholders, na construção e manutenção de software, apresenta-se

como uma preocupação de diferentes partes do mundo.

No que concerne aos métodos de pesquisa utilizados para avaliação, estudo

exploratório (31,92%) e experimento controlado (27,66%) aparecem com as principais opções

entre os trabalhos selecionados. Mesmo sendo utilizado em 27.66% dos trabalhos, poucas

abordagens encontradas validaram suas soluções por meio de experimentos controlados,

mostrando a necessidade de aumentar o uso do método científico nesta área, com replicações

de estudos que permitirão avaliar se outros pesquisadores, de forma independente, surgirão com

os mesmos resultados. Mesmo aqueles que validaram, realizaram uma validação parcial.

 Qualquer abordagem deve focar no cliente final e validar sua utilidade em

experimentos ou estudos de caso bem executados. Isso está longe de propor uma associação de

multimídia aos requisitos e de executar alguns estudos de viabilidade sobre isso. Pesquisadores

e profissionais devem se concentrar em responder a perguntas como: Minha abordagem se

adapta a softwares maiores do mundo real? Como meus resultados se generalizam para outros

clientes, domínios e sistemas? Caso contrário, sempre haverá um problema com a validade

externa da abordagem proposta e será difícil passar do estado da arte para o estado da prática

23

em engenharia de software. Ainda neste contexto, a adoção efetiva de multimídia em ambientes

industriais de engenharia de software é muito baixa.

Na verdade, há pouco trabalho colaborativo na área. A maior parte dos trabalhos

analisados busca desenvolver novas abordagens, com poucos trabalhos de validação das

soluções já existentes. A validação e as atividades cooperativas levariam a uma melhoria mais

rápida das abordagens existentes e a um entendimento mais profundo da área. Os pesquisadores

nunca compararam profundamente seus resultados com outras abordagens.

Nessa linha de generalização de resultados, a maioria dos estudos cita o

entendimento compartilhado e a qualidade das especificações como os principais impactos da

incorporação da multimídia na ER. Esta descoberta mostra que os requisitos multimídia podem

ajudar a reduzir problemas comuns encontrados em ER, tais como requisitos ambíguos, não

claros e não verificados.

Desta forma, uma variedade de soluções para registrar, preservar, vincular e revisar

requisitos usando multimídia foi usada e testada, como alternativa às técnicas tradicionais

utilizadas na ER. No que diz respeito aos ambientes nos quais mídias dinâmicas podem ser

utilizadas como facilitadoras do desenvolvimento e manutenção de software, o cenário é

bastante favorável, sendo explorada em diferentes contextos. Essa abordagem, por exemplo,

tem sido utilizada no desenvolvimento de softwares complexos, que representam riscos

elevados (por exemplo, aeroportos, saúde e sistemas financeiros). Todos esses fatores enfatizam

a viabilidade da abordagem proposta neste trabalho e mostram que o uso de mídias dinâmicas

pode melhorar o processo de compreensão do código, diminuindo custos de evolução e

manutenção.

Em relação às lacunas e à análise da evolução do software, a integração com o

código-fonte e a fase de construção (programação) precisam ser aprimoradas. A falta de

integração estreita com o código impede que ferramentas multimídia possam ser usadas com

eficácia para analisar e compreender os dados produzidos durante a evolução do software. Além

de gravar ou filmar as entrevistas com clientes e fornecê-las ao programador, para que possam

entender melhor seus requisitos, um programador deve ser capaz de clicar em um link no

código-fonte e ver ou ouvir as entrevistas das partes interessadas, bem como as explicações do

código gravadas por um colega de trabalho (COLAÇO JÚNIOR et al., 2017). Neste ponto, as

explicações podem incluir incrementos e evoluções.

Outra característica a ser aprimorada e considerada pelas ferramentas multimídia

são as estratégias de análise da evolução. As estratégias temporais, por exemplo, podem retratar

a evolução considerando todas as versões disponíveis para análise. Dadas n versões v1, v2, ...,

24

vn, (ou um subconjunto sequencial considerável destas), este tipo de análise leva em

consideração tudo o que aconteceu da versão v1 à versão vn. Isso ajudaria, por exemplo, a

analisar mudanças entre diferentes artefatos e mudanças de negócios ao longo do ciclo de

evolução do software. Em outras palavras, o versionamento do conteúdo multimídia deve estar

alinhado ao versionamento do software, permitindo que a filmagem ou explicação de um

requisito do negócio, por exemplo, seja associada à evolução das métricas do código. Em outra

dimensão, uma questão a ser avaliada seria o registro ou filmagem de explicações sobre a

evolução de cada versão do software, permitindo que as principais mudanças e decisões-chave

sejam documentadas.

Em relação à manutenção de software, os estudos não abordam especificadamente

ou profundamente o uso de multimídia aplicada à manutenção e compreensão de software. Em

nossa pesquisa, foi proposto e implementando um acoplamento mais próximo ao código,

explicações técnicas do código e novas formas de encontrar trechos específicos de áudios e

vídeos.

Vale ressaltar que as mídias digitais podem dar suporte a diversas atividades de ER,

por meio da gravação de entrevistas, reuniões com stakeholders, histórias de usuários e

discussões com clientes. A gestão desse conteúdo pode ser feita por meio de iniciativas próprias,

ou por meio de ferramentas disponíveis no mercado.

Encerrando a análise do estado da arte, o uso de multimídia mais intimamente ligada

ao código e às estratégias de análise da evolução podem ajudar a responder a duas perguntas

importantes (SANTOS, COLAÇO JÚNIOR & ANDRADE, 2020): (1) Onde vejo meu negócio

no código? (2) Quais pontos evoluíram no código em linha com a evolução do meu negócio?

As respostas a essas perguntas podem ajudar a aumentar a precisão da localização do código a

ser evoluído e alterado, aumentando a eficácia da manutenção, reduzindo custos e

proporcionando a perspectiva de impacto no código-fonte, com base na evolução do negócio.

Do ponto de vista experimental, analisando os resultados do experimento executado

nesta pesquisa, constatou-se que quando a abordagem multimídia foi utilizada, o tempo de

codificação foi um pouco maior em relação ao tempo sem a abordagem. Porém, por meio da

aplicação do teste estatístico de Wilcoxon, constatou-se que não houve significância estatística

para rejeitar a hipótese de igualdade entre os dois tratamentos. Assim, H0 não é rejeitada.

Portanto, a codificação para manutenção de software, com e sem o uso da abordagem

multimídia, tem a mesma eficiência.

Dentre os fatores que podem ter contribuído para o aumento do tempo de utilização

da abordagem, pode-se citar o estilo de programação apresentado por cada participante. Alguns

25

tinham um estilo mais direto, focando exatamente no que a tarefa exigia, o que reduzia

significativamente o tempo de codificação. Enquanto outros realizaram uma análise mais

profunda da tarefa, indo além do que a tarefa precisa. Isso acabou gerando refatoração de código

e, consequentemente, aumentando o tempo de resolução da tarefa. Nesse ponto, vale destacar

mais uma vantagem da utilização de multimídia na ES, ou seja, a explicação em áudio ou vídeo

do código pode ter evidenciado um débito técnico, estimulando positivamente a refatoração.

Por fim, outro ponto que pode ter influenciado no maior tempo despendido na resolução de

tarefas, quando foi utilizado o plugin CodeMedia, foi o tempo necessário para reproduzir e

compreender o conteúdo multimídia anexado ao código.

Para segunda questão de pesquisa elencada, foi possível verificar que, quando

utilizada a abordagem multimídia, o resultado foi promissor, ou seja, a média de acertos por

tarefa foi maior, quando comparada à média de acertos sem a utilização da abordagem. Porém,

ao aplicar o teste estatístico de Wilcoxon, constatou-se que ainda não havia significância

estatística para rejeitar a hipótese de igualdade entre os dois tratamentos. Ou seja, mesmo com

a melhora na média de respostas corretas, para programadores com o perfil psicológico e com

o nível de experiência dos avaliados, as eficácias com e sem a abordagem ainda precisam de

mais replicações de experimentos como este para descobrir suas diferenças.

Para a terceira questão de pesquisa listada, que aborda a correlação entre a

compreensão do código e o uso da ferramenta, houve um baixo coeficiente de correlação

negativo, segundo as respostas ao questionário qualitativo, de -0,16. Ou seja,

surpreendentemente, quando a ferramenta foi utilizada, o entendimento, segundo os

programadores, caiu na proporção de apenas 16%. Porém, apesar de 32 amostras, ou seja, um

número maior que 30, o que permite uma aproximação da distribuição da amostra por uma

distribuição normal, o valor T calculado, com 30 graus de liberdade (n-2), ficou -0,88, acima

do valor do T crítico, que, para um nível de significância de 0,05, é -1,96. Assim, não há

significância estatística para rejeitar a hipótese nula (H0) de que não há correlação entre a

compreensão do código e o uso da ferramenta.

Dentre os fatores que podem ter influenciado neste resultado, pode-se citar: a

familiaridade dos desenvolvedores com o código; a qualidade e assertividade do conteúdo

multimídia vinculado às tarefas; falta de compreensão da questão de compreensão do código; e

o fato de a maior parte do material multimídia anexado às tarefas persistir em formato de áudio.

Conforme sugerido em (COLAÇO JÚNIOR, MENEZES, CORUMBA, MENDONÇA &

SANTOS, 2017), os áudios com explicações do código podem ser interessantes, para permitir

ao programador ter ajuda “on the fly” de seus colegas de trabalho, previamente gravada e

26

disponível no código, porém, os desenvolvedores podem ter ordem de preferência de sistemas

de representação.

Nesse sentido, como pode ser observado na Figura 12, a maioria dos participantes

não possui a primeira ou a segunda preferência auditiva. Isso pode ter impactado a compreensão

do código e também pode ter um efeito transitivo na satisfação do cliente, uma vez que tarefas

bem executadas dependem de um bom entendimento. Em outras experiências e também como

lição profissional aprendida, o conteúdo multimídia deve ser criado levando-se em consideração

as proporções das preferências da equipe, o que pode gerar resultados ainda melhores a favor

da documentação multimídia. Um programador com preferências cinestésicas irá preferir um

vídeo mostrando o funcionamento do sistema a cada linha de código executada e, se possível,

uma cena usando um protótipo. Finalmente, a ferramenta pode ser mais útil para programadores

com menos experiência na linguagem utilizada no experimento.

Para a quarta questão de pesquisa listada, que trata da correlação entre o uso da

ferramenta e a satisfação do cliente, houve um coeficiente de correlação positivo, segundo as

respostas ao questionário qualitativo, de 0,07. Ou seja, quando a ferramenta foi utilizada, a

satisfação do cliente, segundo ele, aumentou 7%. O valor de T calculado, com 30 graus de

liberdade (n-2), foi de 0,36, abaixo do valor do T crítico, que, para um nível de significância de

0,05, é de 1,96. Assim, embora o resultado seja promissor, ainda não foi possível rejeitar a

hipótese nula de que não há correlação entre o uso da ferramenta e a satisfação do cliente. De

qualquer forma, dependendo do contexto atual de acirrada disputa de mercado, aumentar a

satisfação do cliente em 7% pode ser uma vantagem competitiva.

Os fatos apresentados ajudam a justificar e corroborar os resultados obtidos no

experimento. Percebeu-se, por meio do questionário de caracterização da amostra, que a

maioria dos participantes era experiente na linguagem avaliada e já havia mantido um número

considerável de sistemas, conforme pode ser observado nas figuras 16 e 17, respectivamente. É

provável que, se o experimento tivesse sido aplicado com programadores menos experientes,

sem muita familiaridade com a linguagem utilizada, os resultados teriam sido diferentes e mais

favoráveis à abordagem multimídia. Nesse contexto, é necessário aplicar o experimento com

diferentes perfis de programador, para saber como a abordagem multimídia se comporta em

diferentes cenários, e, assim, é possível fazer previsões mais gerais sobre o uso de conteúdo

multimídia no processo de compreensão e manutenção de software.

Apresentada a seção de Discussões, no próximo capítulo será apresentado o

Mapeamento Sistemático realizado para construção da base teórica deste trabalho.

27

3. MAPEAMENTO SISTEMÁTICO

Neste capítulo, será apresentado o Mapeamento Sistemático realizado para

identificar e caracterizar o conjunto de estudos primários publicados, que abordam o uso de

multimídia na ER, como suporte para a compreensão e manutenção de software.

Multimedia Resources as a Support for Requirements

Engineering and Software Maintenance

Anne Caroline M. Santos
 Federal University of Sergipe

 Aracaju/Sergipe/Brazil
anne.santos@dcomp.ufs.br

Methanias Colaço Júnior

 Federal University of Sergipe

 Aracaju/Sergipe/Brazil
mjrse@hotmail.com

Edna de C. Andrade
 Federal University of Sergipe

 Aracaju/Sergipe/Brazil
ednacarvalhosempre@gmail.com

Abstract—Context: Textual documentations are frequently used in the software development

process to outline features and behaviors of an application. For some people, textual

descriptions may not be enough to understand what is being developed. In this scenario,

multimedia resources appear as an option for software documentation, providing other ways to

observe and interpret information. Objective: To identify and characterize the approaches which

promote the use of multimedia in Requirements Engineering (RE) to support software

development and maintenance. Method: A systematic mapping was conducted to find the

primary studies in the literature and collect evidence for directing future research. Results: Only

27.66% of the approaches found validated their solutions through controlled experiments,

showing the need to increase the use of scientific method in this area, with replications of studies

that will allow to evaluating if other researchers independently will come up with the same

results. In this context, the approaches/techniques identified were TRECE, MURMER, Wiki

System Multimedia, Storytelling, Virtual World Environment, VisionCatcher, PRESTO4U,

ReqVidA, CrowdRE, AVW, The Software Cinema Technique, Dolli Project, UTOPIA, and

approaches without explicit names, which, as a rule, use multimedia resources as an additional

support. Conclusions: There was a favorable consensus regarding the use of multimedia in RE.

The selected studies demonstrated to be favorable to the adoption of media to persist and store

 28

the requirements of a system. Moreover, multimedia resources can improve the process of

understanding the code and decrease evolution and maintenance costs.

General Terms

Design, Documentation, Experimentation, Human Factors

 29

Multimedia, Reliability, Software Engineering, Verification and Security.

Keywords—Multimedia Resources, Requirements Engineering, Software Documentation,

Software Evolution and Software Comprehension.

3.1. Introduction

Understanding the requirements of a software is among the most difficult tasks

faced by a software engineer [1]. To ensure that the user requirements are always complete,

consistent, relevant and up-to-date, able to properly support professionals during and after the

software development cycle, it is necessary to use systematic and repeatable techniques [2].

Historically, requirements engineering (RE) has always used a lot of structured and

unstructured text (use cases, diagrams, and prototypes) to describe the requirements of a system

[3]. According to [4], the way software engineers process these requirements affects the success

of this processing for both text and diagrams, impacting understanding of what should be

developed.

For some people, textual descriptions may not be sufficient to understand what is

being developed. There are groups that can better understand through audio or video recording,

along with the textual description or individually [5].

The ability to present software requirements across multiple communication

channels allows for an incremental understanding process, empowering developers to choose

their preferred means of communicating and learning. In this scenario, multimedia resources

can be exploited to improve understanding and descriptions of requirements in the software

development process. The combination of textual notes and video can offer greater potential

for obtaining and crafting more readable, accurate and objective requirements that represent

user needs [5].

Regarding Software Evolution, whereas, for some systems, the cost devoted to

evolution and maintenance now accounts for more than 90% of total software costs [6] and

software maintainers spend approximately 50% of their time in the process of understanding

the code [7], multimedia tools integrated into the code can help people to understand software

through the use of explanatory audio and video, and it can be effectively used to analyze and

understand the data produced during software evolution. Generally, these tools do not have a

closely integration with the code and allow analyzing indirectly the evolution of the software

with respect to a set of software maintenance related questions [8][9][10]. For this reason, some

 30

researchers have been proposing associate audio or video explanations to software architecture,

design of code artifacts and source code [5], evidencing an aspect to be observed by the

multimedia-based requirements tools.

This article presents a systematic mapping aimed to identify and characterize the

approaches and techniques that promote the use of multimedia resources in RE to support

software development and maintenance.

After answering the research questions, it was identified approaches such as

TRECE, MURMER, Wiki System Multimedia, Storytelling, Virtual World Environment,

VisionCatcher, PRESTO4U, ReqVidA, CrowdRE, AVW, The Software Cinema Technique,

Dolli Project, UTOPIA, and approaches without explicit names, which, as a rule, use

multimedia resources as an additional support. In the context of the types of study, "Exploratory

Study", with 15 (31.92%) publications, far outperformed the other analyzed types. Regarding

countries, Germany (17), United States (15), and Canada (7) lead the ranking of publications

on the subject. Among the main channels, conferences stood out with 33 (70.22%), while

periodicals reached 14 (29.78%).

The remainder of this paper is structured as follows: section 2 presents the related

works. Section 3 describes how systematic mapping was planned. In section 4, the results

obtained during the study is showed. Section 5 shows the discussion about the results. Section

6 presents threats to validity. Finally, in section 7, the conclusion is presented.

3.2. Related works

Some articles served as reference for the construction of the research line

approached in this work. [5] took the first step towards the study of Preferred Representation

Systems (PRS) in RE. They used survey combined with an analysis of Item Response Theory

(IRT) data to show that software engineers have preferred representation systems and point out

that these preferences can be identified. These findings spurred research on multimedia (video

and audio) capabilities to help build and understand software, and to support scientists and

managers create better ways to communicate and manage software engineers.

[11] describes that the way that software engineers process resources like diagrams

and non-conventional visualization metaphors impacts on the success of that processing for

both, text and diagrams. The article points out that other studies do not evaluate what types of

representational systems (RS) are the preferred by software engineers. This discovery is

 31

important to define what kind of resources would be useful to the software engineer, in a

specific context.

As these papers point out, there is improvement in software understanding when

developers can choose different ways of interacting with project information. This highlights a

gap and the need to compile all the related works, identifying the current state of the area and

what may be done.

3.3. Methodology

Some researchers have been working to provide stable methods for systematic

literature review process. In this study, we explore the approach defined by [12][13], in order

to define the procedure and the methodology to be used.

In this context, it was conducted a mapping study because it allows to analyzing the

primary studies and answering research questions in a broader way, collecting evidence for

directing future research. In addition, both data extraction and analysis are largely concerned

with classification of the available studies. The steps performed in this mapping are detailed in

Fig 1.

Fig 1. The Steps of a Systematic Mapping Process.

Considering these steps, the goal of this study was to identify and characterize the

set of primary studies published that address the use of multimedia resources in RE. It is

presented the main research question of this study:

 “What is the state of the art in the use of multimedia resources in Requirements

Engineering to support software development and maintenance? "

The definition of the research secondary questions, search strategy and selection

criteria will be described in the following sections.

3.3.1. Research Secondary Questions and Terms Selection

 32

The research questions were developed with the purpose of presenting an overview

of the area, highlighting key aspects of primary studies.

For this study, the research questions attempt to provide a specific insight into the

relevant aspects about the use of multimedia resource in RE. These includes questions about

which approaches and techniques are used to promote the use of media in RE to support

software development; impacts of the use of media in RE processes; scenarios where media is

used for software development; the kind of forum where papers have been published

(conferences and periodicals); and the type of research carried out (empirical method). The

empirical method is classified in one of the following types [14][15], depending on the purpose

of the evaluation and how researchers described their evaluated methods (see Table 1).

Table 1. EMPIRICAL METHODS

Empirical Methods

Survey Empirical strategy to gather data from a population sample and to achieve

an understanding of that population [14].

Case study Research methodology that studies a phenomenon in its natural context

[15].

Controlled

experiment

Controlled experiment provides a formal, rigorous and controlled

investigation in which an intervention is introduced to observe its effects

[16].

Feasibility Study In this type of study, authors use the proposed approach over a software

as a feasibility study and it only presents a proof of concept [17]

Exploratory Study It focuses on exploring a specific context and does not intend to discuss

final and conclusive solutions, but helps researchers to have a better

understanding of the problem and generating ideas and hypotheses for new

research [15].

Comparison The authors performed a comparison based on checklist among their

approach and another related tool [18].

As a guarantee of quality, PICO model was used in order to prove research

questions characterization and classification capacity. PICO, an acronym for Population,

Intervention, Control, and Outcomes (Results), aims to highlight the effects of an intervention

on a given population [19]. Table 2 illustrates the PICO model .

Table 2. PICO MODEL

Category. Description

Population
Publications by researchers considering Requirements

Engineering approaches.

 33

Category. Description

Intervention

Context of approaches and techniques using multimedia

resources to perform specific tasks such as requirements

specification, business process modeling, and communication

between stakeholders and developer team.

Control

Traditional techniques (e.g., use cases, diagrams, and analysis

document) used in elicitation and requirements management

were compared with approaches that use multimedia to

support software development and maintenance. However, no

empirical comparison is made at this stage, approaches are

identified and characterized.

Control papers that obey the intervention:

• Using different communication media on group

performance in requirements engineering [20].

• Automating requirements traceability: Beyond the record &

replay paradigm [21].

• Videos vs. use cases: Can videos capture more requirements

under time pressure? [22].

• Interactive multimedia storyboard for facilitating

stakeholder interaction: supporting continuous

improvement in IT-ecosystems[23].

Results

Requirements Engineering providing management of high-

quality requirements, better cognition, documentation,

understanding, and choice of personal preferences for

Software Engineers.

