

PETROLOGIA DO STOCK SERRA DA VACA, DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO

Douglas Barreto de Oliveira

Orientador: Dr. Herbet Conceição

Coorientadora: Dra. Maria de Lourdes da Silva Rosa

DISSERTAÇÃO DE MESTRADO

Programa de Pós-Graduação em Geociências e Análise de Bacias

São Cristóvão-SE – Julho de 2019

Douglas Barreto de Oliveira

PETROLOGIA DO STOCK SERRA DA VACA, DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO

Dissertação apresentada ao Programa de Pós-Graduação em Geociências e Análise de Bacias da Universidade Federal de Sergipe, como requisito para obtenção do título de Mestre em Geociências.

Orientador: Dr. Herbet Conceição

Coorientadora: Dra. Maria de Lourdes da Silva Rosa

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL UNIVERSIDADE FEDERAL DE SERGIPE

Oliveira, Douglas Barreto de

O48p Petrologia do Stock Serra da Vaca, Domínio Poço Redondo, Sistema Orogênico Sergipano / Douglas Barreto de Oliveira ; orientador Herbet Conceição. – São Cristóvão, SE, 2019.

Dissertação (mestrado em Geociências e Análise de Bacias) – Universidade Federal de Sergipe, 2019.

1. Geociências. 2. Petrologia. 3. Rochas ígneas. 4. Granito. 5. Geoquímica. 6. Magmatismo. 7. Cinturões orogênicos – Sergipe. I. Conceição, Herbet, orient. II. Título.

CDU 552.321(813.7)

PETROLOGIA DO STOCK SERRA DA VACA, DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO

por:

Douglas Barreto de Oliveira (Geólogo, Universidade Federal de Sergipe – 2016)

DISSERTAÇÃO DE MESTRADO

Submetida em satisfação parcial dos requisitos ao grau de:

MESTRE EM GEOCIÊNCIAS

BANCA EXAMINADORA:

Dr. Herbet Conceição [Orientador – UFS]

Dra Débora Correia Rios [Membro Externo – UFBA]

Dr. Carlos Dingues Marques de Sá [Membro Interno – UFS]

Data Defesa: 26/07/2019

DEDICATÓRIA

Aos meus pais, Gilton e Sivalda, e aos meus irmãos, Paloma e Matheus, pelo apoio incondicional para que eu pudesse concluir essa etapa da minha vida. A minha namorada Micheli por todo o amor, carinho e compreensão.

AGRADECIMENTOS

Agradeço, em primeiro lugar, a Deus, simplesmente por ter me dado o dom da vida. Aos meus pais, Gilton e Sivalda, pelos ensinamentos e pela educação que a mim foram dados. A minha irmã Paloma que mesmo longe está sempre orando e torcendo por mim. A meu irmão Matheus meu fiel escudeiro e braço amigo. A minha noiva e futura mulher Micheli, que sempre me deu força para continuar quando eu mesmo pensava em desistir. Sem todos vocês essa conquista não teria sentido algum.

Agradeço aos mais diversos órgãos que subsidiaram a minha pesquisa. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela bolsa de pós-graduação obtida durante o Mestrado. À Superintendência de Salvador do Serviço Geológico do Brasil (CPRM) pelo apoio prestado na confecção das lâminas e cessão de uso do laboratório de preparação de amostras e em especial as pesquisadoras doutoras Cristina Maria Burgos de Carvalho e Rita Cunha Leal Menezes de Oliveira.

À Universidade Federal de Sergipe, ao Programa de Pós-Graduação em Geociências e Análise de Bacias (PGAB) e ao Departamento de Geologia da Universidade Federal de Sergipe (DGEOL) pela estrutura e suporte que me foram disponibilizados.

Agradeço de coração aos meus orientadores, Herbet Conceição e Maria de Lourdes da Silva Rosa, pelos ensinamentos e por terem me dado a oportunidade de ingressar no grupo de pesquisa do Laboratório de Petrologia Aplicada à Pesquisa Mineral (LAPA).