Table 3 describes the research questions of this work.

Table 3. RESEARCH QUESTIONS

ID. Research Question

RQ1
Which are approaches used to capture and record user

requirements using multimedia resources?

RQ2
What is the impact of using media in software development

and maintenance?

RQ3
What research methods have been used in research into the

media use in requirements engineering?

RQ4
What types of publications or forums have dealt with the

issue of media in requirements engineering?

 34

ID. Research Question

RQ5
In which scenarios media are used for software modeling,

development and maintenance?

RQ6
What are the countries that have more researchers who

published on this field?

RQ7 Which years have had the most publications in this area?

RQ8
Who are the researchers that have been publishing in this

field?

Table 4 shows the PICO-based terms that were selected before they were refined

(see next section).

Table 4. PICO MODEL CATEGORIES AND TERMS IDENTIFIED FOR BIBLIOGRAPHIC SEARCH

Category. Description

Population

Software Engineering, Requirements

Engineering, Requirements Analyses, and

Requirements Elicitation.

Intervention Multimedia, Audio and Video.

Control No strings

Results
Software documentation, software

comprehension.

3.3.2. Search String and Selection Strategy

To perform the search in the databases, a search string was created using English

terms and several synonyms, associated with the studies that are contained in the areas of

computing that deal with the use of multimedia (audio and video) to support software

development and maintenance. These terms (see table 4) were identified with the help of PICO

model and control papers, described in Table 2. After refinement, the adjusted terms were used

to construct the final search string presented in Table 5.

Table 5. SEARCH STRING

Database Search String

IEEE Xplore ("Document Title":"multimedia" OR "Document Title":"audio" OR

"Document Title":"video") AND ("Publication Title":"requirements

engineering" OR "Document Title":"requirements elicitation" OR

 35

"Document Title":"requirements analysis" OR "Document Title":"software

requirements" OR "Document Title":"software documentation" OR

"Document Title":"software design" OR "Document Title":"software

engineering" OR "Document Title":"software comprehension" OR

"Document Title":"software maintenance" OR "Document Title":"software

construction")

Scopus TITLE("Multimedia") OR TITLE ("Audio") OR TITLE("video") AND

TITLE("requirements elicitation" OR "requirements engineering" OR

"software documentation" OR "software construction" OR "requirements

analyses" OR "software comprehension" OR "software requirements" OR

"software maintenance" OR "software engineering" OR "software design")

Science

Direct

(("Multimedia" OR "Audio" OR "video") AND ("requirements elicitation"

OR "requirements engineering" OR "software documentation" OR "software

construction" OR "requirements analyses" OR "software design" OR

"software comprehension" OR "software maintenance" OR "software

engineering" OR "software requirements"))

Web of

Science

(TI=((requirements elicitation OR requirements engineering OR

requirements analysis OR software design OR software comprehension OR

software maintenance OR software construction OR software engineering OR

software requirements OR software

documentation) AND multimedia)) AND IDIOMA: (English) AND TIPOS

 DE DOCUMENTO: (Article)

In table 6, the search strategy is presented.

Table 6. SEARCH STRATEGY

Databases Scopus; IEEExplore; Science Direct

and Web of Science.

Academic

Publications

Journal Papers; Conference Paper.

Search applied to Title; Abstract; Keywords.

Language Papers written in English

Publication

period

No period has been defined

In order to filter relevant articles for this systematic mapping, the inclusion and

exclusion criteria were defined. The selection criteria are presented in table 7.

Table 7. SELECTION CRITERIAS

Inclusion/Exclusion Criteria

 36

Inclusion Criteria Paper written in English; Academic journal and

conference; The Articles must specify approaches that

propose the use of multimedia resources to support RE

processes OR describe the impact to use media to

software development OR cite the scenarios where

multimedia can be act as facilitator to software

development; The papers must be available for online

consultation; The articles must contain the theme of

this study in the title, abstract or keywords.

Exclusion Criteria

for titles and

abstract

Duplicated articles; Unavailable articles; Personal

blogs or web pages; Paper that do not focus on the use

of media in RE processes.

Exclusion criteria

for full text

Research which does not treat the media use to support

software development and maintenance

3.3.3. Data Extraction and Analyses

The studies found were classified in five categories corresponding to each of the

research questions of the systematic mapping. Three authors built the classification used to

categorize the selected articles. The categories are presented in table 8.

Table 8. CLASSIFICATION

Categories Description

Approaches

To classify the studies according to approaches used

to capture and record user requirements using

multimedia resources in order to support the

software development and maintenance.

Impacts

To list the positive e negative impacts of using media

resources in software lifecycle, pointing key success

factors that may generalize to other interdisciplinary

software modeling environments.

Research

Method

To identify whether the proposed approach has been

evaluated through empirical methods, and if so,

which method was used. It was considered that a

study has an empirical evaluation if it brings at least

one section with some discussion dedicated to this

topic.

Kind of

publication

To identify the kind of publications where the

articles have been published.

 37

Categories Description

Scenarios

To identify and characterize the scenarios where

media are used as support to requirements analyze,

in order to know in which contexts it can be

successfully applied.

3.4. Results and Discussion

In this section, the results of the primary studies obtained in each step of the

search process are presented in Fig 2.

Fig 2. Results obtained from the search process.

The initial search returned 207 publications. Duplicate researches were removed,

then, the selection criteria were applied, and 138 studies were rejected, leaving 69 works for

full paper review. 22 papers were discarded after full reading and analyses. Thus, 47

publications were selected for the data extraction phase.

 38

3.4.1. Research Questions

The first considered aspect in the classification was the approaches (RQ1)

identified. The distribution of studies in terms of approaches are shown in Table 9.

Table 9. APPROACHES

Ref. Name Description Workflow and Multimedia Type

[24] TRECRE The TRECRE

framework involves a

wide variety of

technologies for

recording, preserving,

linking and reviewing

requirements.

The framework is structured in 4 layers: Domain

models & Requirements specifications; Semi-

structured index descriptions; Indices and

Metadata; and, Multimedia source materials (video

or audio). Software engineers thus navigate up and

down the layers to find and review the

information they desire.

[25] MURME

R

This method represents

requirements for

multimedia document

types containing audio,

video, image, or textual

data.

MURMER represents content and sequence

timelines with three Formal Sets: 1) a Storyboard

(PPT) of the proposed presentation, 2) a Content

File list of audio files, video files, image files, and

text files, and 3) one or more Finite State Machines

showing the timeline of frames. Together, these

three elements represent at an abstract level all of

the necessary elements for a multimedia

presentation such as a simple tutorial.

[8] No name

was

specified

for this

approach

Modern mobile devices

typically provide

multimedia features

like microphones or

digital cameras.

Therefore, using such

devices to enrich

requirements

descriptions with audio

notes or videos is an

obvious opportunity.

As stakeholders cannot directly interact with the

actors they have been developing the Mobile

Scenario Presenter (MSP), a mobile scenario-

based tool augmenting ART-SCENE (scenario-

driven technique for requirements discovery and

documentation) in several iterations has been

proposed. Using the MSP mobile, stakeholders can

discover and document requirements

systematically in the work context using structured

scenarios generated by ART-SCENE.

[9] The

Software

Cinema

This paper presents a

novel technique for the

video analysis of

scenarios, relating the

The Software Cinema technique uses film as a

semiformal representation of software models.

They employ it to bridge the rhetoric gap between

end-users and engineers. This addresses two

 39

Techniqu

e

use of video-based

requirements to process

models of software

development.

issues: First, providing a model of reality that all

stakeholders can understand equally well. Second,

giving all involved developers a rich base of

reference for what the complete system is intended

to achieve.

[10] No name

was

specified

for this

approach

A framework that is

designed to improve the

requirements elicitation

process as well as the

traceability of

requirements

throughout the

complete life cycle of a

project.

To accomplish this task, requirements elicitation

sessions are recorded using rich media and

subsequently the stakeholder requests, that

describe a requirement, are extracted and stored in

short multimedia clips. Those clips are then stored

in the Sysiphus database, where they

can be linked to the extracted requirements or to

UML model elements.

[26] No name

was

specified

for this

approach

A theoretical

framework through

which any decision

about the use of

different media for

recording

requirements-related

information can take

place in an informed

manner.

It distinguishes between abstract media and

physical media and uses this distinction to clarify

the nature of multimedia. They suggest to use these

distinctions to define a number of canonical media

transformations which, in turn, reveal how

information can be lost or gained as it is translated

between media and hence between evolving

requirements descriptions.

[27] Dolli

Project

The DOLLI project was

a large-scale

educational student

project course with a

real customer. They

experimented with a

shift from a traditional

life-cycle to an agile

process during the

project, and used video

techniques for defining

requirements and

meeting capture.

They used video to visualize the requirements and

to teach soft skills. All reviews (with and without

the customer) were filmed to provide feedback.

The videos were automatically converted and

made accessible on the team specific web pages.

To visualize the project requirements, they used a

technique called Video-based Requirement

Engineering.

[28] Wiki

System

The method uses

collaborative

The method uses interviews for the requirements

elicitation. Further, a software tool – which is still

 40

Multime

dia

technologies (a wiki

system) and audio

recordings to allow

multiple stakeholders

the joint elicitation and

documentation of the

requirements.

to be developed – is used to capture the audio

information of the interviews and notes of the

requirements elicited. The audio information and

the requirements are linked to enable the

traceability of the rationales and discussions in

subsequent development steps.

[22] No name

was

specified

for this

approach

They show that Ad-Hoc

videos can work

comparably or better

than use cases for

avoiding

misunderstandings in

the early phases of a

project.

Use cases vs. ad-hoc videos are used to document

elicited requirements, and to present them to the

customers for

validation. Counting recognized requirements is

afforded by using lists of explicit requirements as

a reference.

[29] Storytelli

ng

Storytelling as a

technique was used for

knowledge

management. It uses

Stories to pass along

knowledge and record

requirements.

It is based on group storytelling, where

stakeholders tell stories about current and past

systems that support a given activity. The stories

are merged to form a single story. Stories are then

transformed into scenarios, and from scenarios to

Use Cases. The solution consists of a

knowledge model based on stories about the

system, a collective construction method, and a

tool to support interactions.

[30] A Virtual

World

(VW)

environm

ent

A Virtual Dynamic 3D

Environment is a

setting that provides

realism in testing and

conveying

requirements for

projects, products, and

services

A representation of a real world (RW) scene is

constructed first, based on interviews with

stakeholders. The real setting is modeled at a

reduced level of detail that focuses on the most

central and common elements without

distractions from minor visual details. For a new

product or service, the virtual setting should be

familiar to users and stakeholders

[23] VisionCa

tcher

It focuses on direct

interaction with

stakeholders and

employs several

multimedia

technologies for

documentation of user

requirements.

VisionCatcher supports the stakeholder in

expressing the vision of a new system or an

innovative idea for improving an already running

system. Visions are depicted as a special kind of

video, which are enhanced by multimedia

technologies.

 41

[31] PRESTO

4U

European Technology

for Digital Audiovisual

Media Preservation in

order to ensure

development and use of

high-quality software

both by technology and

service providers as

well as media owners.

The Presto4U aggregation tasks are: metadata

mapping and validation, audio-visual material

storage, information

extraction, manual content annotation, rights

management and preservation platforms.

[32] ReqVidA This article proposes

the combination of

textual minutes and

video with a software

tool.

The objective is connecting textual notes with the

corresponding part of the video. By highlighting

relevant

sections of a video and attaching notes that

summarize those sections, a more useful structure

can be achieved. This structure allows an easy and

fast access to the relevant information and

their corresponding video context

[33] No name

was

specified

for this

approach

This article proposes a

framework that

provides a real time

application for

recording the

conversation and

converting it into a text

transcript.

A text mining program is used to describe

requirements and customized additional words. To

capture verbal discussion and translate it into a text

transcript, a real time audio-to-text conversion

software is used. To capture the action items that

are within the text transcript, they choose to use

Fillmore’s case theory.

[34] CrowdR

E

This article proposes an

approach of video as a

by-product of digital

prototyping to specify

and document

scenarios.

They propose video as a medium for

communicating problems, solution alternatives,

and arguments effectively within a mixed crowd of

officials, citizens, children and elderly people.

[35] AVW The findings show that

when learners engage in

commenting on videos

and rating others’

comments, their

understanding about

requirements increases.

AVW offers Personal Space and Social Space.

Initially students watch and comment on videos

individually in the Personal Space, using aspects to

tag their comments. The system time-stamps

comments (i.e. the time elapsed from the start of

video). The student can watch videos multiple

times, including rewinding or skipping parts.

[36] No name

was

This paper reports on a

study that compared the

They designed a laboratory experiment which uses

a scenario that illustrates the conflict between

 42

specified

for this

approach

performance of groups

in face-to-face and

distributed

requirements

negotiation meetings,

paying special

consideration to the

socio-psychological

aspects of group

interaction in both

communication media.

requirements scope and development time

constraints. The multimedia meeting system used

in the distributed settings was Microsoft's

NetMeeting, a system that allowed video-

conferencing and real-time sharing of an editor for

the manipulation of requirements.

[37] No name

was

specified

for this

approach

This paper describes an

automatic speech

recognition technique

for capturing the non-

functional requirements

spoken by stakeholders

at open meetings and

interviews during the

requirements elicitation

process.

This approach uses a context-free grammar to

boost recognition accuracy, segment the

stakeholders’ utterances and finally to classify the

recognized statements by quality type.

[38] UTOPIA This paper proposes the

use of multimedia

requirements as a

means to increase the

empathy of software

designers with older

users.

The older people's real experiences and the

findings were distilled by the scriptwriter into

narratives which encapsulated a range of issues

within an engaging, cohesive and ‘dramatic’

storyline. These were then produced as short

vignettes using professional actors, director, and

crew.

The second considered aspect in the classification was the impact (RQ2) of using

media in software development and maintenance. Elements in the studies, which describe their

findings about the use of media to support RE processes, were found. In this way, a

classification to categorize the aspects identified was created.

Table 10. IMPACTS

 Description

Communication

support capability

It supports the designer communication over simple and

complex scenarios.

 43

 Description

Decision support

Decision support during requirements analysis; focus on

the discussion and analysis of the artifact and not the

creation and referencing notes.

Abstraction as

close to reality as

possible

Video record provides more contexts than pure

transcript.

Faster

familiarizing with

a scenario

Video allows capturing the dynamic aspect of

interaction, facilitating the recognize the stakeholder's

needs

Shared

understanding

and specification

quality

It improves understanding and validation of a formal

specification; clarifying ambiguous requirements;

stakeholders understand multimedia videos; the sharable

artifacts.

Traceability

The ability to verify the history, location, or application

of an item by means of documented recorded

identification.

Among the elements and aspects analyzed by publications in the area, the technique

proposes by [39] had the advantage of reducing complicated stories into a set of sequential,

cooperating episodes. The multi-agent story capability supports the used designer

communication over simple and complex scenarios, thus sequential and parallel episodes can

be easily observed and discussed for further refinements.[40] indicates that a multimedia

architecture to support requirements analysis is desirable and effective, allowing the user to

focus on the discussion and analysis of the artifact and not on the creation and reference of

notes.

From the point of view of problems and limitations, according to [41], the use of

real world scenes is restricted to the re-engineering of systems in which system usage is

observable and recordable. This limitation can be solved by the persistent capture of context in

the form of real world scenes recorded in multimedia. In this sense, [42] list key success factors

that may be generalize to interdisciplinary modeling environments include: the choice of a

common abstraction as close to reality as possible, and an artifact sharable by all members of

the team.

[10] have identified other problems: a system which films people influences them

simply by the fact the people know they are observed (it can influence the result). On the other

hand, according to [43], the use of video, photo and audio acts as a catalyst for fast-paced

stakeholder interaction, improving the classical stakeholder-meeting situation. Moreover, [32]

 44

have identified that requirements quality is about 80 percentage points higher by using tool-

supported video analysis instead of a common technique like textual. In this same line, [44]

explain that a textual scenario can be faster understood with the support of a dynamic video,

generated by their approach, than with the support of static mockups. Video allows capturing

the dynamic aspect of interaction and provides developers the benefit of familiarizing

themselves faster with a scenario.

After this compilation of critical aspects and scenarios in the area, the studies were

classified considering the categories mentioned in table 10. Table 11 shows the results of this

classification.

Table 11. DISTRIBUTION OF PRIMARY STUDIES BY IMPACT

Impact. Studies

Communication

support capability

[39], [20], [45], [36], [46], [47], [9],

[10], [38], [48], [49], [43], [23],

[50], [33]

Decision support [42], [25], [51], [52], [43], [34]

Abstraction as close to

reality as possible

[42], [53], [41], [24], [54], [25], [8],

[55], [9], [10], [26], [38], [22], [30],

[56]

Faster familiarizing

with a scenario

[36], [46], [21], [8], [9], [57], [27],

[44]

Shared understanding

and specification

quality

[58], [45], [21], [47], [25], [8], [9],

[10], [57], [48], [28], [59], [29],

[23], [31], [32], [35]

Traceability
[41], [58], [21], [60], [24], [8], [26],

[51], [47], [53]

Fig. 3 shows the distribution of the primary studies according to the followed

research method (RQ3). Exploratoty study is the main research method used for construction

of the papers.

Fig 3. Distribution of primary studies by Evaluation Method.

 45

The fourth considered aspect was the type of publication (RQ4). Fig. 4 shows that

33 (70.22%) of primary studies were published as conference proceedings; 14 (29.78%) were

papers published in periodicals.

Fig 4. Distribution of primary studies by Type of Publication.

The fifth aspect considered was scenarios (RQ5). There is a plurality of contexts

where multimedia resources can be used to software development and maintenance. [27],[35]

[54, 61] have proposed the use of multimedia resources to requirements elicitation in learning

and teaching environments. [39, 53] proposed to capture current system usage using rich media

(e.g., video, speech, pictures, etc.) and to interrelate those observations with the goal definitions.

This technique was used in real world scenes to development simple and complex software.

The articles [21, 51, 53], for instance, have proposed approach to track software's

artifacts using video-on-demand to deal with requirements traceability (RT) in real-world

scenarios. [42] presented a tool implemented as part of a process-integrated modeling

environment to attend demands in the Automotive Industry. [55] proposed techniques for

capturing artistic context to implement video games and the pre-production phase of video

development.

[43][49] used video techniques for defining requirements and capture meetings in

development of Software-Intensive Systems. [27] proposed to use video presentation in

teaching innovation to develop software-intensive systems. They had to solve a real problem

that was posed by a real customer: the Munich Airport. Finally, [22] proposed to use Ad-Hoc

videos as a concrete representation of early requirements in the development embedded

systems. Table 12 shows the distribution of studies by scenarios cited.

 46

Table 12. SCENARIOS

Scenarios Studies

Learning and teaching

enviroment
[61], [54], [27], [35]

Simple and complex

software Development
[39], [53]

Requirements traceability
[47], [60], [41], [21], [51], [53], [58],

[24], [8], [26]

Automotive Industry

Software
[42]

Video games development [55]

Software-Intensive

Systems
[49], [43], [27]

Embedded Systems

development
[22]

Fig. 5 shows the distribution of the papers according to country that have more

researchers who published on this field (RQ6). Only the top 10 countries in this research area

were considered. These countries (number of papers is in parentheses) were: Germany (17);

United States (15); Canada (7); United Kingdom (6); Austria (5); Italy (4); Australia (2);

Finland (1); Switzerland (1) and New Zealand (1). The countries where the research was

conducted were considered.

Fig 5. Distribution of articles by country.

 Some articles have the participation of more than one country, which justifies the

numerical divergence in the totalizer of studies by country.

Fig. 6 shows the distribution of the studies according to the year that they were

published (RQ7). The year with the highest number of publications was 2006, with 10

 47

published articles. There is a noticeable decrease in the number of publications from 2006 to

2017 and many oscillations over the years. After the conclusion of this study, which includes

papers until mid-2018, in the journal review phase, the search string was executed again in the

scientific databases, considering papers published between 2018-2020. 16 studies were

identified: Web of Science (6), IEEE (4), ScienceDirect (1), and Scopus (5).

After applying exclusion criteria, 9 papers were removed and 7 studies were

selected: [62][63] describe approaches already mentioned in this study (CrowdRE and AVW);

[64] proposes a videogame as a tool to reinforce students’ skills, in terms of identification and

classification of requirements; [65] proposes creating a central repository of programming

videos, enabling analyzing and annotating videos to illustrate specific behaviors of interest,

such as asking and answering questions, employing strategies, and software engineering

theories; [66] conducted a survey to investigate if software professionals perceive video as a

medium that can contribute to RE; and [67][68] provide guidance how to create useful videos

for visual communication to enable software professionals to produce good videos at moderate

costs, yet sufficient quality. Three papers were published in 2018 and four in 2019, maintaining

the trend previously mentioned.

Fig 6. Distribution of articles by publication year.

Fig. 7 presents the top 10 authors (RQ8) who appeared in 2 papers or more, and

they (number of papers in parentheses) were: Schneider, K. (7); Damian, D E H. (5);

Grunbacher, P. (4); Bruegge, B. (4); Pohl, K. (3); Haumer, P. (3); Jarke, M. (3); Gaines, B R.

(3); Karras, O. (3) and Egyed, A. (3).

 48

Fig 7. Distribution of articles by author.