Aos colegas e amigos que fiz no Galpão das Geociências do (PGAB) e a todos os amigos do LAPA, em especial aos companheiros Alysson, Herbert Cruz e Maurício Almeida.

EPÍGRAFE

"Consagre ao senhor tudo o que você faz, e os seus planos serão bem-sucedidos" Provérbios 16:3

RESUMO

O Stock Serra da Vaca (SSV) é um corpo com 19 km², alongado NE-SW, localizado no Domínio Poco Redondo (DPR), no Sistema Orogênico Sergipano (SOS). Suas rochas fazem contato do tipo intrusivo com os migmatitos de Poço Redondo e com os granitos do Batólito Poço Redondo. O SSV é constituído predominantemente por biotita granodioritos, ocorrendo ainda álcali-granito e sienogranitos de forma subordinada. Suas rochas apresentam cor cinza, textura equigranular fina a média e estrutura isotrópica. A mineralogia consiste em plagioclásio, microclina e quartzo. Os minerais acessórios são epídoto, zircão, apatita e minerais opacos. O plagioclásio apresenta zonação normal, indicativo de cristalização fracionada, e as suas composições variam de albita nas rochas evoluídas a andesina nas menos diferenciadas. O feldspato alcalino apresenta com frequência exsolvido e as composições analisadas são próximas as fases puras de albita e ortoclásio. A biotita é o máfico principal e tem razão Fe/(Fe+Mg) variando de 0,47-0,84 e Al_{total} de 2,859-3,927 átomos por fórmula unitária. Essas composições indicam tratar-se de cristais de biotita primária e primária reequilibrada e cristalizadas a partir de magma cálcio-alcalino. A presença do epídoto primário (19,9<%Ps< 28,85) sugere condições de cristalização oxidantes a pressão mínima de 6 Kbar (~25 km). Os dados geoquímicos indicam que as rochas do SSV são ácidas (70% < SiO₂ < 77,5%), peraluminosas, magnesianas. A filiação magmática dos granodioritos é cálcio-alcalina de alto K, enquanto que os termos mais evoluídos apresentam afinidade shoshonítica, sugerindo que a cristalização do feldspato alcalino seja tardia. Os dados químicos de elementos maiores sugerem que o magma SSV tenha se formado a partir de protólitos ígneos. As razões 11<(La/Yb)_N<70 dos granodioritos e álcali granito indicam forte fracionamento. As anomalias de Eu são pouco pronunciadas para a maioria das amostras (0,57<Eu/Eu*<0,97), a exceção do álcali-granito e dos sienogranitos que exibem forte anomalia negativa (0,16-0,30). A relação entre elementos traços (Th, Ta, Hf, Y, Nb, Rb) indica que esses granitos foram gerados em ambiente orogênico e um período pós-tectônico.

Palavras-chave: Granitos; Stock Serra da Vaca; Petrologia

ABSTRACT

The Serra da Vaca Stock (SSV), with 19 km² area, is NE-SW elongated been and is located in the Poço Redondo Domain, in the Sergipano Orogenic System. The SSV intrudes in the Poço Redondo migmatites and in the granites of batholith Poço Redondo. The SSV is constituted by biotite granodiorites, with alkali-granite and syenogranites subordinate. The SSV rocks have gray color, isotropic dominant structure and equant texture. The essential mineralogy of these rocks is composed of plagioclase, microcline and quartz. Accessory phases are epidote, zircon, apatite and opaque minerals. Plagioclase presents normal zonation, indicative of fractional crystallization and its compositions vary from albite, in the most evolved rocks, to andesine, in the less evolved. The alkali feldspars are pertythitic and the shows compositions close to the pure poles of albite and orthoclase. The biotite is the principal mafic phase in the rocks and has Fe/(Fe + Mg) ratio ranging from 0.47-0.84 and AlTot of 2.859-3.927 atoms per unit formula. These compositions indicate that the biotite crystals are primary and primary reequilibrated which crystallized from a calc-alkaline magma. The presence of primary epidote (19.9<%Ps<28.85) indicates oxidizing crystallization conditions and the minimum pressure of 5 kb (~ 25 km). Geochemical data indicates that SSV rocks are strongly evolved (70%<SiO2<78%), peraluminous and magnesian. The magmatic affiliation of the granodiorites is high K calc-alkaline, whereas the most evolved terms present shoshonitic affinity. The chemical data of major elements suggest that SSV magma formed from the fusion of igneous protoliths. The ratio of granodiorites and alkali-granite indicates strong fractionation 11<(La / Yb)N <70. Eu anomalies are not pronounced for most of the SSV samples (0.57<Eu /Eu*<0.97), except for alkali-granite and syenogranites, that exhibits strong negative anomalies (0.16-0.30). The relationships between trace elements (Th, Ta, Hf, Y, Nb, Rb) indicate that the Serra da Vaca Stock rocks were formed in an orogenic environment and a post-collision period.

Keywords: Granites; Serra da Vaca Stock; Petrology

SUMÁRIO

CAPÍTULO 1. INTRODUÇÃO	14
1.1. APRESENTAÇÃO	15
1.2. OBJETIVOS	16
1.3. LOCALIZAÇÃO DA ÁREA DE ESTUDO	16
1.4. MÉTERIAIS E MÉTODOS	18
1.4.1. Levantamento Bibliográfico	18
1.4.2. Esboço Geológico do <i>Stock</i> Serra da Vaca	19
1.4.3. Trabalho de Campo	19
1.4.4. Preparação de Amostras	20
1.4.5. Estudo Petrográfico	20
1.4.6. Estudo Mineraloquímico	21
1.4.7. Estudo Geoquímico	21
1.5. ESTRUTURA DO VOLUME	22
REFERÊNCIAS BIBLIOGRÁFICAS	22
· · · · · · · · · · · · · · · · · · ·	
DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO	26
CAPÍTULO 2. PETROLOGIA DO STOCK SERRA DA VACA, DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO	26 27
DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO	
DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO	27
DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO	27 28
DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO	27 28 28
DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO	27 28 28 29
DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO	27 28 28 29 32
DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO	27 28 28 29 32 33
DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO	27 28 28 29 32 33 36
DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO RESUMO ABSTRACT INTRODUÇÃO CONTEXTO REGIONAL MATERIAIS E MÉTODOS GEOLOGIA LOCAL PETROGRAFIA E QUÍMICA MINERAL GEOQUÍMICA	27 28 28 29 32 33 36 46
DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO	27 28 28 29 32 33 36 46 50

CAPÍTULO 3. CONCLUSÕES	61	
ANEXO. COMPROVANTE DE SUBMISSÃO DO ARTIGO	63	
APÊNDICES	65	
APÊNDICE I. FICHAS DE AFLORAMENTO	66	
APÊNDICE II. FICHAS PETROGRÁFICAS	105	
APÊNDICE III. ANÁLISES OUÍMICAS DE MINERAIS	136	

LISTA DE FIGURAS

CAPÍTULO I:

INTRODUÇÃO

Figura 1:	Mapa de Localização e acessos. (A) Mapa do Brasil com a área correspondente ao Estado de Sergipe representada em vermelho. (B) Contorno do Estado de Sergipe com localização e acesso à área de estudo.	17
CAPÍTULO II:	PETROLOGIA DO STOCK SERRA DA VACA, DOMÍNIO PO REDONDO SISTEMA OROGÊNICO SERGIPANO	OÇO
Figura 1:	Esquema geológico da parte sul da Província Borborema.	30
Figura 2:	Esquema geológico do Subdomínio Poço Redondo.	31
Figura 3:	Esquema geológico do Stock Serra da Vaca.	34
Figura 4:	Imagens de afloramentos da região estudada.	35
Figura 5:	Diagramas ternários QAP e Q(A+P)M.	36
Figura 6:	Fotomicrografias de texturas das rochas do Stock Serra da Vaca.	38
Figura 7:	Diagramas ternários Ortoclásio Or-Ab-Na (A). Diagrama Teor de Anortita (%An) <i>versus</i> a distância centro-borda em cristais de plagioclásio (B).	40
Figura 8:	Diagrama Al ^{IV} versus Fe/(Fe+Mg) para nomear cristais de mica marrom segundo Speer (1984) (A). Diagrama triangular (10.TiO ₂)-(FeO+MnO)=MgO proposto por Nachit et al. (2005) (B).	42
Figura 9:	Diagramas geoquímicos aplicados às rochas estudadas.	48
Figura 10:	Diagramas geoquímicos de Frost et al. (2001).	49
Figura 11:	Diagrama com Elementos Terras Raras para os granitos do SSV.	50
Figura 12:	Diagramas multielementares de distribuição de elementos traços para os granitos do SSV.	50
Figura 13:	Diagrama modal QAP com campos estabelecidos por Bowden et al. (1984) (A). Diagrama Mg <i>versus</i> Al _{total} de Nachit et al. (1985) (B).	51
Figura 14:	Diagramas binários do tipo Harker aplicados aos granitos do SSV.	52
Figura 15:	Diagrama Rb <i>versus</i> Y + Nb de ambiência tectônica após Pearce et al. (1984) e Pearce (1996).	53
Figura 16:	Diagramas de ambiência tectônica após Gorton e Schandl (2002) aplicados aos granitos do SSV.	54
Figura 17:	Diagrama ternário Al ₂ O ₃ /(FeO+MgO), 3CaO, 5(K ₂ O/Na ₂ O) com campos que representam composições de magmas derivados de variadas fontes após Laurent et al. (2014).	55

LISTA DE TABELAS

Tabela 1.	Resultados da análise modal dos granitos do <i>Stock</i> Serra da Vaca e de rochas migmatíticas do Complexo Migmatítico Poço Redondo.	36
Tabela 2.	Análises representativas por EDS-MEV de cristais de feldspato com fórmula estrutural calculada com base em 8 oxigênios. Moléculas de ortoclásio (Or), albita (Ab), anortita (An) e celsiana (Cn).	39
Tabela 3.	Análises químicas representativas obtidas com EDS-MEV de cristais de biotita do Stock Serra da Vaca. A fórmula estrutural foi calculada com base em 22 oxigênios.	41
Tabela 4.	Análises químicas representativas de cristais de epídoto obtidas por EDS-MEV de rochas do Stock Serra da Vaca. O cálculo da fórmula estrutural foi feito com base anidra em 25 oxigênios.	43
Tabela 5.	Análises químicas de elementos maiores e traços das rochas do <i>Stock</i> Serra da Vaca, do Complexo Migmatítico de Poço Redondo e alguns parâmetros geoquímicos.	47

CAPÍTULO 1 – INTRODUÇÃO

1.1. APRESENTAÇÃO

A Província Borborema (PB), localizada no nordeste brasileiro, abrange uma área de aproximadamente 450.000 km² (Almeida et al., 1977) e tem a sua origem relacionada a eventos de convergência de blocos cratônicos ocorridos há 600 Ma, entre os quais: Oeste da África, Congo-São Francisco e Amazônia (Van Schmus et. al., 2008). Segundo Van Schmus et. al. (2008) a Província Borborema pode ser subdividida em três setores, a saber: setentrional, central e sul (Pernambuco-Alagoas e Sergipano).

O setor localizado mais a sul da PB, qual seja, o Sergipano, tem sido objeto de estudo de vários autores desde as décadas de 60 e 70 (e.g. Humphrey e Allard, 1969; Silva Filho et al., 1979) até o período mais recente (e.g. Oliveira et al., 2010, 2015, 2017). O estudo aprofundado deste segmento identificou a presença de uma complexa história evolutiva onde ocorreu um completo Ciclo de Wilson que deu origem ao supercontinente Gondwana ocidental, há cerca de 630 Ma (Oliveira et al, 2010; 2017). A existência de conhecimentos importantes sobre essa complexa história evolutiva, levaram Conceição et al. (2016) a denominarem a parte mais a sul da PB de Sistema Orogênico Sergipano (SOS).