Table 13 provides a mapping of the studies considering the following aspects: RE

activities supported by the use of multimedia resources; type of content persisted in multimedia;

and tools used to manage the audio, video or image files, which contain the user requirements.

Table 13. OUTCOMES

Id Ref. RE activities

where it was

applied

Type of content described

in the audio or video or

image

Tools used to support the

management of the media

materials

1 [24] Requirements

elicitation,

specification

and

traceability.

Conversations with

customers, users and other

experts.

They used the TRECE

framework to store and manage

the recorded files.

2 [25] Requirements

specification.

User stories, objectives,

stakeholder profile.

To support this process, they

built a method called

MURMER. The method is

simple as it relies on

well-known tools such as

PowerPoint and state machines

to represent the entire

presentation.

Specific tools were not

mentioned for recording

multimedia requirements.

3 [8] Requirements

specification.

Interviews conducted with

end-users in the workplace.

The integration of the Mobile

Scenario Presenter with

Microsoft Pocket Word.

4 [9] Requirements

specification.

Discussion between

designers and developers.

Discussion with the end-

users.

To support this process, they

built a custom tool for video-

based requirements called

Xrave.

 49

5 [10] Requirements

elicitation,

specification

and

traceability.

Requirements elicitation

sessions are recorded with

stakeholder requests.

Requirements elicitation

sessions are recorded using rich

media and subsequently

the stakeholder requests, that

describe a requirement, are

extracted and stored in short

multimedia clips. Those clips

are then stored in the Sysiphus

database.

6 [26] Requirements

elicitation,

specification

and

traceability.

Interviews with

stakeholders.

They proposed a theoretical

framework for managing the

artifacts

7 [27] Requirements

specification.

Meetings with

stakeholders.

The teams recorded their

meetings themselves with

cameras

attached to a Podcast Producer

system. With the Podcast

Producer technology, the videos

were automatically

converted and made accessible

on the team specific web

pages.

8 [28] Requirements

elicitation

and

specification.

Interviews with a

stakeholder

The method uses a collaborative

software development

platform as a tool infrastructure.

Also part of the tool is a

wiki which is used to identify

and document requirements.

9 [22] Requirements

elicitation,

validation

and

negotiation.

Discussion with customers. Specific tools were not

mentioned for recording and

managing multimedia

requirements.

10 [29] Requirements

elicitation

and

specification.

Stakeholders’ stories about

current and past systems

that support a given

activity.

They developed a toll called

Storytelling that was used for

knowledge management.

 50

11 [30] Requirements

elicitation,

specification

and

validation.

Interviews with

stakeholders.

They used a Virtual Dynamic 3D

Environment to describe the

requirements.

12 [23] Requirements

elicitation

and

specification.

Interactions with

stakeholders.

They employed several

multimedia technologies for

documentation of user

requirements.

13 [31] Requirements

elicitation.

Interviews and

questionnaires with

stakeholders.

They developed their own

technology called Presto4U.

14 [32] Requirements

elicitation.

Workshops with

stakeholders and team

develop.

They developed their own

technology to support

analysis of an enriched video.

15 [33] Requirements

elicitation

and

specification.

Interviews with

stakeholders.

In order to capture verbal

discussion and translate it into a

text transcript, a real time audio-

to-text conversion software,

such as Dragon

NaturallySpeaking Premium, is

used. A text mining program is

used to describe requirements

and customized additional

words.

16 [34] Requirements

elicitation,

specification

and

distribution.

Meetings with

stakeholders.

They proposed their own

application called CrowdRE.

17 [35] Requirements

elicitation

and

specification.

Meetings with

stakeholders.

AVW offers Personal Space and

Social Space to share interviews

with stakeholders.

18 [36] Requirements

distribution,

negotiation

and

specification.

Meetings with

stakeholders.

They used Microsoft's

NetMeeting, a system that

allowed video-conferencing and

real-time sharing of an editor for

the manipulation of

requirements.

 51

19 [37] Requirements

elicitation.

Meetings and interviews

during the requirements

elicitation process.

This paper developed an

automatic Speech-based

detection tool for capturing the

non-functional requirements

spoken by stakeholders at open

meetings and interviews

during the requirements

elicitation process. This

approach uses a context-free

grammar to boost recognition

accuracy, segment the

stakeholders’ utterances and

finally to classify the recognized

statements by quality type.

20 [38] Requirements

elicitation

and

specification.

User Stories. Specific tools were not

mentioned for recording and

managing multimedia

requirements.

Most studies cite requirements specification and elicitation as the main RE activities

supported by the use of multimedia resources. The articles also cite the use of audio and video

for requirements validation, negotiation and distribution. The results also point to the use of

media to store interviews and meetings with stakeholders, user stories, discussions with

customers and end-users. To store and manage the recorded files, some articles developed their

own tools, such as [9][24][25][31]. Some studies used tools already available on the market,

such as [36][33][10][30].

3.4.2. Approaches Overviews

In this section, the numbering presented corresponds to the ids in table 13.

1) This article proposes use multimedia resources to record the discussions

with stakeholders, and saving the sketches, images and other artifacts. They

will then provide means for efficiently searching and browsing all of these

materials, and as automatically as possible, link media to related domain

models and requirements specifications. Thus, they are proposing a

multimedia traceability framework to address the capture and review of

 52

requirements source materials, aiming to complement, not modify, existing

requirements methods and artifacts.

2) The MURMER method represents a starting point for representing simple

multi-media tutorials that merge audio, video, text, and images. Its primary

function is that of a risk mitigator, so that risky or costly components such

as video (or animation) can be postponed and designed around at a very

early stage. The method is simple as it relies on well-known tools such as

PowerPoint and state machines to represent the entire presentation.

MURMER also strives to be customer-oriented, since it is simple and

accessible to customers, can be done at the early (requirements

specification).

3) The focus of this paper is to present and analyze two options supporting

capturing multimedia descriptions of requirements with a mobile scenario

tool. They explore which option is more amenable to different user types.

As little is known about capturing multimedia requirements descriptions

using mobile RE tools, this comparison can stimulate further research in this

field.

4) This paper presents a novel technique for the video analysis of scenarios,

relating the use of video-based requirements to process models of software

development. It uses a knowledge model—an RDF graph—based on a

semiotic interpretation of film language, which allows mapping conceptual

into formal models. It can be queried with RDQL, a query language for

RDF. The technique has been implemented with a tool which lets the analyst

annotate objects as well as spatial or temporal relationships in the video, to

represent the conceptual model. The video can be arranged in a scenario

graph effectively representing a multi-path video. It can be viewed in linear

time order to facilitate the review of individual scenarios by end-users. Each

multi-path scene from the conceptual model is mapped to a UML use case

in the formal model.

5) This article proposes a framework that is designed to improve the

requirements elicitation process as well as the traceability of requirements

throughout the complete life cycle of a project. To accomplish this task,

requirements elicitation sessions are recorded using rich media and

subsequently the stakeholder requests, that describe a requirement, are

 53

extracted and stored in short multimedia clips. These clips are then stored

in the Sysiphus database, where they can be linked to the extracted

requirements or to UML model elements.

6) This article distinguishes between abstract media and physical media and

uses this distinction to clarify the nature of multimedia and recording

requirements. The interview session is guided by a pre-written

questionnaire, so the abstract media is text and the physical media is paper.

The questions are delivered by the interviewer using speech (abstract media)

carried on sound waves (physical media). The interviewee’s response is

communicated using spoken natural language (speech as abstract media),

recorded together with any background noise (sound as abstract media).

Once the interview session has been recorded, the subsequent activities to

determine requirements are performed.

7) This paper experimented with a shift from a traditional lifecycle to an agile

process during the project, and used video techniques for defining

requirements and meeting capture. The task of the film team was to create

scripts and shoot three films: A scenario film that visualizes the functional

requirements, a making-of film that describes the interaction and the

atmosphere between the project participants, and a trailer that can be used

to market the project. To visualize the project requirements, they used a

technique called Video-based Requirement Engineering.

8) This article proposes a method, which supports communication processes

between stakeholders of a software development project in order to elicit

requirements more efficiently and effectively. Thus, their focus lies on the

first phase of the requirements engineering process. The method uses

interviews for the requirements elicitation. Further, a software tool is used

to capture the audio information of the interviews and notes of the

requirements elicited. The audio information and the requirements are

linked to enable the traceability of the rationales and discussions in

subsequent development steps.

9) In this work, they investigate whether videos can replace textual

requirements representations. They compare ad-hoc videos with use cases

as a widely used textual representation of requirements. Firstly, they

compare the efficiency of creating videos and textual requirements

 54

descriptions by subjecting the analysts to time pressure. Secondly, they

investigate the effectiveness, i.e., whether customers can distinguish valid

from invalid requirements when they see them represented as use cases, or

in videos. These videos are created based on the requirements from

elicitation meetings.

10) This research investigates the usage of the Storytelling technique in eliciting

requirements. A small-scale experiment was conducted to gain insights on

the practice of telling stories related to Requirements elicitation context. In

the experiment, Storytelling was used to collect and discover the maximum

number of requirements in forms of short stories revealing personal

experiences with the ticket machine. The stories included narrated real

experiences, the good as well as bad ones, and anecdotes.

11) This work proposes the use of a virtual dynamic 3D environment, with

realistic settings and multiple remotely located participants, to bring value

for Requirements Engineering. The visual expressive power, distant

collaboration, artifact permanence and availability, and the richness of

realistic 3D simulations bring added power and clarity. The ability to

simulate and experience user satisfaction and pain are of great value in

predicting the utility and acceptance of developments.

12) In this article, a new kind of dedicated multimedia storyboard is presented.

The storyboard VisionCatcher supports the stakeholder in expressing the

vision of a new system or an innovative idea for improving an already

running system. Visions are depicted as a special kind of video, which are

enhanced by multimedia technologies. In a meeting, the engineer constructs

these videos in tight collaboration with the customer. Each action is depicted

as a piece of multimedia (video-clip, photo, and audio-clip). Actions are

stepwise concatenated in order to form a so-called VisionVideo. This way,

requirements are documented in an expressive and highly concrete

representation.

13) In this paper, a software quality model customizable for the audio-visual

context has been performed. An experiment of requirements elicitation has

been developed for the identification of some functional and nonfunctional

requirements. Crucial work of this paper, is the definition of a software

product quality evaluation process, which is customizable for tools used in

 55

the audio-video preservation context. These tools cover different tasks: they

can be either tools for metadata mapping or for audiovisual files archiving

and restoring or for evaluating the quality of the various contents, as images

and sounds, etc.

14) This paper presents a software tool, called ReqVidA – Requirements Video

Analyzer. This software tool allows support and guidance of a requirements

engineer in the role of a scribe during a workshop and afterwards. In general,

this tool enables the creation and elaboration of annotations and minutes in

both views (Recorder and Analyzer). The export of artifacts, e.g. minutes or

a list of annotations, is also available at any time, during a workshop and

afterwards.

15) In this paper, they propose a solution to remedy the problem of capturing

verbal requirements communication by presenting a framework for

recording, transcribing, and mining verbal communication to assist

developers in better describing and further refining requirements. During

the meeting or discussion, the application constantly sends the captured

audio to the desktop application, which converts it into a text transcript.

Once the translation is complete, the transcript is saved, and the text mining

tool retrieves the file. Next, the text mining program outputs the extracted

requirements in terms of verbs and nouns.

16) In this paper, they propose this new perspective as a timely opportunity for

the spatial planning domain – and as an increasingly important application

domain of CrowdRE. CrowdRE starts from the assumption that there is a

crowd of participants who are able and willing to communicate via

electronic media. Thus, they can receive electronic messages at short notice

and have the technical infrastructure for responding.

17) In this study, the Active Video Watching (AVW) system was developed.

AVW is a controlled video watching environment designed for self-study.

It can be customized by the teacher who defines a list of aspects that serve

as scaffolds for learning with videos. The student can watch videos multiple

times, including rewinding or skipping parts. The main aim was to elicit

requirements for intelligent support to improve learning with AVW.

18) This paper reports on a study that compared the performance of groups in

face-to-face and distributed requirements negotiation meetings. The

 56

multimedia meeting system used in the distributed settings was Microsoft's

NetMeeting, a system that allowed video-conferencing and real-time

sharing of an editor for the manipulation of requirements.

19) This paper describes an automatic speech recognition technique for

capturing the non-functional requirements spoken by stakeholders at open

meetings and interviews during the requirements elicitation process. Their

approach uses a context-free grammar to boost recognition accuracy,

segment the stakeholders’ utterances and finally to classify the recognized

statements by quality type.

20) This paper discusses the efficacy of narrative video to communicate some

of the fundamental differences between older users of ICT interfaces and

the interface designers who tend not to be familiar with the general

perspectives and user requirements of this and other ‘nontypical’ target

groups. A series of narrative is produced based videos to illustrate the kinds

of problems that many older people face with ICT. These data and

experiences were distilled by the scriptwriter into narratives which

encapsulated a range of issues within an engaging, cohesive and ‘dramatic’

storyline.

3.5. Syntheses and analysis, and lessons learned

In this section, in addition to the discussion of impacts, scenarios and raw results,

made in the previous section, a discussion of the main aspects and lessons learned on possible

improvements for software evolution analysis, which can be developed for the analyzed tools

and new researches, is presented.

The use of multimedia in the RE has been considered since 1992. This indicates

that this line of research has been studied for some time. In this period, several solutions have

been proposed to incorporate media in the process of requesting and maintaining requirements,

however, the number of published studies is still low. This may indicate two things: (1) that the

area has already produced definitive results; or (2) that the area is failing to reach its goals.

Second case is the most likely, since multimedia and evolution of software are very important

topics in modern software engineering; and multimedia for RE is a broad and relatively young

research area, which has much to offer to the software evolution research community.

 57

The results also show that the publications referring to the use of media in the RE

involve professionals of different nationalities and are developed in different countries. This

denotes that the search for improvements in requirements documentation and communication

between stakeholders in the software construction and maintenance presents itself as a global

concern being studied in different parts of the world.

Exploratory Study (31.92%) and Controlled Experiment (27.66%) are the main

research methods used for evaluating. Despite the second-place finish, these numbers show that

few approaches found validated their solutions through controlled experiments, showing the

need to increase the use of scientific method in this area, with replications of studies that will

allow evaluating if other researchers independently will come up with the same results. Even

those that validated, performed a partial validation.

 Any approach should focus on the end user and validate its usefulness in well-

executed experiments or case studies. This is far from proposing a new multimedia resources

association to the requirements and executing a few feasibility studies over it. Researchers and

practitioners should focus on answering questions like: Does my approach scale to larger real-

world software? How do my results generalize to other users, domains, and systems? Otherwise,

there will be always an issue with the external validity of the proposed approach and it will be

difficult to move from the state of the art to the state of the practice in software engineering.

Still in this context, the actual adoption of multimedia resources in software engineering

industrial environments is very low.

There is actually little collaborative work in the area. Most of the analyzed work

tries to develop new approaches as oppose as to validate or add value to existing ones.

Validation and cooperative activities would lead to faster improvement of existing approaches

and to a deeper understanding of the area. Researchers never benchmarked deeply their results

against other approaches.

Most studies cite shared understanding and specification quality as the main impact

of media incorporation in RE. This finding shows that media requirements can help reduce

common issues encountered in RE, such as ambiguous, unclear and unchecked requirements.

A wide variety of solutions for recording, preserving, linking, and reviewing

requirements using media have been used and tested, as alternative to traditional techniques for

requirements elicitation. With respect to environments where the media can be used as a

facilitator in software development and maintenance, the scenario is highly favorable, and the

use of the media has been exploited in different contexts. It has been used in the development

of complex software, which represents high risks (e.g. airport, health and financial systems).

 58

These factors emphasize the reliability of the method approached in this work and show that

multimedia resources can improve the process of understanding the code, decreasing evolution

and maintenance costs.

Regarding gaps and software evolution analysis, integration with the source code

and the construction (programming) phase needs to improve. The lack of closely integration

with the code prevents multimedia tools can be effectively used to analyze and understand the

data produced during software evolution. In addition to recording or filming the interviews with

clients and provide them to the programmer so they can better understand their requirements, a

programmer should be able to click on a link in the source code and to see or listen to

stakeholders’ interviews and code explanations recorded by a co-worker. At this point,

explanations could include increments and evolutions.

Another feature to be improved and considered by the multimedia tools are the

strategies of evolution analysis. Temporal strategies, for example, can portray the evolution

considering all the versions available for analysis. Given n versions v1, v2, ..., vn, (or a sizeable

sequential subset of them), this type of analysis takes into account everything that has happened

from version v1 to version vn taking in consideration all the intermediate versions. That would

help, for example, to analyze changes between different artifacts and business changes over the

software evolution cycle. In other words, the versioning of multimedia resources must be

aligned with the versioning of the software, allowing the filming or explanation of a business

requirement, for example, to be associated with the evolution of metrics in the code. In another

dimension, an issue to be evaluated would be the recording or filming of explanations about the

evolution of each software version, allowing the main changes and key decisions to be

documented.

Regarding software maintenance, the studies do not specifically or deeply address

the use of multimedia resources applied to software maintenance and comprehension. In our

research, we are proposing [5], implementing and considering closer coupling to the code, code

technical explanations and new ways to find specific excerpts from audios and videos.

It is worth mentioning that the multimedia resources can support various RE

activities, by recording interviews, meetings with stakeholders, user stories, and discussions

with customers. The management of this content can be done through own initiatives, or

through tools available on the market.

Finally, multimedia resources more closely linked to the code and strategies of

evolution analysis can help answer two important questions: (1) Where do I see my business in

the code? (2) What points have evolved in the code in line with the evolution of my business?

 59

The answer to these questions can help increasing location accuracy of the code to be evolved

and changed, increasing the effectiveness of maintenance, reducing costs and providing the

prospect of impact on the source code, based on the business evolution.

3.6. Threats do validity

Threats to validity may limit the ability to interpret and/or describe results from the

data obtained. Therefore, there is no way to disregard the following threats found in this study.

• Construct Validity: The search string and search secondary questions used may

not cover the new area that includes use of multimedia resources to develop or maintain

software. To mitigate this threat, a short string was developed, in order to increase sensitivity

and retrieve all interest documents, with terms that could be used in the area and several

synonyms. These terms were identified and refined with the help of control articles, using

studies that were of interest to the research, and false positives, in order to calibrate the search

string. In addition, the opinions of three researchers were considered.

• Internal Validity: (1) Data Extraction: Three researchers were responsible for

extracting and classifying data from each publication. Therefore, biases or problems in data

extraction may threaten the validity of data characterization. (2) Selection Bias: Initially, papers

were included or excluded according to the researchers’ own judgment. Consequently, some

studies may have been incorrectly categorized. To mitigate these threats (1 and 2), selection

and extraction reviews were made by all researchers involved and disagreements found were

resolved in a final vote. (3) Classification Bias: Some selected articles did not make clear the

methodology in detail, i.e., the research, evaluation or validation strategy. To mitigate this bias,

these articles were read completely by the three researchers, in order to find characteristics that

fitted a research type.

• External Validity: Although the researched scientific bases have thousands of

journals and millions of conferences, it cannot be stated that the results of this systematic

mapping covered the entire researches in software engineering and multimedia. However, this

work presented evidence of the main techniques used, identifying gaps to be explored, and

serving as a guide for future work in this line.

3.7. Conclusions

 60

In this paper, a mapping study has been conducted to characterize the set of primary

studies that address the use of multimedia resources in RE to support software comprehension

and maintenance. 47 primary studies were selected and analyzed, identifying trends in this area.

The number of publications fluctuates a lot, the oldest publication dates back to

1992. The year with the most publications was 2006, with 10 papers published. Finally, the

most studies cite shared understanding and specification quality as the main impact of media

incorporation in RE.

Among the main channels, conferences stood out with 33 (70.22%), while

periodicals reached 14 (29.78%). These results and the low number of controlled experiments

indicate that the area still needs to mature. Journals are strict and experiments allow performing

replications to consolidate and validate the tools, as well as to use more rigorous protocols,

which allow such replications.

A gap found in the articles was the parsimony in the description of the approaches,

being restricted to the description of some characteristics of functioning. The source code and

implementation details were not made available. This fact makes it difficult to verify the

effectiveness of the proposed solutions and the proliferation of techniques.

In addition, integration with the source code and the construction (programming)

phase needs to improve. The lack of closely integration with the code prevents effective

mapping of software entities (such as packages, classes, and methods in OOP) and their

attributes (metrics, properties, and features) to multimedia resources (audio and video) in a way

that they can be easily explored by software engineers and also allow to analyze the software

evolution with respect to a set of software maintenance related questions.

The results obtained in this work demonstrate that it is an area of interest for

researchers worldwide and can be explored more deeply for software maintenance, with closer

coupling to the code and new ways to locate specific excerpts of audios and videos. In this

sense, this study is relevant to the software companies, and universities, fostering the need for

interdisciplinary research between the areas of Multimedia and Software Engineering.

As future work, the research group that planned and executed this research will

publish the experimental evaluation of an open tool, under development, which can be coupled

with an integrated software development environment. The plug-in will focus on four main

aspects: recording requirements using multimedia resources; storage and maintenance of

multimedia requirements; direct link with code; and event-based playback of files.

The approach intends for multimedia resources to be integrated into the software

construction process, giving programmers different channels for representing information and

 61

the ability to ascertain the software evolution from the point of view of changing requirements

and the emergence of new ones.

3.8. References

1. SOMMERVILLE, I.: Engenharia de Software. (2011).

2. Emília, R., Teixeira, Z., Prado, G., Giglio, D.M.: Estudo do desenvolvimento de uma

ferramenta de Gerência de Requisitos para apoio aos processos de manutenção de software .

Cad. Estud. em Sist. Informação. 1, (2017).

3. Moody, D.L.: The “ Physics ” of Notations : Toward a Scientific Basis for Constructing

Visual Notations in Software Engineering. IEEE Trans. Softw. Eng. 35, 756–779 (2009).

4. Fredericks, M., Basili, V.R., Park, C.: Detecting Defects in Object Oriented Designs :

Using Reading Techniques to Increase Software Quality. ACM SIGPLAN Not. 34, 47–56

(1999).

5. Colaço Junior, Methanias; de Fatima Menezes, Maria; Corumba, Daniela; Mendonca,

Manoel and Santos, B.: Do Software Engineers Have Preferred Representational Systems? J.

Res. Pract. Inf. Technol. (2017).

6. L. Erlikh: Leveraging legacy system dollars for e-business. IT Prof. 2, 17–23 (2000).

7. Fjeldstad, R; Hamlen, W.: Application program maintenance - report to our respondents.

Tutor. Softw. Maint. 13–27 (1983).

8. Rabiser, R., Seyff, N., Grünbacher, P., Maiden, N.: Capturing multimedia requirements

descriptions with mobile RE tools. In: First International Workshop on Multimedia

Requirements Enineering, MeRE’06 (2006).

9. Creighton, O., Ott, M., Bruegge, B.: Software cinema - Video-based requirements

engineering. In: Proceedings of the IEEE International Conference on Requirements

Engineering. pp. 106–115 (2006).

10. Gall, M., Bruegge, B., Berenbach, B.: Towards a framework for real time requirements

elicitation. In: First International Workshop on Multimedia Requirements Enineering,

MeRE’06 (2006).

11. Colaço Júnior, M., Mendonça, M., Farias, M., Santos, P.H. dos.: OSS Developers

Context-Specific Preferred Representational Systems : A Initial Neurolinguistic Text Analysis

of the Apache Mailing List. In: 7th IEEE Working Conference on Mining Software

Repositories, Cape Town, SA, 2010, pp. 126-129, doi: 10.1109/MSR.2010.5463339.

 62

12. Kitchenham, B.: Procedures for performing systematic reviews. Keele University

Technical Report TR/SE-0401, UK, Keele Univ. 33, 28 (2004).

13. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic Mapping Studies in

Software Engineering. 12Th Int. Conf. Eval. Assess. Softw. Eng. 17, 10 (2008).

14. Punter, T., Ciolkowski, M., Freimut, B., John, I.: Conducting on-line surveys in software

engineering. Proc. - 2003 Int. Symp. Empir. Softw. Eng. ISESE 2003. 80–88 (2003).

15. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empir. Softw. Eng. 14, 131–164 (2009).

16. Sjøberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanović, A., Liborg,

N.K., Rekdal, A.C.: A survey of controlled experiments in software engineering. IEEE Trans.

Softw. Eng. 31, 733–753 (2005).

17. Fernandez, A., Abrahão, S., Insfran, E.: A systematic review on the effectiveness of web

usability evaluation methods. IET Semin. Dig. 2012, 52–56 (2012).

18. Novais, R.L., Torres, A., Mendes, T.S., Mendonça, M., Zazworka, N.: Software

evolution visualization: A systematic mapping study. Inf. Softw. Technol. 55, 1860–1883

(2013).

19. James, K.L., Randall, N.P., Haddaway, N.R.: A methodology for systematic mapping

in environmental sciences. Environ. Evid. 1–13 (2016).

20. Herlea Damian, D.E., Eberlein, A., Shaw, M.L.G., Gaines, B.R.: Using different

communication media in requirements negotiation. IEEE Softw. 17, 28–36 (2000).

21. Egyed, A., Grünbacher, P.: Automating requirements traceability: Beyond the record &

replay paradigm. In: Proceedings - ASE 2002: 17th IEEE International Conference on

Automated Software Engineering. pp. 163–171. Institute of Electrical and Electronics

Engineers Inc. (2002).

22. Brill, O., Schneider, K., Knauss, E.: Videos vs. use cases: Can videos capture more

requirements under time pressure? Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics). 6182 LNCS, 30–44 (2010).

23. Pham, R., Meyer, S., Kitzmann, I., Schneider, K.: Interactive multimedia storyboard for

facilitating stakeholder interaction: Supporting continuous improvement in IT-ecosystems. In:

Proceedings - 2012 8th International Conference on the Quality of Information and

Communications Technology, QUATIC 2012. pp. 120–124 (2012).

24. Richter, H., Gandhi, R., Liu, L., Lee, S.-W.: Incorporating multimedia source materials

into a traceability framework. In: First International Workshop on Multimedia Requirements

Enineering, MeRE’06 (2006).

 63

25. Witmer, K., Koss, R.B., Kasza, T.: A method for risk mitigation during the requirements

phase for multimedia software systems. In: ACM SIGDOC 2006 - Proceedings of the 24th

ACM International Conference on Design of Communication. pp. 19–22 (2006).

26. Gotel, O.C.Z., Morris, S.J.: Crafting the requirements record with the informed use of

media. In: First International Workshop on Multimedia Requirements Enineering, MeRE’06

(2006).

27. Bruegge, B., Stangl, H., Reiss, M.: An experiment in teaching innovation in software

engineering : Video presentation. In: Proceedings of the Conference on Object-Oriented

Programming Systems, Languages, and Applications, OOPSLA. pp. 807–809 (2008).

28. Menten, A., Scheibmayr, S., Klimpke, L.: Using audio and collaboration technologies

for distributed requirements elicitation and documentation. In: 2010 3rd International

Workshop on Managing Requirements Knowledge, MaRK’10. pp. 51–59 (2010).

29. Boulila, N., Hoffmann, A., Herrmann, A.: Using Storytelling to record requirements:

Elements for an effective requirements elicitation approach. In: 2011 4th Int. Workshop on

Multimedia and Enjoyable Requirements Eng. - Beyond Mere Descriptions and with More Fun

and Games, MERE’11 - Co-located with the 19th IEEE Int. Requirements Eng. Conf., RE’11.

pp. 9–16 (2011).

30. Russell, S., Creighton, O.: Virtual world tools for Requirements Engineering. In: 2011

4th Int. Workshop on Multimedia and Enjoyable Requirements Eng. - Beyond Mere

Descriptions and with More Fun and Games, MERE’11 - Co-located with the 19th IEEE Int.

Requirements Eng. Conf., RE’11. pp. 17–20 (2011).

31. Biscoglio, I., Marchetti, E.: An experiment of software quality evaluation in the audio-

visual media preservation context. In: da Silva A.R. da Silva A.R., M.R.J.B.M.A. (ed.)

Proceedings - 2014 9th International Conference on the Quality of Information and

Communications Technology, QUATIC 2014. pp. 118–123. Institute of Electrical and

Electronics Engineers Inc. (2014).

32. Karras, O., Kiesling, S., Schneider, K.: Supporting Requirements Elicitation by Tool-

Supported Video Analysis. In: Proceedings - 2016 IEEE 24th International Requirements

Engineering Conference, RE 2016. pp. 146–155. Institute of Electrical and Electronics

Engineers Inc. (2016).

33. Hollis, C., Bhowmik, T.: Automated support to capture verbal just-in-time requirements

in agile development: A practitioner view. In: Proceedings - 2017 IEEE 25th International

Requirements Engineering Conference Workshops, REW 2017. pp. 419–422. Institute of

Electrical and Electronics Engineers Inc. (2017).

 64

34. Schneider, K., Karras, O., Finger, A., Zibell, B.: Reframing societal discourse as

requirements negotiation: Vision statement. In: Proceedings - 2017 IEEE 25th International

Requirements Engineering Conference Workshops, REW 2017. pp. 188–193. Institute of

Electrical and Electronics Engineers Inc. (2017).

35. Mitrovic, A., Dimitrova, V., Lau, L., Weerasinghe, A., Mathews, M.: Supporting

constructive video-based learning: Requirements elicitation from exploratory studies. Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics).

10331 LNAI, 224–237 (2017).

36. Damian, D.E.H., Eberlein, A., Shaw, M.L.G., Gaines, B.R.: Effects of communication

media on group performance in requirements engineering. In: Proceedings of the IEEE

International Conference on Requirements Engineering. p. 191. IEEE, Los Alamitos, CA,

United States (2000).

37. Steele, A., Arnold, J., Cleland-huang, J.: Speech Detection of Stakeholders’ Non-

Functional Requirements Adam Steele, Jason Arnold, Jane Cleland-Huang. 0–7 (2006).

38. Carmichael, A., Newell, A.F., Morgan, M.: The efficacy of narrative video for raising

awareness in ICT designers about older users’ requirements. Interact. Comput. 19, 587–596

(2007).

39. Faro, A., Giordano, D.: From user’s mental models to information system’s

specification and vice versa by extended visual notation. In: IEEE International Professional

Communication Conference. pp. 44–48. IEEE, Piscataway, NJ, United States (1995).

40. Smith, J.D., Takahashi, K.: Multimedia architecture to support requirements analysis.

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics). 1045, 15–31 (1996).

41. Haumer, P., Heymans, P., Jarke, M., Pohl, K.: Bridging the gap between past and future

in RE: a scenario-based approach. In: Proceedings of the IEEE International Conference on

Requirements Engineering. pp. 66–73. IEEE, Los Alamitos, CA, United States (1999).

42. Jarke, M., Miatidis, M., Schlüter, M., Brandt, S.: Media-assisted product and process

traceability in supply chain engineering. In: R.H., S.J. (ed.) Proceedings of the Hawaii

International Conference on System Sciences. pp. 1405–1414 (2004).

43. Gartner, S., Schneider, K.: A method for prioritizing end-user feedback for requirements

engineering. In: 2012 5th International Workshop on Co-operative and Human Aspects of

Software Engineering, CHASE 2012 - Proceedings. pp. 47–49 (2012).

44. Karras, O., Unger-Windeler, C., Glauer, L., Schneider, K.: Video as a by-product of

digital prototyping: Capturing the dynamic aspect of interaction. In: Proceedings - 2017 IEEE

 65

25th International Requirements Engineering Conference Workshops, REW 2017. pp. 118–

124. Institute of Electrical and Electronics Engineers Inc. (2017).

45. Damian, D.: An empirical study of requirements engineering in distributed software

projects: Is distance negotiation more effective? In: Proceedings of the Asia-Pacific Software

Engineering Conference and International Computer Science Conference, APSEC and ICSC.

pp. 149–152 (2001).

46. Damian, D.E.H., Eberlein, A., Woodward, B., Shaw, M.L.G., Gaines, B.R.: An

empirical study of facilitation of computer-mediated distributed requirements negotiations.

Proc. IEEE Int. Conf. Requir. Eng. 128–135 (2001).

47. Egyed, A., Grünbacher, P.: Identifying requirements conflicts and cooperation: How

quality attributes and automated traceability can help. IEEE Softw. 21, 50–58 (2004).

48. Damian, D., Lanubile, F., Mallardo, T.: On the need for mixed media in distributed

requirements negotiations. IEEE Trans. Softw. Eng. 34, 116–132 (2008).

49. Bruegge, B., Creighton, O., Reiß, M., Stangl, H.: Applying a video-based requirements

engineering technique to an airport scenario. In: 2008 3rd International Workshop on

Multimedia and Enjoyable Requirements Engineering, MERE’08 (2008).

50. Khan, H., Ahmad, A., Alnuem, M.A.: Knowledge management: A Solution to

requirements understanding in global software engineering. Res. J. Appl. Sci. Eng. Technol. 4,

2087–2099 (2012).

51. Gotel, O.C.Z., Morris, S.J.: Macro-level traceability via media transformations. Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics).

5025 LNCS, 129–134 (2008).

52. Bruni, E., Ferrari, A., Seyff, N., Tolomei, G.: Automatic analysis of multimodal

requirements: A research preview. Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics). 7195 LNCS, 218–224 (2012).

53. Haumer, P.: Requirements elicitation and validation with real world scenes. IEEE Trans.

Softw. Eng. 24, 1036–1054 (1998).

54. Cybulski, J.L., Parker, C., Segrave, S.: Touch it, feel it and experience it: Developing

professional is skills using interview-style experiential simulations. In: ACIS 2006 Proceedings

- 17th Australasian Conference on Information Systems (2006).

55. Callele, D., Neufeld, E., Schneider, K.: Emotional requirements in video games. In:

Proceedings of the IEEE International Conference on Requirements Engineering. pp. 292–295

(2006).

 66

56. Kasurinen, J., Maglyas, A., Smolander, K.: Is requirements engineering useless in game

development? Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics). 8396 LNCS, 1–16 (2014).

57. Yuhui, S., Lin, L., Fei, P.: Megore: Multimedia enhanced goal-oriented requirement

elicitation experience in China. In: 2008 3rd International Workshop on Multimedia and

Enjoyable Requirements Engineering, MERE’08 (2008).

58. Haumer, P., Jarke, M., Pohl, K., Weidenhaupt, K.: Improving reviews of conceptual

models by extended traceability to captured system usage. Interact. Comput. 13, 77–95 (2000).

59. Primrose, M.C.: User experience grading via Kano categories. In: Proceedings of the

2010 18th IEEE International Requirements Engineering Conference, RE2010. pp. 331–336

(2010).

60. Egyed, A., Grünbacher, P.: Supporting software understanding with automated

requirements traceability. Int. J. Softw. Eng. Knowl. Eng. 15, 783–810 (2005).

61. Dospisil, J., Polgar, T.: Conceptual modelling in the hypermedia development process.

In: J.W., R. (ed.) Proceedings of the 1994 Computer Personnel Research Conference on

Reinventing IS: Managing Information Technology in Changing Organizations, SIGCPR 1994.

pp. 97–104. Association for Computing Machinery, Inc (1994).

62. Schneider, K., Bertoli, L.M.: Video Variants for CrowdRE: How to Create Linear

Videos, Vision Videos, and Interactive Videos. In: IEEE 27th International Requirements

Engineering Conference Workshops (REW). pp. 186–192. IEEE (2019).

63. Galster, M., Mitrovic, A., Gordon, M.: Toward Enhancing The Training of Software

Engineering Students and Professionals Using Active Video Watching. In: 40th International

Conference on Software Engineering: Software Engineering Education and Training

Authorized licensed. pp. 2018–2021. ACM, Gothenburg, Sweden (2018).

64. Gabriel Elías Chanchí, G., María Clara Gómez, A., Wilmar Yesid Campo, M.: Proposal

of an educational video game for the teaching-learning of the requirements classification in

software engineering . RISTI - Rev. Iber. Sist. e Tecnol. Inf. 2019, 1–14 (2019).

65. Alaboudi, A., Latoza, T.D.: Supporting software engineering research and education by

annotating public videos of developers programming. In: Proceedings - 2019 IEEE/ACM 12th

International Workshop on Cooperative and Human Aspects of Software Engineering, CHASE

2019. pp. 117–118 (2019).

66. Karras O. (2018) Software Professionals’ Attitudes Towards Video as a Medium in

Requirements Engineering. In: Kuhrmann M. et al. (eds) Product-Focused Software Process

 67

Improvement. PROFES 2018. Lecture Notes in Computer Science, vol 11271. Springer, Cham.

https://doi.org/10.1007/978-3-030-03673-7_11

67. Karras, O., Schneider, K., Fricker, S.A.: Representing software project vision by means

of video: A quality model for vision videos. J. Syst. Softw. 162, (2019).

68. Karras, O., Schneider, K.: Software Professionals are Not Directors : What Constitutes

a Good Video ? In: 1st International Workshop on Learning from other Disciplines for

Requirements Engineering. IEEE, Hannover, Germany (2018).

Uma vez apresentado o Mapeamento Sistemático, será explanado, no próximo

capítulo, o Estudo Experimental que avaliou o desempenho da Abordagem Multimídia para

Levantamento, Registro, Validação e Verificação dos requisitos de usuário, usando mídias

dinâmicas (áudio e vídeo) integradas ao código-fonte.

 68

4. AVALIAÇÃO EXPERIMENTAL

Neste capítulo, será apresentada a Avaliação Experimental realizada para avaliar a

abordagem multimídia, no que concerne ao aumento da efetividade na compreensão e

manutenção de software.

Construction and Evaluation of a Multimedia Approach to

Software Maintenance and Comprehension

Anne Caroline M. Santos1, Methanias Colaço Júnior2, Edna de C. Andrade3, Rafael Meneses

Santos4

1 2 Postgraduate Program in Computer Science - PROCC.

UFS – Federal University of Sergipe

São Cristóvão/SE – Brasil

2 3 4 Competitive Intelligence Research and Practice Group – NUPIC

Information Systems Departament - DSI UFS – Federal University of Sergipe

Itabaiana/SE – Brasil

anne.santos@dcomp.ufs.br, mjrse@hotmail.com, ednacarvalorsempre@gmail.com,

rafaelmsse@gmail.com

Abstract.

Context: In Software Engineering, we still use textual documentation in most cases to represent

software requirements. For some people, textual descriptions may be hard to understand, and

they may need help of other representations and visualizations, like diagrams, video, audio

conversations and so on. Goal: Propose and evaluate a multimedia approach to support the

comprehension and maintenance of software, as an alternative to traditional techniques.

Method: A controlled experiment was carried out in a real life setting to evaluate the efficiency

and effectiveness of the proposed multimedia approach. Results: Our proposed approach

showed best results in terms of effectiveness (average of correct answers for each task

implemented) and level of user satisfaction. In the first case, our approach achieves an average

of 4 correct answers per task, a number higher than the average of the case without using the

approach; and the second, with a 7% increase in the level of customer satisfaction. Regarding

the average coding time and the level of comprehension of the code, the multimedia approach

proved to be less efficient. In this case, our approach achieves an average of roughly 49 minutes

per task, a result higher than the average time without using the approach; and a decrease of

16% in the coefficient of code understanding. These results can be correlated with the

69

programming style and the experience time of the programmers. Conclusion: The multimedia

approach is more effective in terms of correct coding and level of user satisfaction, making it a

viable option for elicitation and registration of requirements. It is likely that, in a context with

beginning programmers, the results will be much more promising regarding our approach. This

is a new hypothesis to be tested. The project's most experienced programmers already know

enough about the source code and don't need to consult our tool frequently.

4.1. Introduction

Requirements Engineering (RE) is a fundamental activity in the software

development process. It is possible to organize the theoretical basis for the construction of any

system through this activity, supporting the initial phases of its life cycle [1]. One of the roles

of RE is to identify the needs and requirements of the users, so that the development team can

effectively implement the ideal solution [2].

Software Engineering and other activities have more frequently used textual

resources to catalog and register the artifacts produced during software development, although

there are other methods to enrich the documentation, such as images, audio and video [3]. The

resistance to adopt other means to store and present software documentation ends up being

detrimental to the construction of systems, given that, for some people, the textual resources

may not be sufficient to understand what needs to be developed. Psychology-based research

supports this thesis by stating that individuals, in specific contexts, may have preferential input

channels for understanding and learning subjects [4].

Given the above, it is necessary to consider, when preparing the software

documentation, that people have different ways of perceiving information. This makes all the

difference in communication and learning, since, depending on cognitive preferences, some

people can understand better listening an audio or watching video interview, than by reading a

document, and vice versa [5]. Thus, multimedia resources (video, images and audio) can be a

way of offering people different cognitive channels to observe and interpret software

documentation, improving interaction of interested parties and understanding of what needs to

be developed [6]. In other words, multimedia can bridge the gap between the origins,

terminology and education of stakeholders, as well as providing insights closer to reality [7].

In previous studies, it was found that when the requirements were persisted in

multimedia format, instead of textual notations, there was an increase of 80% in quality of the

requirements artifacts [8]. Although video recordings can prevent analyst's bias, these are still

70

more objective than relying on written minutes or even on the analyst's personal memory [9].

In summary, regardless of the number of cognitive channels or the order used to stimulate these

channels, the possibility of presenting software requirements through various ways allows an

increase in the understanding process, allowing developers to choose the preferred order for to

communicate and learn [4].

For all these aspects, the objective of this article is to present the result of the

construction and experimentation of a multimedia approach coupled with the source code, to

support the comprehension and maintenance of software, as an alternative to the traditional

techniques of requirements textual documentation. The scope of the approach was constructed

taking as a reference the gaps in the tools identified in a systematic mapping, whose objective

was to identify and characterize approaches and techniques that promoted the use of multimedia

resources in RE.

To automate the approach, a plug-in called CodeMedia was developed, integrated

with VisualStudio, which allows the direct linking of code snippets to multimedia resources

captured during software development, especially during RE activity. This plug-in was

evaluated in an experimental process, from the point of view of efficiency and effectiveness,

following the guidelines of [10], [11] and [12]. After performing the experimental evaluation,

we found that the multimedia approach obtained more promising results than the traditional

development approaches, especially with regard to the number of correct answers in developing

tasks, with an average of approximately 4 correct answers per task implemented; and customer

satisfaction with the final product, considering aspects such as usability, with a 7% increase in

the level of satisfaction.

Regarding the coding time, the time was longer when the approach was used, with

an average of approximately 49 minutes on task, while the average time, without the approach,

was approximately 34 minutes per task. This increase in coding time can be correlated to several

factors, among which, the time required for reproduction of multimedia content and the

programming style of the volunteers. The level of code understanding, surprisingly, also

decreased when the plug-in was used, making a 16% reduction in the coefficient of code

comprehension. It is possible to attribute this result to an incorrect interpretation of the question

regarding the level of comprehension of the code, the quality of the multimedia content attached

to the tasks or the experience of the developers.