O SOS atualmente é compartimentando em sete domínios geológicos e tem sido interpretado como uma faixa orogênica neoproterozoica relacionada à colisão do Cráton São Francisco, ao sul, com o Maciço Pernambuco-Alagoas, ao norte (Brito Neves et al., 1977; Oliveira et al., 2010, 2015). Bueno et al. (2009) argumentam, com base em dados geocronológicos U–Pb_{SHRIMP} obtidos nos granitos, que essa orogenia durou aproximadamente 57 milhões de anos, entre 628 e 571 Ma.

Uma feição importante no SOS é a presença de inúmeros corpos graníticos ediacaranos (Long et al., 2005; Bueno et al., 2009; Oliveira et al., 2015; Conceição et al., 2017; Lisboa et al., 2019). Após a criação do Programa de Pós-Graduação em Geociências e Análise de Bacias (PGAB), na Universidade Federal de Sergipe (UFS), houve aumento expressivo de trabalhos sobre os granitos do SOS (e.g. Gentil, 2013; Conceição, 2014; Lisboa, 2014; Santos, 2016; Conceição et al., 2016; Soares, 2018; Lisboa et al., 2019; Sousa et al., 2019; Pinho Neto et al., 2019). Todavia, ainda existem várias intrusões carentes de dados geológicos, petrográficos, mineraloquímicos, geoquímicos e geocronológicos.

A presente dissertação de mestrado tem por objeto de estudo os aspectos petrológicos do *Stock* Serra da Vaca (SSV), que é uma das intrusões mais representativas da Suíte Intrusiva Glória-Xingó 2 que ocorre no Domínio Poço Redondo, na parte norte do SOS. Nesta pesquisa obtiveram-se dados petrográficos, mineraloquímicos e geoquímicos de rochas representativas do SSV, visando identificar a natureza desse magmatismo e os processos petrogenéticos envolvidos na formação desse *stock*.

1.2. OBJETIVOS

O objetivo geral desse trabalho é realizar o estudo petrológico nas rochas do *Stock* Serra da Vaca. Os objetivos específicos foram:

- A realização de levantamento bibliográfico sobre a ocorrência de granitos no Domínio Poço Redondo e também sobre magmatismo cálcio-alcalino no contexto de ambientes orogênicos.
- 2. Obter dados geológicos para melhorar a cartografía do SSV e também proceder a amostragem de rochas representativas para estudos em laboratório.
- 3. Fazer estudos petrográfico, mineraloquímico e geoquímico nas amostras representativas das rochas do SSV. Com essas informações pretende-se inferir a evolução e as condições de colocação desse magmatismo.
- Classificar as rochas do SSV adequadamente tendo-se como critérios os dados petrográficos, mineralógicos e geoquímicos, objetivando correlacionar o SSV com outros magmatismos no âmbito do SOS.
- 5. Integrar e discutir os dados obtidos em artigo científico a ser submetido na Revista do Instituto de Geociências da Universidade de São Paulo.

1.3. LOCALIZAÇÃO DA ÁREA DE ESTUDO

O SSV está localizado na região noroeste do Estado de Sergipe, mais precisamente ao sul do município de Canindé de São Francisco (Figura 1). A região em estudo está inserida na Carta Topográfica Folha Piranhas (Folha SC. 24- X-C-VI), com escala 1:100.000 (SUDENE, 1989). As principais cidades da região são Canindé de São Francisco e Poço Redondo.

O acesso à área de estudo, partindo-se de Aracaju (Figura 1), capital do estado, pode ser feito pela BR-235. Após percorrer cerca de 70 km por essa rodovia federal no sentido norte, chega-se a um entroncamento entre a BR-235 e SE-175, utiliza-se o acesso à direita para a rodovia SE-175, e segue nessa rodovia até a cidade de Nossa Senhora da Glória. A partir dessa cidade deve-se utilizar a SE-230 em direção a cidade de Canindé de São Francisco, depois se prossegue pela rodovia SE- 403, no sentido ao povoado Capim Grosso. A partir dessa rodovia, o acesso aos afloramentos do SSV pode ser realizado por estradas carroçáveis.