In view of the aforementioned facts, the approach proved to be effective in terms

of reducing coding errors in the development of tasks and increasing customer satisfaction with

71

the final product. In this way, the multimedia approach presents itself as a promising alternative

to be combined with the traditional techniques of elicitation and documentation of software

requirements, mainly with new developers in the project. In addition, we confirm the results

found in the literature, which indicate the use of media as a real option for recording business

rules, but now with application in a real development environment and a greater proximity to

the code.

For a better understanding of how we obtained the results of the experiment, the

work was structured as follows. Section 2 describes the methodology adopted in this work. In

section 3, we describe and compare some related works. Section 4 presents the CodeMedia tool

and the approach used for its design. In section 5, we find the experimental evaluation. In

Section 6, the operation of the experiment is presented. Section 7 contains the results of the

experiment. In Section 8, threats to validity are presented. Finally, Section 9 presents the

conclusion and future works.

4.2. Methodology

This article is an experimental study that evaluated the performance of a Multimedia

Approach for eliciting, registering and reproducing the requirements of a system, using

multimedia resources integrated with the source code. In order to answer these questions, the

following metrics were used: (i) average time coding tasks, (ii) average hits for each

implemented task, (iii) level of code comprehension and (iv) level of customer satisfaction.

In addition to the experimental point of view, this work is also exploratory, since,

initially, a systematic mapping of the literature was published in (SANTOS, COLAÇO

JÚNIOR, & ANDRADE, 2020), with the goal of finding studies on the use of multimedia

resources in the software development and maintenance process, especially in Requirements

Engineering (RE). The analysis of these studies guided the construction of the multimedia

approach proposed in this work and demonstrated the absence of a rigorous experimental

methodology in the published studies. Our experiment consisted of planning, instrumentation,

industrial partnership, selection of participants, preparation of the environment, execution, data

collection and statistical validation of the results.

In carrying out the experiment, the participants underwent two types of treatment:

coding of real maintenance tasks with and without the support of the multimedia approach. The

experimental design can be seen in section 4.5.2.6. We apply three statistical tests: Shapiro-

72

Wilk, Wilcoxon and Test T, to check if there were statistically significant differences between

the approaches.

In summary, this work describes an experiment detailed in section 5, with 5 macro

steps: planning, experimentation, interviews, data collection and validation.

4.3. Related works

In one of the first steps of our study, we search for related works, through a

systematic mapping of the literature. In this context, 69 articles were found and 47 were selected

for the data extraction phase. We identified a wide variety of approaches, which promote the

use of multimedia resources in activities related to software engineering, especially in RE.

Within this subset of articles, considering the works directly related to our experiment and the

authors with the largest number of relevant publications in the area, we selected the related

works that served as base for the research area addressed in this study.

In [13], a new type of dedicated multimedia storyboard is presented. The product

focuses on direct interaction with stakeholders and employs various multimedia technologies

to document user requirements. The main objective is to allow interested parties to understand

the documentation without the need to have deep knowledge over any software notation. This

enables participants to interact and understand requirements. This objective can be divided into:

• Enable the engineer to formulate requirements in a way that the interested

party can understand, thus creating a common basis for discussion;

• Allow the interested party to express new requirements; and,

• Capture and document the expressed view as close as possible to the original

view.

The views are persisted in a special type of video, which is enhanced by multimedia

technologies. In a meeting, the engineer builds these videos in close collaboration with the

client: each action is portrayed as a multimedia file (video clip, photo, screen capture, hand

drawing, sketch and audio clip). The actions are concatenated in stages, in order to form a so-

called VisionVideo. In this way, requirements are documented in an expressive way and using

different types of representation. The multimedia requirements can be validated on site, as

VisionVideos are watched with the client, allowing him to express feedback and corrections.

[14] proposed to analyze the existing know-how to learn how to build a good video

for visual communication, identifying quality features of good videos, to obtain a quality model.

73

Software professionals can use this quality model as a guide for planning, filming, post-

processing and viewing a video. The goal is to encourage and train software professionals to

produce good videos at moderate costs, with sufficient quality to store the requirements of a

system.

In [15], the video is presented as an alternative to view the requirements and teach

social skills. All reviews (with and without the customer) are recorded to provide feedback.

Videos are automatically converted and made available on specific web pages, with restricted

access to the team. To view project requirements, they use a technique called Video-Based

Requirements Engineering.

[16] presented a framework that provides a real-time application to record

conversations and convert them into a text transcript. In order to capture the verbal discussion

and translate it into a text transcript, they used a real-time audio-to-text conversion software,

such as Dragon NaturallySpeaking Premium. Then, a text mining program can describe

additional custom words and requirements.

The approach presented here differs from the aforementioned works, especially

with regard to integration with the source code. Our multimedia approach proposes that

multimedia resources are integrated into the software construction process [11], giving

developers different channels of information representation and the ability to evaluate the

evolution of software, from the point of view of changes in requirements and the emergence of

new ones.

In summary, so far, no studies have been found that have proposed the presentation

of multimedia requirements in the way we are proposing, since, unlike the approaches we

found, our tool proposes the direct linking of multimedia resources to the source code, in order

to support developers in the reproduction, handling and traceability of requirements.

Multimedia resources more closely linked to code and software evolution analysis strategies

can help answer two important business questions: (1) Where do I see and where is my business

in the code? (2) What points have evolved in the code, aligned with the evolution of my

business? The answers to these questions can help increase the accuracy of the location of the

code to be evolved and changed, increasing maintenance effectiveness, reducing costs and

providing the prospect of impact on the source code, based on the evolution of the business.

4.4. CodeMedia Tool

74

In this section, we present an approach to gain efficiency and effectiveness in the

process of comprehension and maintaining software. The multimedia approach proposed in this

study adopts multimedia resources for recording, maintaining and presenting user requirements.

The scope of the approach was defined considering the results found in the

systematic mapping. A wide variety of solutions for recording, preserving, linking and

reviewing requirements using media have been used and tested, as an alternative to traditional

requirements elicitation techniques. However, the identified methods presented some

limitations, mainly with regard to integration with the source code.

The lack of tight integration with the code prevents a more effective mapping of

software entities (such as packages, classes and methods in OOP) and their attributes (metrics,

properties and resources) to dynamic medias (audio and video), in a way that can be easily

exploited by a developer. Thus, a solution was proposed that explored the limitations of the

approaches we found, promoting the integration of multimedia resources with the source code

and preserving the existing features, such as the registration, preservation, linking and

presentation of the multimedia requirements.

A plugin, called CodeMedia, was developed to implement the approach and work

together with VisualStudio. Although CodeMedia was chosen to implement the approach, this

does not prevent it from being implemented by another tool. In the next topics, the architecture

of the multimedia approach and the CodeMedia documentation will be presented.

4.4.1. Architecture

Software architecture is the structure (or structures) of the system, which is made

up of software elements, the externally visible properties of these elements and the relationships

between them; it is the abstraction of the system [17]. According to [18], architecture defines

what the system is in terms of computational components, the relationships between these

components, as well as the standards that guide its compositions and restrictions.

In addition to the choice of algorithms and data structures, the architecture involves:

decisions about the structures that will form the system, control, communication protocols,

synchronization and access to data, allocation of features to system elements, physical

distribution of elements, scalability, performance, selection of design alternatives and other

quality attributes [19].

75

Based on these principles, the architecture of our approach was developed based on

the model presented in Figure 1, which shows the main components and their relationships. The

model starts with the collection of requirements: any and all information about the system

operation (business rules, roles, relationships, input and output parameters, users’ stories,

behavior of variables, constants, procedures, classes and methods) can be persisted in dynamic

medias (audio and video).

In this context, CodeMedia is a multimedia communication channel, with the

purpose of helping to understand the code and business rules, without having to leave the

development environment.

The plugin was developed in C#, object-oriented programming language developed

by Microsoft as part of the .NET platform. As an object-oriented language, C# supports

encapsulation, inheritance and polymorphism. All variables and methods, including the Main

method, the application's entry point, are encapsulated in class definitions [20].

It is worth noting that the multimedia resources must be linked, at least, to the

requirements titles, which may be stored in a Requirements System and/or in a Business Process

Management System (BPMS) or not, as long as a system versioning and/or a database list them

with identification keys, which will also be stored in CodeMedia, for tracking requirements.

Finally, also through the extension, the programmer will be able to view and reproduce the

multimedia resources attached to the code.

Figure 1. Operating Architecture of the Multimedia Approach.

76

4.4.2. Features

In the next subsections, the features offered by the extension will be presented.

4.4.2.1. Attach Multimedia Resources to the Code

After registering the requirements in multimedia format, the generated documents

must be attached to the project. The files can be attached using two approaches: top-down,

associating the files with the project as a whole; and, bottom-up, attaching the file to a specific

piece of code in a class. In this sense, the extension allows the same resource to be associated

with more than one component and can be used at different points in the project. In addition,

the same component may have more than one associated file. Finally, the option to undo

associations is also available, allowing the multimedia documentation to be constantly updated.

Figures 2, 3 and 4 represent the sequence of steps necessary to add multimedia

documentation to the code. Initially, the developer must select the code snippet to which he

wants to attach the files and select the option “Add Documentation” (see Figure 2).

Figure 2. Menu for Adding Documentation.

When selecting the code and choosing the option “Add Documentation”, the

CodeMedia window will be displayed in the development environment (see Figure 3).

77

Figure 3. Adding Files.

To add multimedia resources, the developer must select the “Add File” option. In

this way, a new window will be displayed (see Figure 4), which allows the addition of new

files, using the “Add New” button. The analyst must choose the type of file to be uploaded:

Image, Video or Audio; select one or more files in the file explorer and complete the operation

by clicking on the “Save” button. At this point, it is important to note that for audio and video

files, the user can specify the part of the file that should be played. For example, if an audio has

10 minutes, the user can define the start time and the end time, with only the track of interest

being played.

78

Figure 4. File Selection Screen.

After selecting the files to be attached to the code, the developer must link the files

to the software requirements. At least one requirement, from the requirements engineering

process, must be informed. The necessary information about the requirement is: id - a unique

identifier that distinguishes it from the others on the list, which may come from a Requirements

System or BPM System; and the description - a brief description of the requirement, which can

also be copied from a system. The linking process can be seen in Figure 5.

79

Figure 5. Link File to Requirement.

To complete adding the documentation to the code, the user must click on the

“Save” button. In this case, a confirmation message will be displayed and an icon will be added

to the code snippet, to which the documentation has been attached (see Figure 6).

Figure 6. Multimedia Documentation.

80

4.4.2.2. Reproduction of Multimedia Resources

To view, reproduce, edit or remove the documentation, the user must click on the

icon corresponding to the multimedia content. When doing this, a window will be displayed

with the files linked to that code snippet, which can be selected and viewed, as shown in Figure

7. The viewing mode will vary depending on the format of the attached file. For audio and video

files, the user will be able to play the content, similar to a traditional video player; for images

and textual documents, the file will be displayed in a new window.

Figure 7. Reproduction and Visualization of Multimedia Resources.

4.4.2.3. Storage and Maintenance of Multimedia Requirements

The data generated by the extension is stored in two formats: JSON (JavaScript

Object Notation) and CDOC (DigiDoc Crypted Document).

Files with the .cdoc extension store an object called “Documentations”, which is an

array of objects. Each object is composed of 2 other objects, called “Code” and “DataArchives”.

The “Code” represents the section of the source code where the documentation was added. It

has three keys: “StartPosition” - contains the initial position of the code; “FinalPosition” -

contains the final position of the code; and the “Text” - contains the textual description of the

source code.

81

 The “DataFile” object is an array of objects with information from the files that

have been attached to the code. It consists of two elements: “FileName” - the name and

extension of the file; and the “IdPart” - which contains the identifier of the specific segment of

the multimedia file attached to the source code. Through “IdPart” it is possible to retrieve the

information that is saved in files with the extension .json.

Files with the extension .json store three objects: “FileName” - contains the name

and extension of the multimedia file; "FileType" - contains the type of the multimedia file

(video, audio and image); and, “Snippets” - stores the attributes of the multimedia file.

The “Snippets” object holds the following information: “Id” - contains a unique

segment identifier; "Start" - contains the starting point of the multimedia file playback; “End”

- contains the stop point for the playback of the multimedia file; "TotalTime" - contains the

original duration of the multimedia file; "Date" - contains the date that this section was created;

and finally, “Requirements” - contains an array of objects that identifies the requirements

related to the specified stretch. The requirements are identified by the attributes "Id" and

"Description".

When the multimedia file is an image type, the attributes “Start”, “End” and

“TotalTime” will have a null value.

4.4.2.4. Folder Structure

The files used by the extension are stored in a folder within the project itself. Each

project using the extension will have a folder, in the same directory as the solution, which will

be created and managed by the plugin itself. The project directory, with the CodeMedia folder,

can be viewed in Figure 8.

Figure 8. Folder Structure.

82

As persistence parameters, the following information is considered: project

identifier; class identifier; file path; media type; description; start and end line of the mark (for

code snippets), and the start and end time (capture the specific audio or video track, which

should be considered for playback). The parameters may vary depending on the association

approach chosen by the analysis team, responsible for feeding the extension with multimedia

resources.

With the CodeMedia extension properly presented, the experimental evaluation of

the multimedia approach to gain efficiency and effectiveness in the process of comprehension

and maintaining the software will be explained in the next chapter.

4.5. Experimental Evaluation

In this section, we will describe the method used to evaluate the multimedia

approach proposed in this work, with regard to efficiency gains (when the task is performed in

the best possible way, with the least waste of time, effort and resources) and effectiveness (when

the task is performed in order to achieve the desired or expected result). The experimental

process adopted in this study is based on the guidelines of [10], [11] and [12], considering the

necessary adaptations, imposed by pandemic caused by Covid 19 - coronavirus. The next

sections will focus on the definition and planning of the experiment, execution and presentation

of the experimental results obtained.

4.5.1. Goal Definition

This work aimed to propose and analyze a multimedia approach, to support

comprehension and maintenance of software, as an alternative to the traditional techniques of

requirements documentation, evaluating whether the use of the CodeMedia plug-in can

increases comprehension of source code.

This objective was formalized using the GQM (Goal, Question-Metric) model

proposed by [21] and presented by [22]: to analyze a multimedia approach for comprehension

and maintaining software, using the plugin CodeMedia, with the purpose of evaluating,

regarding the increase of effectiveness in the comprehension and maintenance of software, from

the point of view of programmers, in the context of a private information technology company,

which develops and maintains software for Public Management.

83

4.5.2. Planning

In this section, the experimental design will be detailed.

4.5.2.1. Context Selection

The experiment targeted programmers from a private Information Technology

company, located in the state of Sergipe, and specialized in the development and maintenance

of software for Public Administration.

4.5.2.2. Hypothesis Formulation

The following research questions were elaborated:

• RQ1 - Can the use of the multimedia approach, using the CodeMedia

plugin, reduce programmers' coding time in the software maintenance

process?

• RQ2 - Can the use of the multimedia approach, using the CodeMedia

plugin, reduce code errors in software maintenance?

• RQ3 - Can the use of the multimedia approach, using the CodeMedia

plugin, increase the level of software comprehension by programmers in the

software maintenance process?

• RQ4 - Can the use of the multimedia approach, using the CodeMedia

plugin, increase the level of customer satisfaction with the developed

solution, from the point of view of usability of the task delivered?

In order to assess such issues, the following metrics were used: average time for

coding tasks; average of correct answers for each implemented task; level of comprehension of

software; and level of customer satisfaction.

Thus, for the first research question listed, the hypothesis that was tested and its

respective alternative hypothesis were:

Hypothesis 1

• Null hypothesis H0: Coding for software maintenance, with and without the

use of the multimedia approach, has the same efficiency.

μ(timeCodingWithMultimediaApproach) =

μ(timeCodingWithoutMultimediaApproach).  

84

• Alternative hypothesis H1: Coding for software maintenance, using the

multimedia approach, is more efficient than coding performed without using

the approach. μ(timeCodingWithMultimediaApproach) <

μ(timeCodingWithoutMultimediaApproach).  

For the second research question listed, the hypothesis that was tested and its

respective alternative hypothesis were:

Hypothesis 2

• Null hypothesis H0: Coding for software maintenance, with and without the

use of the multimedia approach, has the same effectiveness.

μ(averageHitsCodingWithMultimediaApproach) =

μ(averageHitsCodingWithoutMultimediaApproach).

• Alternative hypothesis H1: Coding for software maintenance, using the

multimedia approach, is more effective than coding performed without

using the approach. μ(averageHitsCodingWithMultimediaApproach) >

μ(averageHitsCodingWithoutMultimedia Approach).

For the third research question listed, the hypothesis that was tested and its

respective alternative hypothesis were:

Hypothesis 3

• Null hypothesis H0: The level of software comprehension of the developers

and the use of the multimedia approach are not correlated.

• r = 0

• Alternative hypothesis H1: The level of software comprehension of the

developers and the use of the multimedia approach have a correlation.

• r ≠ 0

For the fourth research question listed, the hypothesis that was tested and its

respective alternative hypothesis were:

Hypothesis 4

• Null hypothesis H0: The level of customer satisfaction with the delivered

solution is not correlated with the use of the multimedia approach.

• r = 0

85

• Alternative hypothesis H1: The level of customer satisfaction with the

delivered solution is correlated with the use of the multimedia approach.

• r ≠ 0

It is important to emphasize that the null hypotheses (H0) are the hypotheses that

were intended to be refuted and the alternative hypotheses (H1) are those that, within the context

of the experiment, would not be rejected.

4.5.2.3. Variables Selection

In order to investigate the phenomenon in question, we considered the following

variable:

• Dependent Variables: maintenance time with and without the adoption of

the multimedia approach; level of comprehension of the code (grade given

by programmers for tasks performed with and without using the approach);

average of correct answers for each completed task; and level of customer

satisfaction (grade given by the customer to tasks implemented with and

without using the approach);

• Independent Variables: the object of the experiment (in this particular

case, the multimedia approach defined in this work for comprehension and

maintaining the software, using the CodeMedia plug-in); the activities that

were developed and their complexities, described in Section 4.5.2.4; the

quality of the multimedia content attached to the tasks, containing the task

specification; and the professional experience of the participants.

4.5.2.4. Description of Tasks in the Experiment

The tasks were grouped into 4 different lists (see Table 1). The groups were built

in order to facilitate segmentation and visualization of the tasks that would be made with and

without the support of the multimedia approach.

Table 1. Software Maintenance Tasks.

ID Description List Media Type Content Type Module

1 Allow printing financial files

in the employee module.

1 Audio Audio

Requirements,

Business Rule,

Human

Resources

86

Implementation

details.

2 Link to the section on the

Asset Transfer Screen.

1 Audio Audio

Requirements,

Business Rule,

Implementation

details.

Patrimony

3 Create Accountability Tab on

the Agreement Screen.

1 Video Video

Requirements,

Business Rule,

Implementation

details.

Contracts and

Agreements

4 Indicate on the Expense

Request screen whether or

not it will reserve Budget

Balance.

1 Video Video

Requirements,

Business Rule,

Implementation

details.

Bidding

5 Visual and functional

adjustments in the Group

Launch Registration Screen.

2 No

multimedia

content was

attached.

No multimedia

content was

attached.

Human

Resources

6 Create Summary Report by

Type of Payroll in the Human

Resources module.

2 No

multimedia

content was

attached.

No multimedia

content was

attached.

Human

Resources

7 Correct inconsistency in the

Clearance Screen. The printer

button is not working.

2 No

multimedia

content was

attached.

No multimedia

content was

attached.

Human

Resources

8 Add Legal Basis filter in the

Annual Statement of

Commitments.

2 No

multimedia

content was

attached.

No multimedia

content was

attached.

Accounting

9 In the Online City, change the

way the name of the entity is

displayed.

3 No

multimedia

content was

attached.

No multimedia

content was

attached.

Online City

87

10 Create modality filter in the

Report of Minutes / Request

for Commitment.

3 No

multimedia

content was

attached.

No multimedia

content was

attached.

Bidding

11 Add filters: period, tax

amount range, and sale

amount range in the Property

Transfer Report.

3 No

multimedia

content was

attached.

No multimedia

content was

attached.

Tributes

12 Correct inconsistency after

generating the second bank

remittance for different

paying accounts.

3 No

multimedia

content was

attached.

No multimedia

content was

attached.

Human

Resources

13 Limit the term of COVID-19

legally based contracts to a

maximum of 6 months.

4 Audio Requirements,

Business Rule,

Implementation

Details.

Contracts and

Agreements

14 Include a lock for when the

server is going to launch

maternity leave, do not allow

more than 120 days to not be

deducted in the Social

Security Guide.

4 Audio Requirements,

Business Rule,

Implementation

Details.

Human

Resources

15 Inserting the invoice number

on the Summary of

Engagement screen.

4 Vídeo Requirements,

Business Rule,

Implementation

details.

Accounting

16 Create limiter in the overtime

event. When selecting the

Court of Auditors link

(overtime), a field should

appear to limit the maximum

overtime.

4 Audio Requirements,

Business Rule,

Implementation

Details.

Human

Resources

4.5.2.5. Selection of Participants and Objects

Once the hypotheses and variables to be analyzed were defined, the process of

selecting participants and objects began. Initially, aiming at a result that was as close as possible

to the day-to-day life of a programmer, it was decided to apply the experiment within a real

88

software maintenance context, with real problems and customers. Thus, programmers from a

software company in Sergipe were invited to participate in this experiment, representing the

population to carry out this study. The goal, despite the rare conveniences of access and

partnership with a company in the market, has always been sampling by quota, in which the

features of the population of interest are preserved.

A formal request was made to the company's board, questioning whether the

experiment could be applied. After a positive response, the developers were invited to

voluntarily participate in the experimental evaluation. From a total of 15 developers, 8 showed

interest in participating in the referred study, which were characterized, considering the

following aspects: age, gender, professional training, preferred learning mode (involving the

auditory, visual and kinesthetic systems), profession/position, area of expertise (development,

support and infrastructure), years of experience in the language used in the experiment,

experience in the number of systems already maintained and known technologies. The

tabulation of the results obtained with the characterization of the participants can be seen in the

graphs.

With regard to age, 75% of the sample was aged between 19 and 40 years. Only

25% of the sample was aged between 41 and 50 years. None of the volunteers was over 50

years old.

Figure 9. Age.

Regarding gender, there was unanimity, all volunteers declared themselves to be

male.

89

Figure 10. Gender.

With regard to academic training, 75% of the sample had a degree in higher

education. 25% had a technical course or specialization.

Figure 11. Academic Training

Participants were asked to indicate the order of preference, considering the

preferred learning mode to absorb and interpret information. Visual and Kinesthetic were tied

for first in order of preference of the programmers. Second, it appears visual; and third, the ear

canal.

Figure 12. Preferred Learning Mode.

90

Developers were also asked if they used any techniques for documenting software

requirements. 87.5% answered that they did not; only 12.5% cited the use of software tests and

comments to record and manage requirements.

Figure 13. Methods for Requirements Documentation.

Regarding the profession/position, 63% declared themselves as programmers,

while 37% called themselves as systems analysts. It is important to note that although there was

a discrepancy in the name of the positions, the participants perform the same functions within

the institution, where the experiment was applied.

Figure 14. Profession/Position.

Regarding the area of operation, 75% had only worked with development and 25%

had already worked in the areas of development, infrastructure and support.

91

Figure 15. Area of Operation.

With regard to years of experience in the language used in the experiment, 75% of

the volunteers had more than 10 years of experience. 25% had up to 3 years of experience.

Figure 16.Years of experience in the language used in the experiment.

Regarding the number of systems which they are responsible for maintaing, 50%

of the developers had already maintained between 6 to 10 systems; 25%, between 1 to 5; and,

25% had already maintained between 11 to 20 software or more.

92

Figure 17. Number of Systems.

Regarding the number of known technologies, the developers demonstrated to

know a wide variety of tools. In order of citation, follow the technologies mentioned by the

volunteers: C #, Java, PHP, Python, Ruby, Typescript, Swift, C ++, JavaScript, Delphi, vb.net,

Pascal, Scala, Lua, C and SQL.

4.5.2.6. Experimental Design

Taking as a reference the experimental design adopted by [23], the experiment was

designed in a paired context, in which each group evaluated both approaches: coding with and

without the support of the multimedia approach.

The experiment was performed in two days, with a daily duration of 4 hours, an

interval of 10 minutes, totaling a total of 8 hours and 20 minutes. Four lists with maintenance

tasks were used, totaling 16 tasks, comparable in terms of complexity.

Participants were divided into two groups which assessed both approaches. The

division was made randomly, in which each group was left with 4 participants. On the first day,

group 1 started the experiment, with option 1 followed by option 2. On the second day, group

2 continued the experimental process, starting with option 2 and ending with option 1. The

inversion of options considered tiredness and boredom not to favor one of the two treatments.

If one of these were always the last task, the participant's tiredness may influence the results.

The options were:

Option 1: Coding of list 1 tasks, with support of the multimedia approach, and, soon

after, coding of list 2 tasks, without the support of the approach; and,

93

Option 2: Coding of tasks in list 3, without the support of the multimedia approach

and, soon after, coding of tasks in list 4, with the aid of the approach.

It is important to note that, before the experiment was carried out, the participants

had to complete the characterization form. Then, a 30-minute training session was held to teach

volunteers how to use the CodeMedia plugin. This training was carried out by someone without

involvement in the research. Also, participants were not allowed to interact with each other

during the application of the experiment.

Before starting a task, programmers were instructed to move the corresponding card

to the “Doing” column. Then, the developer started the Activity timer, and the execution time

started to be counted. After the completion of each task, the programmers informed that they

had finished the task, stopped the timer and dragged the card to "In Validation" column. The

test team, through functional tests and code review, were always evaluating the tasks according

to the specification and requirements. Tasks which did not comply with the specification were

“Failed” and subsequently counted as errors. The tasks which were in accordance with the

specification were “Approved” and subsequently counted as hits. Tasks that were consistent

with the specification, but that had reservations about implementation, were “Approved with

remarks”.

To avoid errors in time count, in addition to the use of the stopwatch, a comparison

was made with the times recorded by Trello, checking the date and time of each movement

within the platform. With this verification, it was possible to monitor the time spent by each

volunteer in executing the task and compare it with the time recorded using the stopwatch.

As the experiment was applied in a remote context, a compilation of the original

Kanban method, proposed by [24], was used to manage the flow of software development tasks.

The use of this model allowed visualization of the workflow during the execution of the

experiment, with the creation of columns to illustrate where each task was in the workflow,

facilitating the monitoring and control of the tasks.

For each completed task, programmers had to answer a question to assess the level

of comprehension of the code. The time taken by the developers to answer the question was not

counted as programming time. The question can be viewed in

https://docs.google.com/forms/d/e/1FAIpQLSdvUkeZwWWZ30yN63J53F5qvwvQFX2TQa

A1u5pBy7pLNa6CZQ/viewform. The completed tasks were also submitted to the final

customer's evaluation. A questionnaire was used to assess the level of customer satisfaction

with the solutions delivered by the programmers, with and without the use of the approach. The

https://docs.google.com/forms/d/e/1FAIpQLSdvUkeZwWWZ30yN63J53F5qvwvQFX2TQaA1u5pBy7pLNa6CZQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSdvUkeZwWWZ30yN63J53F5qvwvQFX2TQaA1u5pBy7pLNa6CZQ/viewform

94

questionnaire was applied individually to each task made and can be viewed in

https://docs.google.com/forms/d/e/1FAIpQLScYjAjrqvl88N8A1IfV7O1UCzsql_fbpZ_uRAV

1sLA17tO2yg/viewform. At the end of the experiment, the programmers had to answer the

Questionnaire for Level of Comprehension of Software. Unlike the question on comprehension

code, this questionnaire was applied within a general context, considering all the tasks

performed. The questionnaire is available in

https://docs.google.com/forms/d/e/1FAIpQLSdF3iq7W_7bHGXkfIV0i3srTHMAKI4i6-

OBO83R7kmzO_kcrQ/viewform.

Finally, from the results that were collected, it was possible to assess whether the

experiment design could identify evidence of the use of the multimedia approach as a facilitator

in the process of comprehension and maintaining software.

4.5.2.7. Instrumentation

The instrumentation process took place, initially, with environment setting to carry

out the experiment remotely, considering the home office regime in which the company was

during the pandemic period.

The resources used were:

• Visual Studio (Community, Enterprise, Pro) versions 15.0 to 19.0:

Microsoft's integrated development environment for software development

specially dedicated to the .NET Framework and Visual Basic, C, C ++, C #

and F # languages;

• CodeMedia plugin: extension for Visual Studio, which allows the indexing

of multimedia files (audio, videos and images) to the code. The creation of

this extension was necessary to implement the approach proposed in this

work;

• Indexing of Multimedia Content to the code: The multimedia

documentation containing the specification of the task was attached to the

code through the CodeMedia extension;

• List of tasks listed in section 4.5.2.4;

• Trello: web-based collaboration tool that allows you to manage projects by

grouping tasks, also called cards;

https://docs.google.com/forms/d/e/1FAIpQLScYjAjrqvl88N8A1IfV7O1UCzsql_fbpZ_uRAV1sLA17tO2yg/viewform
https://docs.google.com/forms/d/e/1FAIpQLScYjAjrqvl88N8A1IfV7O1UCzsql_fbpZ_uRAV1sLA17tO2yg/viewform
https://docs.google.com/forms/d/e/1FAIpQLSdF3iq7W_7bHGXkfIV0i3srTHMAKI4i6-OBO83R7kmzO_kcrQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSdF3iq7W_7bHGXkfIV0i3srTHMAKI4i6-OBO83R7kmzO_kcrQ/viewform

95

• Power Up Activity: stopwatch integrated with Trello, which was used to

account for the time spent performing each task. In addition to the use of

this resource, a comparison was made with the times recorded by Trello, in

order to mitigate the threat of incorrect accounting of the time used to carry

out the tasks;

• Zoom: remote conferencing service that combines video conferencing,

online meetings, chat and mobile collaboration;

• Sample Characterization Form: a questionnaire was designed to define the

profile of the participants, considering the following aspects: age, gender,

professional training, preferred learning mode (auditory, visual and

kinesthetic), profession / position, area of activity (development, support

and infrastructure), years of experience in the language used in the

experiment, number of systems maintained and known technologies. The

form is available in

https://docs.google.com/forms/d/e/1FAIpQLSdJivfjvJQLlGv5iXiAUqvrH

u31B1mq_xSzHUGuCi8hIItWAw/formResponse;

• Question for Assessing the Level of Comprehension of the Code: a question

was prepared to assess the level of comprehension of the code by the

programmers, for each task performed. The question can be seen in

https://docs.google.com/forms/d/e/1FAIpQLSdvUkeZwWWZ30yN63J53

F5qvwvQFX2TQaA1u5pBy7pLNa6CZQ/viewform;

• Customer Satisfaction Level Assessment Questionnaire: a questionnaire

was created to assess the level of customer satisfaction with the solutions

delivered, considering usability. The form is available in

https://docs.google.com/forms/d/e/1FAIpQLScYjAjrqvl88N8A1IfV7O1U

Czsql_fbpZ_uRAV1sLA17tO2yg/viewform; and,

• Software Comprehension Level Assessment Questionnaire: a questionnaire

was developed to assess the level of comprehension of the participants when

using or not using the multimedia approach proposed in this study. The form

is available in

https://docs.google.com/forms/d/e/1FAIpQLSdJivfjvJQLlGv5iXiAUqvrHu31B1mq_xSzHUGuCi8hIItWAw/formResponse
https://docs.google.com/forms/d/e/1FAIpQLSdJivfjvJQLlGv5iXiAUqvrHu31B1mq_xSzHUGuCi8hIItWAw/formResponse
https://docs.google.com/forms/d/e/1FAIpQLSdvUkeZwWWZ30yN63J53F5qvwvQFX2TQaA1u5pBy7pLNa6CZQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSdvUkeZwWWZ30yN63J53F5qvwvQFX2TQaA1u5pBy7pLNa6CZQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLScYjAjrqvl88N8A1IfV7O1UCzsql_fbpZ_uRAV1sLA17tO2yg/viewform
https://docs.google.com/forms/d/e/1FAIpQLScYjAjrqvl88N8A1IfV7O1UCzsql_fbpZ_uRAV1sLA17tO2yg/viewform

96

https://docs.google.com/forms/d/e/1FAIpQLSdF3iq7W_7bHGXkfIV0i3sr

THMAKI4i6-OBO83R7kmzO_kcrQ/viewform.

The Software Comprehension Level and Customer Satisfaction Level questionnaires

were created using the TAM (Technology Acceptance Model) model, proposed in [25].

4.6. Experiment Steps

This section describes each step of the experiment.

4.6.1. Preparation

The following preparation steps were carried out for the execution of the

experiment:

1. Separation of tasks: We divided 16 tasks about real software maintenance

problems comparable in terms of complexity;

2. Preparation of multimedia content: The analysis sector prepared the task

specification from List 1 and 4, containing the software requirements linked

to the task, business rules and implementation details and the content was

persisted in multimedia content (audio or video). For tasks belonging to lists

2 and 3, the specification was presented in a traditional manner (through

textual documentation). For all tasks, a brief introduction was made to the

programmers to say what each task was about, as in a real work day. The

conversation was limited to what happens in everyday life, to avoid any

impact on the result of the experiment. The following is an example of

multimedia content attached to the tasks, which were made using the

CodeMedia extension:

https://drive.google.com/file/d/1qr63qhcyAzom0H_GIsgLGXxfo0oRthxj/

view?usp=sharing;

3. Accommodation of the participants: on a day and time previously

scheduled, the programmers were invited to participate in a call, through the

Zoom video conference tool, in which the guidelines of the experiment were

explained, however, without mentioning the central objective of the

experimental evaluation, which was the evaluation of the effectiveness of

the multimedia approach in the process of comprehension and maintaining

https://docs.google.com/forms/d/e/1FAIpQLSdF3iq7W_7bHGXkfIV0i3srTHMAKI4i6-OBO83R7kmzO_kcrQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSdF3iq7W_7bHGXkfIV0i3srTHMAKI4i6-OBO83R7kmzO_kcrQ/viewform
https://drive.google.com/file/d/1qr63qhcyAzom0H_GIsgLGXxfo0oRthxj/view?usp=sharing
https://drive.google.com/file/d/1qr63qhcyAzom0H_GIsgLGXxfo0oRthxj/view?usp=sharing

97

software. After this introduction, the sample characterization form was

made available to the participants, which also did not explain the final

objective of the experimental evaluation;

4. CodeMedia extension training: as explained earlier, the multimedia

approach proposed in this work was automated by the CodeMedia

extension, developed just for this purpose. In order to reduce the impact of

the extension in the experimental evaluation of the approach, it was decided

to conduct a plug-in training, lasting 30 minutes, for the programmers to

become familiar with the tool;

5. Group formation: the groups were defined according to the experimental

design presented in Section 4.5.2.6; and,

6. Introduction to Trello: after defining the groups, participants were invited

to join Trello, and to become members on the "Experiment" board. In this

board, they visualized the tasks that would be developed during the

experimental evaluation. The tasks were already divided into lists, as

specified in topic 4.5.2.4. The programmers were also instructed on how to

move the cards as they went about executing the tasks. It was not necessary

to carry out specific training to explain the use of Trello, because it is daily

used by developers.

4.6.2. Execution

After performing the steps already described, the experiment was started according

to the design presented in Section 4.5.2.6.

4.6.2.1. Data Collection

During the experiment, the programmers answered the question for each task

performed to assess the level of comprehension of the code. The final customer, in the role of

the product owner, answered the questionnaire on the level of customer satisfaction, also for

each task, considering usability aspects. The time taken by programmers to complete the code

comprehension question was not counted as programming time.

98

At the end of the experiment, the developers were subjected to some questions, in

which they had to answer the questionnaire to assess the level of software understanding, within

a general context, considering all the tasks performed. In addition, the time spent executing

each task, captured and stored using the Activity timer, as well as the approved and disapproved

tasks, were recorded in Trello, for later analysis and accounting.

The results of this experimental evaluation, obtained through the collected data and

their analysis and validation, will be presented, later, in the topic Results and Discussion.

4.6.3. Data Validation

For the experiment, a factor was considered - approach used to codify the tasks,

with and without the support of the CodeMedia plugin. In this context, the grades attributed by

the programmers to the comprehension of the code, grades attributed by the client to the tasks

delivered, the number of tasks performed correctly, together with the time spent to perform

each task, were collected through the use of questionnaires and tools time capture.

To assist in the analysis, interpretation and validation of the results, strength

analysis of the correlations and three types of statistical tests were used: Shapiro-Wilk,

Wilcoxon and Test T. The first verify that the collected data did not have a normal distribution.

In view of the aforementioned fact, the Wilcoxon non-parametric test was applied to compare

the time spent (in minutes) to perform the tasks and the average of correct answers (tasks

performed according to specification) considering the two scenarios, with and without the use

of the multimedia approach. The T test was used to assess the correlation hypotheses.

4.7. Results and Discussion

To answer the survey questions listed, the following dependent variables were

analyzed: time in minutes spent to perform each task; average of correct answers in the

execution of tasks; grade assigned by the programmer for comprehension the task code; and,

average of the grade attributed by the client to the tasks made available for use.

For the first research question listed (RQ1), the Shapiro-Wilk test was applied

to verify the normality of the data collected. Table 2 shows the time spent by each developer to

execute the tasks without the support of the multimedia approach. Time was counted in hours

and then converted into minutes. The sample can be seen in the table 2:

99

Table 2. Time spent to execute tasks without the support of the multimedia approach.

Task Group Time in

minutes

Time Use (2) or non-use

of the approach (1)

Create modality filter in the Report

of Minutes / Request for

Commitment.

1 39 00:39:00 1

Visual and functional adjustments to

the Group Launch Registration

Screen.

1 73 01:13:00 1

Correct inconsistency in the

Withdrawal Screen. The printer

button is not working.

1 20 00:20:00 1

Correct inconsistency after

generating the second bank

remittance for different paying

accounts.

1 65 01:05:00 1

Include Legal Basis filter in the

Annual Statement of Commitments.

1 10 00:10:00 1

Include filters: period, tax amount

range, and sale amount range in the

Property Transfer Report.

1 55 00:55:00 1

In the Human Resources module,

create Summary Report by Type of

Sheet.

1 92 01:32:00 1

In the City Online, change the way

the name of the entity is displayed.

1 9 00:09:00 1

Visual and functional adjustments to

the Group Launch Registration

Screen.

2 16 00:16:00 1

Correct inconsistency after

generating the second bank

remittance for different paying

accounts.

2 9 00:09:00 1

Include Legal Basis filter in the

Annual Statement of Commitments.

2 7 00:07:00 1

Include period filters, tax amount

range, and sale amount range in the

Property Transfer Report.

2 17 00:17:00 1

100

Correct inconsistency in the

Withdrawal Screen. The printer

button is not working.

2 30 00:30:00 1

Create modality filter in the Report

of Minutes / Request for

Commitment.

2 5 00:05:00 1

In the Municipality Online, change

the way the name of the entity is

displayed.

2 7 00:07:00 1

In the Human Resources module,

create Summary Report by Type of

Sheet.

2 92 01:32:00 1

After applying the Shapiro-Wilk test to sample 1, the values of p = 0.00614967, the

mean = 34.125000 and the median = 18.5 were obtained. As p <0.05, it is assumed that the data

in sample 1 is not normally distributed, and it is not possible to apply parametric tests.

After the non-normality of sample 1 was verified, the same statistical test was

applied to sample 2, which brings the time spent by each developer to execute the tasks with

the support of the multimedia approach. The sample can be seen in the table 3:

Table 3. Time spent to execute taks supported by the multimedia approach.

Task Group Time in

minutes

Time Use (2) or non-use of

the approach (1)

Create limiter in the overtime event.

When selecting the Court of Auditors

link (overtime), a field should appear to

limit the maximum overtime.

1 66 01:06:00 2

Allow printing financial files by

registering the server.

1 46 00:46:00 2

Indicate on the Expense Request screen

whether or not it will reserve Budget

Balance.

1 87 01:27:00 2

Include a lock for when the server is

going to launch maternity leave, do not

allow more than 120 days to not be

deducted in the Social Security Guide.

1 44 00:44:00 2

Create Accountability Tab on the

Agreement Screen.

1 62 01:02:00 2

101

Inserting the invoice number on the

Summary of Engagement screen.

1 30 00:30:00 2

On the Asset Transfer Screen, link only

to the sector.

1 30 00:30:00 2

Limit the term of COVID-19 legally

based contracts to a maximum of 6

months.

1 11 00:11:00 2

Allow printing financial files by

registering the server.

2 81 01:21:00 2

Create limiter in the overtime event.

When selecting the Court of Auditors

link (overtime), a field should appear to

limit the maximum overtime.

2 104 01:44:00 2

Include a lock for when the server is

going to launch maternity leave, do not

allow more than 120 days to not be

deducted in the Social Security Guide.

2 47 00:47:00 2

In the Patrimony Transfer Screen, link

only to the sector.

2 39 00:39:00 2

Indicate on the Expense Request screen

whether or not it will reserve Budget

balance.

2 14 00:14:00 2

Limit the term of COVID-19 legally

based contracts to a maximum of 6

months.

2 18 00:18:00 2

Inserting the invoice number on the

Summary of Engagement screen.

2 52 00:52:00 2

Create Accountability Tab on the

Agreement Screen.

2 58 00:58:00 2

After applying the Shapiro-Wilk test to sample 2, the values of p = 0.797524, the

mean = 49.312500 and the median = 46.5 were obtained. As p> 0.05, it is assumed that the data

in sample 2 is normally distributed. However, as normality failed when verified for sample 1,

normality was disregarded for both samples. In view of this scenario, in order to validate the

listed hypotheses, it was decided to use the non-parametric test, Wilcoxon.

Analyzing the results, it was found that when the multimedia approach was used,

the coding time was slightly longer compared to the time without using the approach. However,

through the application of the Wilcoxon statistical test, it was found that there was no statistical

102

significance to reject the hypothesis of equality between the two treatments. In other words, the

efficiencies with and without the approach are the same. The p-value is equal to 0.910631. This

means that the chance of error, rejecting the null hypothesis (H0), is very high: 0.9106

(91.06%). The higher the p value, the more it supports H0. Thus, H0 is not rejected. Therefore,

coding for software maintenance, with and without the use of the multimedia approach, has the

same efficiency.

Among the factors that may have contributed to the increase in time when the

approach was used, it is possible to mention the programming style presented by each

participant. Some had a more direct style, focusing on exactly what the task required, which

significantly reduced the coding time. While others carried out a deeper analysis of the task,

going beyond what the task need. This ended up generating code refactoring and, consequently,

increasing the task resolution time. At this point, it is worth highlighting one more advantage

of using multimedia in ES, that is, the audio or video explanation of the code may have

evidenced a technical debt, positively stimulating refactoring. Finally, another point that may

have influenced the longer time spent in solving tasks, when the CodeMedia plugin was used,

was the time needed to reproduce and understand the multimedia content attached to the code.

For the second research question listed (RQ2), the Shapiro-Wilk test was also

applied to verify the normality of the data samples. Sample 3 shows the average of correct

answers for each task implemented without the support of the multimedia approach. “Failed”

tasks received a score of zero; for “Approved” tasks, the average of the grades assigned by the

client was used (the average, for each task performed with and without the tool), for “Approved

with Disclaimers” tasks, the average of the grades assigned by the client was also used,

however, for each negative exception, one point was discounted from the general average.

Sample 3 can be seen in the table 4:

Table 4. Average hits for each task implemented without the multimedia approach support.

Task Group Validation

(Testing

Team)

Average

hits

Use (2) or

non-use of the

approach (1)

Average

customer

grade

Create modality filter in the

Report of Minutes / Request

for Commitment.

1 Approved 5 1 5

Visual and functional

adjustments to the Group

Launch Registration Screen.

1 Approved 5 1 5

103

Correct inconsistency in the

Clearance Screen. The

printer button is not

working.

1 Approved

with remarks

3,33 1 4,333333333

Correct inconsistency after

generating the second bank

remittance for different

paying accounts.

1 Approved

with remarks

4 1 5

Include Legal Basis filter in

the Annual Statement of

Commitments.

1 Approved 5 1 5

Include period filters, tax

amount range, and sale

amount range in the

Property Transfer Report.

1 Failed 0 1 Not sent for

customer

validation

In the Human Resources

module, create Summary

Report by Type of Sheet.

1 Approved

with remarks

4,16 1 4,166666667

In the Municipality Online,

change the way the name of

the entity is displayed.

1 Approved 5 1 5

Visual and functional

adjustments to the Group

Launch Registration Screen.

2 Failed 0 1 Not sent for

customer

validation

Correct inconsistency after

generating the second bank

remittance for different

paying accounts.

2 Approved 5 1 5

Include Legal Basis filter in

the Annual Statement of

Commitments.

2 Approved 5 1 5

Include period filters, tax

amount range, and sale

amount range in the

Property Transfer Report.

2 Approved

with remarks

3,66 1 4,666666667

Correct inconsistency in the

Clearance Screen. The

printer button is not

working.

2 Approved 5 1 5

104

Create modality filter in the

Report of Minutes / Request

for Commitment.

2 Approved 5 1 5

In the Municipality Online,

change the way the name of

the entity is displayed.

2 Approved 5 1 5

In the Human Resources

module, create Summary

Report by Type of Sheet.

Grupo 2 Approved

with remarks

2,5 1 4,5

After applying the Shapiro-Wilk test to sample 3, p = 0.000114744, mean =

3.915625 and median = 5 were obtained. As p <0.05, it is assumed that the data in sample 3 is

not normally distributed, and it is not possible to apply parametric tests.

After the non-normality of sample 3 was verified, the same statistical test was

applied to sample 4, which brings the average of correct answers for each task implemented

with the support of the multimedia approach. The sample can be seen in the table 5:

Table 5. Average hits for each task implemented with the multimedia approach support.

Task Group Validation

(Testing

Team)

Average

hits

Use (2) or

non-use of

the

approach

(1)

Average

customer

grade

Create limiter in the overtime

event. When selecting the Court

of Auditors link (overtime), a

field should appear to limit the

maximum overtime.

1 Failed 0 2 Not sent for

customer

validation

Allow printing financial files by

registering the server.

1 Approved 5 2 5

Indicate on the Expense

Request screen whether or not it

will reserve Budget balance

1 Approved 5 2 5

Include a lock for when the

server is going to launch

maternity leave, do not allow

more than 120 days to not be

1 Approved

with

remarks

4 2 5

105

deducted in the Social Security

Guide.

Create Accountability Tab on

the Agreement Screen.

1 Approved

with

remarks

3,66 2 4,666666667

Inserting the invoice number on

the Summary of Engagement

screen.

1 Approved 5 2 5

In the Patrimony Transfer

Screen, link only to the sector.

1 Approved

with

remarks

3,5 2 4,5

Limit the term of COVID-19

legally based contracts to a

maximum of 6 months.

1 Approved

with

remarks

4,66 2 4,666666667

Allow printing financial files by

registering the server.

2 Approved

with

remarks

3,5 2 4,5

Create limiter in the overtime

event. When selecting the Court

of Auditors link (overtime), a

field should appear to limit the

maximum overtime.

2 Approved

with

remarks

2 2 5

Include a lock for when the

server is going to launch

maternity leave, do not allow

more than 120 days to not be

deducted in the Social Security

Guide.

2 Approved

with

remarks

5 2 5

In the Patrimony Transfer

Screen, link only to the sector.

2 Approved

with

remarks

3,5 2 4,5

Indicate on the Expense

Request Screen whether or not

it will reserve Budget balance.

2 Approved 5 2 5

Limit the term of COVID-19

legally based contracts to a

maximum of 6 months.

2 Approved

with

remarks

5 2 5

106

Inserting the invoice number on

the Summary of Engagement

screen.

2 Approved 4,83 2 4,833333333

Create Accountability Tab on

the Agreement Screen.

2 Approved

with

remarks

3,83 2 4,833333333

After applying the Shapiro-Wilk test to sample 4, the values of p = 0.000800559,

the mean = 3.967500 and the median = 4.33 were obtained. As p < 0.05, it is assumed that the

data in sample 4 is not normally distributed. As normality was disapproved for samples 3 and

4, in order to validate the hypotheses listed for the second research question, it was decided to

use the non-parametric test, Wilcoxon.

Analyzing the results, it was possible to verify that when the multimedia approach

was used, the result was promising, that is, the average of correct answers per task was higher,

when compared to the average of correct answers without using the approach. However, by

applying the Wilcoxon statistical test, it was found that there was still no statistical significance

to reject the hypothesis of equality between the two treatments. That is, even with the

improvement in the average of correct answers, for programmers with the psychological profile

and with the level of experience of the evaluated, the efficacies with and without the approach

still need more replications of experiments like this one to find out their differences. The p-

value is equal to 0.570603. This means that the chance of error, rejecting the null hypothesis

(H0), is: 0.5706 (57.06%). The higher the p value, the more it supports H0. Thus, H0 is not

rejected.

For the third research question listed (RQ3), which addresses the correlation

between comprehension the code and the use of the tool, there was a low negative correlation

coefficient, according to responses to the qualitative questionnaire, of -0.16. That is,

surprisingly, when the tool was used, understanding, according to the programmers, fell by a

proportion of only 16%. However, despite 32 samples, that is, a number greater than 30, which

allows an approximation of the sample distribution by a normal distribution, the calculated T

value, with 30 degrees of freedom (n-2), was -0.88, above the value of the critical T, which, for

a significance level of 0.05, is -1.96. Thus, there is no statistical significance to reject the null

hypothesis (H0) that there is no correlation between comprehension the code and using the tool.

Among the factors that may have influenced this result, it is possible to mention:

the developers' familiarity with the code; the quality and assertiveness of the multimedia content

107

attached to the tasks; lack of understanding of the code comprehension question; and the fact

that most of the multimedia material attached to the tasks was persisted in an audio format. As

suggested in [4], the audios with explanations of the code can be interesting, to allow the

programmer to have help “on the fly” from his co-workers, previously recorded and available

in the code, however, this same reference points that the developers can have order of preference

of representation systems.

In this sense, as can be seen in Figure 12, most participants do not have the first or

the second hearing preference. This may have impacted the comprehension of the code and may

also have had a transitive effect on customer satisfaction, since well-executed tasks depend on

good understanding. In other experiments and also as a professional lesson learned, the

multimedia content must be created taking into account the proportions of the team's

preferences, which can generate even better results in favor of the multimedia documentation.

A programmer with kinesthetic preferences will prefer a video showing the operation of the

system to each line of code executed and, if possible, a scene using a prototype. Finally, the

tool may be more useful for beginning programmers.

For the fourth research question listed (RQ4), which addresses the correlation

between the use of the tool and customer satisfaction, there was a positive correlation

coefficient, according to responses to the qualitative questionnaire, of 0.07. That is, when the

tool was used, customer satisfaction, according to himself, rose by 7%. The calculated T value,

with 30 degrees of freedom (n-2), was 0.36, below the value of the critical T, which, for a

significance level of 0.05, is 1.96. Thus, although the result is promising, it has not yet been

possible to reject the null hypothesis that there is no correlation between the use of the tool and

customer satisfaction. Anyway, depending on the current context of fierce market dispute,

increasing customer satisfaction by 7% can be a competitive advantage.

At the end of the experiment, some participants expressed subjective opinions about

the experience. Some comments referred to the CodeMedia extension interface, giving

suggestions on how it could have its usability improved and how it would facilitate the process

of playing multimedia content. The developers suggested: creating a bookmark or shortcut to

list all points in the code that have multimedia documentation attached; unlink the constructor

extension from the class; making the extension interface more similar to the interface of music

players, especially with regard to the reproduction of the media attached to the code; and, allow

to hear more than one audio in sequence.

108

Although improvements were suggested in the extension interface, none of the

participants associated the difficulty in solving tasks with the usability of CodeMedia.

They also mentioned that the component used in the experiment is good for

situating the use of a certain part of the system and even how the implementations should be

made, but it only works in a context, where there are analysts responsible for the project, capable

of providing the necessary information. for implementation of tasks. Criticisms were also made

of the quality of the multimedia content attached to the tasks. Some participants complained

about the low volume of some audios that were attached.

The facts presented help to justify and corroborate the results obtained in the

experiment. It was noticeable, through the sample characterization questionnaire, that most of

the participants were experienced and had already maintained a considerable number of

systems, as can be seen in figures 16 and 17, respectively. It is likely that, if the experiment had

been applied with less experienced programmers, without much familiarity with the code, the

results would have been different and more favorable to the multimedia approach. In this

context, it is necessary to apply the experiment with different programmer profiles, to find out

how the multimedia approach behaves in different scenarios, and, thus, it is possible to make

more general predictions about the use of multimedia content in the process of comprehension

and maintenance of software.

4.8. Threats to Validity

For the present study, the following are evidenced:

4.8.1. Threats to Construction Validity

According to [26], the construction validity considers the relationships between

theory and observation, that is, if the treatment reflects the cause well and the result reflects the

effect well. The most common problems with this type of validity are: Design of the

Experiment, the incorrect definition of the theoretical basis or the experimental evaluation; and,

Human (or social) factors, participants can base their behavior on assumptions about the

hypothesis; the human being usually tries to look better than he is when he is being observed,

and researchers can design the experiment with the results they expect (bias).

109

To mitigate construction threats, with regard to methodological definition, the

experimental evaluation proposed in this work was developed following the guidelines

proposed by [10] [12] and [11]. The general objective was formalized using the GQM model

(Goal, Question-Metric), proposed by [21] and [22]. In order to establish the construction

validity, predictions were generated based on hypothesis construction, and these predictions

were tested to support the validity of the instrument.

With regard to human (or social) factors, the research hypotheses and objectives

were not presented to the participants. The experiment was applied in a controlled and

comfortable context for the developers, in order to avoid that they feel pressured. To reduce the

bias of the researchers' involvement with the research object, some activities that involved direct

contact with the programmers, such as training the tool and applying the experiment, were

carried out by an individual without involvement with the research.

4.8.2. Threats to Internal Validity

According to [26], internal validity defines whether the observed relationship

between treatment and the result is causal, and is not the result of the influence of another

uncontrolled or measured factor. According to [27], the most common threats to this type of

validity are: Instrumentation: the difference in results is the result of an incorrect measurement

or an inadequate instrument; Testing: the design allows participants to learn from their own

mistakes; it is related to the sequence of results collection versus the moment of the intervention,

for example; Maturation: subjects can become more capable or become demotivated over time;

Selection: the participants were not selected at random or the groups were not divided equally

in both quantitative and qualitative aspects.

To mitigate the threats found, the following practices were adopted: the participants

were randomly divided into two groups, in order to promote the miscegenation of the sample

and thus not favor any of the two treatments (coding with and without using the approach). The

tasks used during the experiment were selected so that they were comparable in terms of

complexity and coding time. The definition of the tasks that would be made using the

multimedia approach was also carried out at random. Each programmer executed 4 different

tasks, in order to prevent them from learning from their mistakes. The instrumentation used

during the experiment was tested and verified, in order to avoid unforeseen events that could

110

impact the results of the experiment. After application, the criteria were uniformly used for both

treatments.

4.8.3. Threats to External Validity

The external validity, according to [26], defines conditions that limit the ability to

generalize the results of an experiment to industrial practice. The most common threats to this

type of validity are: Participants: selecting volunteers who are unrelated or do not reflect the

behavior of the population; Experiment setup: perform the experiment in an environment very

different from the ideal, or adopt instruments that are far from reality.

To reduce these threats, the following measures were adopted: the experiment was

applied within a private software development company, with real questions and problems.

Participants were programmers who work daily with maintenance tasks, from correcting errors

to adapting pre-existing features. The cost of implementing this approach was also another point

analyzed during the experiment, in order to verify whether in a real context, the multimedia

approach would be sustainable for long periods.

Many of the strategies used to increase internal validity make the study more

restricted, which ends up decreasing its external validity and, consequently, reducing the

chances of application in a real environment. In view of the aforementioned fact, when planning

the methodology adopted in this study, it was decided to promote a balance between the two

validities. Finally, it is worth mentioning that the results are applicable for content production

with auditory majority and for programmers with experience similar to that of the programmers

who participated in the evaluation, who had, in their majority, an order of preference of the

representation systems of the type: Kinesthetic - Visual - Auditory. In other words, the

application of the same experiment with inexperienced programmers of first hearing preference

can produce much better results.

4.9. Conclusion and Future Works

Understanding the requirements of a product is not a simple task, as delivering to

the customer what he wants and needs is an activity that requires experience, attention and

effort, to ensure that these requirements are always complete, consistent, relevant and up to

date. To support this process, as it is an intensely human area, it is necessary to use increasingly

111

assertive and repeatable techniques, which explore the different cognitive channels of the

people involved, giving them the possibility to reproduce, interpret, understand and learn

information about the tasks to be automated, in a more natural and less costly way.

In this context, the present work presents important contributions to increase the

effectiveness in the process of comprehension and maintaining software, through the use of

multimedia resources to persist the user requirements. The multimedia approach proposed here

was automated by the CodeMedia plug-in, which enables the integration of multimedia

requirements into the source code, making an innovation for those who adopt this approach.

Tight integration with the code can allow multimedia tools to be used effectively to analyze and

understand the data produced during the evolution of the software. In addition to recording or

filming customer interviews and providing them to the programmer, so that the programmer

better understands the requirements, a programmer must have the facility to click on a link in

the source code and see or hear the stakeholder interviews and explanations code recorded by

co-workers who created the code. In this case, explanations can also include increments and

evolutions.

In the analysis of the results, with regard to development time and code

compression, the approach obtained indicators below expectations. These indexes may be

correlated to the quality of the multimedia content attached to the code, the programming style

of the developers, the lack of understanding of the question about comprehension the code, the

familiarity of the developers with the source code and / or the time for reproduction and

understanding multimedia content. Anyway, it was not possible to refute the hypothesis that

this approach interferes, positively or negatively, in the coding time and in the comprehension

of the code. Probably, especially in terms of efficiency, the numbers will be better in a context

with less experienced developers.

In addition, despite the need for more replications of the experiment for greater

statistical significance, the results related to effectiveness were promising. The average number

of correct answers per task was greater, compared to the average number of correct answers

without using the approach. From a business perspective, when the tool was used, customer

satisfaction rose by 7%. From a commercial point of view and considering a real software

maintenance context, increasing customer satisfaction by 7% can be a competitive advantage.

Finally, as future work, new implementations and experiments are being carried out

in order to find evidence that the use of the multimedia approach can decrease the time of

112

implementation and improve comprehension in different contexts, as well as corroborating

evidence of the reduction of errors in coding and increased customer satisfaction.

Declarations

Availability of data and materials

The questionnaires mentioned in this paper are available at

https://drive.google.com/drive/folders/1qcR8Fr2_7etoCZEqqzSQsMJVIrTV4Yg5?usp=sharin

g.

Competing interests

The authors declare that they have no competing interests.

Funding

The authors declare that there is no funding.

Authors' contributions

All these results presented here were evidenced and analyzed by the authors. In this paper, our

main contribution was an experiment that evaluates the feasibility of the Multimedia Approach,

automated by the CodeMedia plugin, to promote gains in efficiency and effectiveness in the

process of comprehension and maintaining software. All authors read and approved the final

manuscript.

Acknowledgements

Not applicable.

References

1. Calazans, A., Mariano, A.M.: A utilização da linguagem natural na especificação de

requisitos : um estudo por meio das equações estruturais. WER 2016 - 19o Workshop

em Engenharia de RequisitosAt: Quito, Ecuador. April, 2016.

2. Menten, A., Scheibmayr, S., Klimpke, L.: Using audio and collaboration technologies

for distributed requirements elicitation and documentation. In: 2010 3rd International

https://drive.google.com/drive/folders/1qcR8Fr2_7etoCZEqqzSQsMJVIrTV4Yg5?usp=sharing
https://drive.google.com/drive/folders/1qcR8Fr2_7etoCZEqqzSQsMJVIrTV4Yg5?usp=sharing

113

Workshop on Managing Requirements Knowledge, MaRK’10. pp. 51–59 (2010).

3. Bruni, E., Ferrari, A., Seyff, N., Tolomei, G.: Automatic analysis of multimodal

requirements: A research preview. Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics). 7195 LNCS, 218–224 (2012).

4. Colaço Júnior, M., Menezes, M. de F., Corumba, D., Mendonça, M.: Do Software

Engineers Have Preferred Representational Systems? J. Res. Pract. Inf. Technol. (2017).

5. Chen, H., Yin, C., Li, R., Rong, W., Xiong, Z., David, B.: Enhanced Learning Resource

Recommendation Based on Online Learning Style Model. in Tsinghua Science and

Technology, vol. 25, no. 3, pp. 348-356, June 2020, doi: 10.26599/TST.2019.9010014

6. Gartner, S., Schneider, K.: A method for prioritizing end-user feedback for requirements

engineering. In: 2012 5th International Workshop on Co-operative and Human Aspects

of Software Engineering, CHASE 2012 - Proceedings. pp. 47–49 (2012).

7. Creighton, O., Ott, M., Bruegge, B.: Software cinema - Video-based requirements

engineering. In: Proceedings of the IEEE International Conference on Requirements

Engineering. pp. 106–115 (2006).

8. Karras, O., Kiesling, S., Schneider, K.: Supporting Requirements Elicitation by Tool-

Supported Video Analysis. In: Proceedings - 2016 IEEE 24th International Requirements

Engineering Conference, RE 2016. pp. 146–155. Institute of Electrical and Electronics

Engineers Inc. (2016).

9. Haumer, P., Jarke, M., Pohl, K., Weidenhaupt, K.: Improving reviews of conceptual

models by extended traceability to captured system usage. Interact. Comput. 13, 77–95

(2000).

10. Basili, V.R.: The Role of Experimentation in Software Engineering: Past, Current, and

Future. In: Proceedings of IEEE 18th International Conference on Software Engineering.

pp. 442–449. IEEE, Berlin/Heidelberg (1996).

11. SANTOS, B. S. S; COLAÇO JÚNIOR, M; SOUZA, J.G.: A Initial Experimental

Evaluation of the NeuroMessenger: A Collaborative Tool to Improve the Empathy of

Text Interactions. In: Proceedings of the 15th International Conference on Information

Technology: New Generations. pp. 411–419. Springer International Publishing (2018).

12. Nogueira de Oliveira, Robert & Colaço Júnior, Methanias. (2018). Experimental

Analysis of Stemming on Jurisprudential Documents Retrieval. Information. 9. 28

(2018).

13. Pham, R., Meyer, S., Kitzmann, I., Schneider, K.: Interactive multimedia storyboard for

114

facilitating stakeholder interaction: Supporting continuous improvement in IT-

ecosystems. In: Proceedings - 2012 8th International Conference on the Quality of

Information and Communications Technology, QUATIC 2012. pp. 120–124 (2012).

14. Karras, O., Schneider, K.: Software Professionals are Not Directors : What Constitutes a

Good Video ? In: 1st International Workshop on Learning from other Disciplines for

Requirements Engineering. IEEE, Hannover, Germany (2018).

15. Bruegge, B., Stangl, H., Reiss, M.: An experiment in teaching innovation in software

engineering : Video presentation. In: Proceedings of the Conference on Object-Oriented

Programming Systems, Languages, and Applications, OOPSLA. pp. 807–809 (2008).

16. Hollis, C., Bhowmik, T.: Automated support to capture verbal just-in-time requirements

in agile development: A practitioner view. In: Proceedings - 2017 IEEE 25th

International Requirements Engineering Conference Workshops, REW 2017. pp. 419–

422. Institute of Electrical and Electronics Engineers Inc. (2017).

17. BASS, Len; CLEMENTS, Paul; KAZMAN, R.: Software architecture in practice.

Addison-Wesley Longman Publishing Co., Boston, MA, United states (2003).

18. Shaw, M., Garlan, D.: Software Architecture. In: Prentice Hall (ed.) Perspectives on an

Emerging Discipline (1996).

19. Shaw, M., Garlan, D.: An introduction to software architecture. Tech. Rep. (1994).

20. Vis, N.E.T.T.: Introdução à linguagem C# e ao .NET. Microsoft, Was (2020).

21. Weiss, D., Basili., V.R.: A Methodology for Collecting Valid Software Engineering

Data. IEEE Trans. Softw. Eng. 10, 728–738 (1984).

22. Solingen, R. Van, Berghout, E.: The Goal / Question / Metric Method : A Practical Guide

for Quality Improvement of Software Development. (1999).

23. Costa, J., Santos, I., Nascimento, A., Colaço Júnior, M.: Experimentação na Indústria

para Aumento da Efetividade da Construção de Procedimentos ETL em um Ambiente

de Business Intelligence Alternative Title : Experimentation at Industrial Setting to

Improve the Effectiveness of the ETL Procedures Implementation. In: Simpósio

Brasileiro de Sistemas de Informação. pp. 459–466. , Porto Alegre (2015).

24. Anderson, D.J.: Kanban: Successful Evolutionary Change for Your Technology

Business. Blue Hole Press (2010).

25. Fred, D., Davis, B.F.D.: Perceived Usefulness , Perceived Ease of Use , and User

Acceptance of Information Technology. MIS Q. 13, 319–340 (1989).

26. Travassos, G H; Gurov, D; Amaral, E.A.G.: Introdução à Engenharia de Software

115

Experimental. UFRJ, Rio de Janeiro (2002).

27. Wainer, J.: Métodos de pesquisa quantitativa e qualitativa para a ciência da computação.

In: Jornada de Atualização em Informática. pp. 221–262 (2007).

Realizada a Avaliação Experimental, serão apresentadas, no próximo capítulo, as

contribuições, conclusões e dificuldades obtidas, bem como os possíveis trabalhos futuros.

116

5. CONCLUSÃO

A compreensão de software é uma das atividades mais complexas do ciclo de

desenvolvimento de sistemas, pois ela envolve diferentes pessoas, com diferentes pontos de

vista e diferentes formas de expressão. Definir o escopo de um software com base nessas

impressões se torna uma tarefa extremamente difícil e sujeita a falhas, dada a subjetividade

envolvida.

Para mitigar esse risco e evitar a construção de softwares ineficientes, que não

atendem às necessidades de seus clientes, a Engenharia de Software vem se utilizando de

recursos textuais para registrar e enriquecer a documentação de software, a fim de dar um maior

esclarecimento e visibilidade às características do sistema. Todavia, as documentações textuais

têm se mostrado insuficientes, principalmente, dentro de um contexto no qual as descrições

escritas, para algumas pessoas, podem não ser suficientes para o entendimento do que precisa

ser desenvolvido, prejudicando a compreensão e a execução de demandas. Tal como explicitado

anteriormente (vide capítulo 1), indivíduos, em contextos específicos, podem ter canais

preferenciais para absorver e interpretar a informação.

Dado este cenário, este trabalho se propôs a responder as seguintes questões de

pesquisa (vide Seção 1.1):

• RQ1 - A utilização da abordagem multimídia, automatizada pelo uso do plug-in

CodeMedia, pode reduzir o tempo de codificação dos programadores no processo de

manutenção de software?

• RQ2 - A utilização da abordagem multimídia, automatizada pelo uso do plug-in

CodeMedia, pode reduzir erros na codificação para manutenção de software?

• RQ3 - A utilização da abordagem multimídia, automatizada pelo uso do plug-in

CodeMedia, pode aumentar o nível de compreensão de software pelos programadores no

processo de manutenção de software?

• RQ4 - A utilização da abordagem multimídia, automatizada pelo uso do plug-in

CodeMedia, pode aumentar o nível de satisfação do cliente com a solução desenvolvida, do

ponto de vista de usabilidade da tarefa entregue?

Para respondê-las, foi construída uma abordagem multimídia, automatizada pelo

plugin CodeMedia, para apoiar o processo de compreensão e manutenção de software, bem

117

como foi realizada uma avaliação experimental para verificar a viabilidade da abordagem, do

ponto de vista de eficiência e eficácia.

Para primeira questão de pesquisa, a partir do experimento feito (vide capítulo 4),

constatou-se que quando a abordagem multimídia foi utilizada, o tempo de codificação foi um

pouco maior, se comparado ao tempo sem o uso da abordagem. Alguns fatores podem explicar

esse resultado, dentre eles: o estilo de programação apresentado por cada participante e o tempo

necessário para reprodução e entendimento do conteúdo multimídia anexado ao código.

Para segunda questão de pesquisa, foi possível constatar que quando a abordagem

multimídia foi utilizada, a média de acertos por tarefa foi maior, se comparada à média de

acertos sem o uso da abordagem. Para a terceira questão de pesquisa, houve um coeficiente de

correlação negativo baixo, segundo respostas do questionário qualitativo, de -0,16. Ou seja,

quando a ferramenta foi usada, a compreensão, segundo os programadores, caiu numa

proporção de apenas 16%. Dentre os fatores que podem ter influenciado esse resultado, é

possível citar: a familiaridade dos desenvolvedores com o código; a qualidade e assertividade

do conteúdo multimídia anexado às demandas; a falta de entendimento da pergunta de

compreensão do código; e o fato da maior parte do material multimídia anexado às demandas

ter sido persistido em formado de áudio. Já para quarta questão de pesquisa, evidenciou-se que

quando a ferramenta foi usada, a satisfação do cliente, segundo ele próprio, subiu numa

proporção de 7%.

Finalmente, é importante salientar que os principais desafios enfrentados neste

trabalho foram: aquisição de voluntários para realização da avaliação experimental; aplicação

do experimento, considerando que ele foi aplicado em um contexto real de desenvolvimento de

software; e a adequação do experimento às restrições impostas pela pandemia ocasionada pela

Covid-19. Apesar das evidências encontradas e das questões de pesquisas terem sido

respondidas, estas não foram as únicas contribuições deste trabalho, sendo as demais

apresentadas na próxima seção.

5.1. Resultados e Contribuições

Dando prosseguimento ao tópico anterior, a principal contribuição deste estudo

consiste na condução de um processo experimental para avaliar o uso da abordagem multimídia

para ganho de eficiência e eficácia no processo de compreensão e manutenção de software. O

118

processo experimental adotado neste estudo seguiu as diretrizes de (BASILI, 1996) (SANTOS,

COLAÇO JÚNIOR, & SOUZA, 2018) e (OLIVEIRA & COLAÇO JÚNIOR, 2018),

considerando as adaptações necessárias, impostas pela pandemia causada pela Covid 19 –

coronavírus. Dada a sua natureza sistêmica, tais diretrizes facilitam a condução, replicação e

empacotamento de experimentos, mitigando possíveis ameaças à validade da pesquisa, além de

fornecer evidências para tomada de decisões mais claras e objetivas. Além disso, destacam-se

as seguintes contribuições deste trabalho:

• Mapeamento sistemático das abordagens que promovem o uso de

multimídia para apoiar o processo de compreensão e manutenção de

software. Seus resultados foram submetidos e publicados pelo Journal of

Software: Evolution and Process;

• Experimento que avalia a viabilidade da Abordagem Multimídia,

automatizada pelo plugin CodeMedia, para promover ganho de eficiência e

eficácia no processo de compreensão e manutenção de software. Ressalta-

se que a Avaliação Experimental, assim como seus resultados, foi submetida

ao Journal of the Brasilian Computer Society (JBCS);

• Plugin CodeMedia. Foi desenvolvido um plugin, integrado ao VisualStudio,

para automatizar a Abordagem Multimídia proposta neste trabalho. Esta

ferramenta poderá eventualmente ser utilizada em contextos reais, para

apoiar o desenvolvimento e manutenção de software;

• Geração de evidências experimentais sobre o uso de mídias dinâmicas

(áudio e vídeo) na área de compreensão e manutenção de software. Os

resultados encontrados no experimento foram promissores (vide capítulo 4).

Foi constatado que quando a Abordagem Multimídia foi utilizada, houve

aumento da satisfação do cliente com o produto final, bem como houve

aumento do número de acertos na codificação de tarefas.

Apesar dos resultados promissores, ainda são necessárias mais averiguações acerca

do fenômeno estudado e do uso da Abordagem Multimídia como facilitadora no processo de

compreensão e manutenção de software. Na próxima seção, serão apresentados possíveis

desdobramentos relacionados a esta pesquisa.

119

5.2. Trabalhos Futuros

Devido à necessidade de maiores evidências empíricas do uso da abordagem

multimídia para ganho de eficiência e eficácia no processo de compreensão e manutenção de

software, destacam-se os possíveis trabalhos futuros:

• Realização de novas avaliações experimentais da Abordagem Multimídia;

• Replicação dos experimentos realizados (vide Capítulo 4), em contextos

diferentes, com programadores com menos experiência na linguagem

utilizada no experimento;

• Melhoria do plugin CodeMedia, considerando aspectos de usabilidade,

estrutura e armazenamento de arquivos.

120

REFERÊNCIAS

BASILI, V. R. The Role of Experimentation in Software Engineering: Past, Current, and

Future. Proceedings of IEEE 18th International Conference on Software Engineering.

Anais...Berlin/Heidelberg: IEEE, 1996.

BOULILA, N.; HOFFMANN, A.; HERRMANN, A. Using Storytelling to record

requirements: Elements for an effective requirements elicitation approach. 2011 4th Int.

Workshop on Multimedia and Enjoyable Requirements Eng. - Beyond Mere Descriptions and

with More Fun and Games, MERE’11 - Co-located with the 19th IEEE Int. Requirements Eng.

Conf., RE’11. Anais...2011. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

80555123774&doi=10.1109%2FMERE.2011.6043945&partnerID=40&md5=8e798e4fe0c73

d881342b472c60feeed>.

BRILL, O.; SCHNEIDER, K.; KNAUSS, E. Videos vs. use cases: Can videos capture more

requirements under time pressure? Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6182 LNCS,

p. 30–44, 2010.

BRUNI, E. et al. Automatic analysis of multimodal requirements: A research preview.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), v. 7195 LNCS, p. 218–224, 2012.

CALAZANS, A.; MARIANO, A. M. A utilização da linguagem natural na especificação de

requisitos : um estudo por meio das equações estruturais. WER 2016 - 19o Workshop em

Engenharia de RequisitosAt: Quito, Ecuador. April, 2016.

CHANGBAI, C. Intellectual Property Strategy - Optimal allocation of Intellectual

Property resources in economic growth [M]. Beijing: Science Press, 1998 (68).

CHEN, H. et al. Enhanced Learning Resource Recommendation Based on Online

Learning Style Model. TSINGHUA SCIENCE AND TECHNOLOGY. p. 348–356, 2020.

121

COLAÇO JÚNIOR, M. et al. Do Software Engineers Have Preferred Representational

Systems? Journal of Research and Practice in Information Technology, n. June, 2017.

COLAÇO JÚNIOR, M., MENDONÇA, M.G., FARIAS, M.A. and HENRIQUE, P. (2010):

OSS Developers Context- Specific Preferred Representational Systems: An Initial

Neurolinguistic Text Analysis of the Apache Mailing List. In: 7th IEEE Working Conference

on Mining Software Repositories, Cape Town, SA, 126–129.

CREIGHTON, O.; OTT, M.; BRUEGGE, B. Software cinema - Video-based requirements

engineering. Proceedings of the IEEE International Conference on Requirements Engineering.

Anais...2006. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

34748911363&doi=10.1109%2FRE.2006.59&partnerID=40&md5=b28f3f785fab25d0e55d2b

c56c109b85>.

FLUCKIGER, F. Development and application of multimedia Network [M]. Beijing:

Machinery Industry Press,1997.

GARTNER, S.; SCHNEIDER, K. A method for prioritizing end-user feedback for

requirements engineering. 2012 5th International Workshop on Co-operative and Human

Aspects of Software Engineering, CHASE 2012 - Proceedings. Anais...2012. Disponível em:

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

84864143377&doi=10.1109%2FCHASE.2012.6223020&partnerID=40&md5=e8e5ab581e4b

3a73a3aaf1323825640c>.

HAUMER, P. et al. Improving reviews of conceptual models by extended traceability to

captured system usage. Interacting with Computers, v. 13, n. 1, p. 77–95, 2000.

KARRAS, O. et al. Video as a by-product of digital prototyping: Capturing the dynamic

aspect of interaction. Proceedings - 2017 IEEE 25th International Requirements Engineering

Conference Workshops, REW 2017. Anais...Institute of Electrical and Electronics Engineers

Inc., 2017. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85034644587&doi=10.1109%2FREW.2017.16&partnerID=40&md5=a99356b0de35de0fc5b

122

bbd665fffc24e>.

KARRAS, O.; KIESLING, S.; SCHNEIDER, K. Supporting Requirements Elicitation by

Tool-Supported Video Analysis. Proceedings - 2016 IEEE 24th International Requirements

Engineering Conference, RE 2016. Anais...Institute of Electrical and Electronics Engineers

Inc., 2016. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85007155242&doi=10.1109%2FRE.2016.10&partnerID=40&md5=697578e1b5ee505639aa8

fbfaed6671f>.

MENTEN, A.; SCHEIBMAYR, S.; KLIMPKE, L. Using audio and collaboration

technologies for distributed requirements elicitation and documentation. 2010 3rd

International Workshop on Managing Requirements Knowledge, MaRK’10. Anais...2010.

Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

78650485207&doi=10.1109%2FMARK.2010.5623808&partnerID=40&md5=c359718fa9df5

fdc2cb85abba4e328ad>.

OLIVEIRA, R. A. DE.; COLAÇO JÚNIOR, M. Experimental Analysis of Stemming on

Jurisprudential Documents Retrieval. Information, v. 9, p. 28, 2018.

SANTOS, B. S. S; COLAÇO JÚNIOR, M; SOUZA, J. G. A Initial Experimental Evaluation

of the NeuroMessenger: A Collaborative Tool to Improve the Empathy of Text

Interactions. Proceedings of the 15th International Conference on Information Technology:

New Generations. Anais...Springer International Publishing, 2018.

SANTOS, A. C. M.; COLAÇO JÚNIOR, M.; ANDRADE, E. C. Multimedia Resources as a

support for requirements engineering: A systematic mapping. Journal of Software:

Evolution and Process. DOI:10.1002/smr.2327. 2020.

123

APÊNDICES

APÊNDICE A - Formulário de Caracterização da Amostra

Universidade Federal de Sergipe

Cidade Universitária Prof. José Aloísio Campos

Programa de Pós-Graduação em Ciência da Computação (PROCC)

Formulário de Caracterização da Amostra

Formulário de caracterização de participantes aplicado na realização do

experimento.

* Obrigatório

Dados Pessoais

1. Nome completo *

__

2. E-mail *

__

3. Idade (Marcar apenas uma opção) *

(a) Até 18 anos

(b) Entre 19 e 30 anos

(c) Entre 31 e 40 anos

(d) Entre 41 e 50 anos

(e) Acima de 50 anos

124

4. Gênero (Marcar apenas uma opção) *

(a) Feminino

(b) Masculino

(c) Outro: ______________________

5. Formação (Marcar apenas uma opção) *

(a) Técnico

(b) Graduado

(c) Especializado

(d) Mestrado

(e) Doutorado

6. Identifique qual é o seu modo de aprendizagem preferencial, para absorver e

interpretar informação. Indique a sua ordem de preferência. *

1 = primeiro em ordem de preferência

2 = segundo em ordem de preferência

3 = último em ordem de preferência

[] Auditivo (vale mais escutar)

[] Visual (imagem é tudo)

[] Cinestésico (mão na massa)

7. Você faz uso de alguma técnica para documentação dos requisitos de usuário?

(Marcar apenas uma opção) *

(a) Sim

(b) Não

8. Caso sim, especifique quais são as técnicas que você utiliza para descrever as

características e requisitos do usuário.

125

__

Dados Profissionais

9. Profissão/Cargo *

__

10. Área de Atuação (Marcar apenas uma opção) *

(a) Desenvolvimento

(b) Suporte e Desenvolvimento

(c) Desenvolvimento e Infraestrutura

(d) Desenvolvimento, Infraestrutura e Suporte

11. Anos de experiência na linguagem utilizada no experimento (Marcar apenas

uma opção) *

(a) Até 3 anos

(b) 3 a 5 anos

(c) 5 a 10 anos

(d) Mais de 10 anos

12. Experiência (número de sistemas já mantidos) *

(a) 1 a 5

(b) 6 a 10

(c) 11 a 20

(d) Mais de 20

13. Linguagem conhecida (é possível selecionar mais de uma opção). *

(a) C#

126

(b) Java

(c) PHP

(d) Python

(e) Ruby

(f) Typescript

(g) Swift

(h) C++

(i) JavaScript

(j) Outro: __

APÊNDICE B – Pergunta de Avaliação do Nível de Compreensão do

Código

Universidade Federal de Sergipe

Cidade Universitária Prof. José Aloísio Campos

Programa de Pós-Graduação em Ciência da Computação (PROCC)

Pergunta para Avaliação do Nível de Compreensão do Código

Pergunta de dimensão qualitativa/quantitativa, para avaliar o nível de compreensão

do código pelos programadores, para cada tarefa executada.

* Obrigatório

127

1. De 1 a 5, com relação à compressão do código desta tarefa, que nota você daria?*

1 2 3 4 5

Não compreendi

Compreendi Totalmente

APÊNDICE C - Questionário de Avaliação de Nível de Satisfação do

Cliente

Universidade Federal de Sergipe

Cidade Universitária Prof. José Aloísio Campos

Programa de Pós-Graduação em Ciência da Computação (PROCC)

Questionário de Avaliação de Nível de Satisfação do Cliente

Questionário de dimensão qualitativa/quantitativa, para avaliar o nível de satisfação

do cliente com as tarefas executadas pelos programadores, com e sem o auxílio da extensão

CodeMedia.

* Obrigatório

1 - Esta tarefa contém todas as funções e recursos que eu espero que ela tenha. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

128

2 - Posso efetivamente concluir o meu trabalho com a conclusão desta tarefa. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

3 - Eu sou capaz de completar ou concluir o meu trabalho, da forma mais eficiente

(rápida) possível, após a disponibilização deste ajuste. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

4 - Com a execução desta tarefa, o sistema ficou mais fácil de usar. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

5 - Com a execução desta tarefa, a interface do sistema ficou mais agradável. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

6 - No geral, estou satisfeito com esta tarefa. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

129

APÊNDICE D – Questionário de Avaliação de Nível de Compreensão de

Software

Universidade Federal de Sergipe

Cidade Universitária Prof. José Aloísio Campos

Programa de Pós-Graduação em Ciência da Computação (PROCC)

Questionário de Avaliação de Nível de Compreensão de Software

Questionário de dimensão qualitativa, para avaliar o nível de compreensão de

software pelos programadores, com e sem a utilização da abordagem multimídia, considerando

todas as demandas executadas.

* Obrigatório

1. O uso de documentação multimídia REDUZIU o tempo e esforço necessários

para compreensão do código. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

2. Os requisitos multimídia estavam confusos, vagos e ambíguos. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

130

3. A documentação multimídia NÃO forneceu meios mais eficazes para codificar

as funcionalidades do sistema. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

4. A compreensão do código, SEM o auxílio da documentação multimídia, foi

dificultada. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

5. O uso da extensão CodeMedia DIFICULTOU o entendimento do código. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

6. Compreender o software, considerando apenas códigos, comentários e

documentação tradicional, é mais rápido e prático do que com a extensão CodeMedia. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

7. A documentação multimídia se mostrou mais compreensível, portanto, pode

substituir as técnicas de documentação textual. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

131

8. Documentação multimídia deve ser utilizada no contexto de manutenção de

software, porém, a extensão CodeMedia não é a melhor opção para promover essa abordagem.

*

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

9. Com o uso da extensão CodeMedia não será mais necessário entrar em contato

com o desenvolvedor para tirar dúvidas sobre o código original. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

10. A extensão CodeMedia, com seu acoplamento ao código, é simples e fácil de

usar, o que facilita a visualização da documentação durante o processo de manutenção de

software. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

11. Abordagem proposta pela extensão CodeMedia é escalável e pode ser

facilmente aplicada no dia-a-dia das empresas de desenvolvimento de software. *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

12. A documentação multimídia pode ser utilizada de forma complementar às

documentações textuais (comentários, documento de requisitos, casos de uso). *

1 2 3 4 5

Discordo Totalmente Concordo Totalmente

	d294af4d42e4b0ca3d801a830b950fba4934b69750df4664b221f3f35592a418.pdf
	7c9de4c96676a315723a3519eb83bd95957471cef331abcb9b21183c9b8a6f4e.pdf
	7c9de4c96676a315723a3519eb83bd95957471cef331abcb9b21183c9b8a6f4e.pdf
	7c9de4c96676a315723a3519eb83bd95957471cef331abcb9b21183c9b8a6f4e.pdf