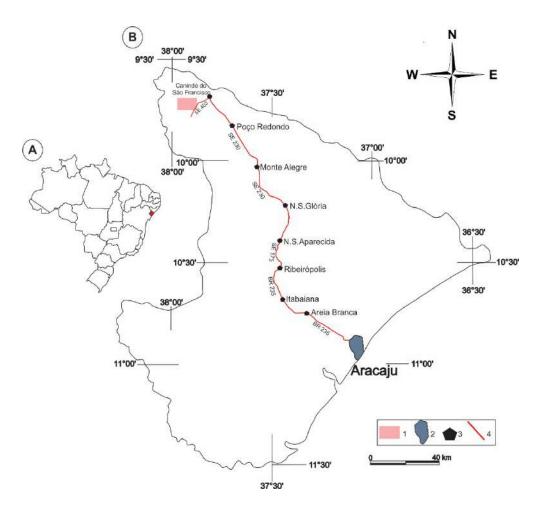


Figura 1. Mapa de localização e acessos. (A) Mapa do Brasil com a área correspondente ao Estado de Sergipe representada em vermelho. (B) Contorno do Estado de Sergipe com localização e acesso à área de estudo. 1 - Área de estudo; 2 - Aracaju; 3 - Sedes municipais; 4 - Rodovias.

1.4. MATERIAIS E MÉTODOS

A metodologia empregada nesta pesquisa envolveu as seguintes etapas: levantamento bibliográfico sobre a geologia regional, local e magmatismo granítico; elaboração do esboço geológico do corpo de estudo; trabalho de campo; preparação de amostras; estudos petrográfico, mineraloquímico e geoquímico. A seguir será apresentada a descrição de cada de uma dessas etapas.

1.4.1. Levantamento Bibliográfico

Essa etapa consistiu na revisão bibliográfica sobre a geologia regional do Sistema Orogênico Sergipano, com um enfoque maior na granitogênese do Domínio Poço Redondo. Os trabalhos consultados foram artigos, teses, dissertações, mapas geológicos.

Dentre os trabalhos consultados e que tratam da geologia regional destacam-se: Almeida et al. (1997), Van Schmus et al. (2008) e Oliveira et al. (2010, 2015, 2017). No contexto do Domínio Poço Redondo, o trabalho mais proeminente foi o elaborado por Carvalho (2005), que obteve dados importantes sobre os migmatitos e algumas intrusões que ocorrem na região.

Os mapas geológicos consultados foram: a carta geológica folha Piranhas (Folha SC 24-X-C-VI) elaborada por Santos et al. (1988); o mapa geológico da CPRM para o Estado de Sergipe elaborado por Teixeira et al. (2014); e a compilação geológica para o Domínio Poço Redondo elaborado por Pinho Neto et al. (2019).

Em relação aos trabalhos existentes sobre a granitogênese do Domínio Poço Redondo foram consultados artigos, dissertações e teses. Entre os artigos destaca-se o publicado por Oliveira et al. (2015) que apresenta uma boa quantidade de dados geocronológicos e geoquímicos, inclusive dados de geoquímica isotópica. Já entre as dissertações, os principais trabalhos consultados foram elaborados nos últimos anos e trazem um enfoque no estudo petrológico em escala de detalhe de algumas intrusões que ocorrem no Domínio Poço Redondo, são eles: Gentil (2013), Lima (2016), Sousa et al. (2019) e Pinho Neto et al. (2019).

1.4.2. Esboço Geológico do Stock Serra da Vaca

A elaboração do esboço geológico do corpo estudado foi possível a partir da fotointerpretação de fotografías aéreas com escala de 1:25.000 cedidas pela Secretária de Estado de Estado de Planejamento Orçamento e Gestão do Estado de Sergipe. Além disso, foram obtidas imagens de satélite do aplicativo Google Earth[®] que foram de grande valia para a delimitação da forma e dos limites do SSV.

Essa etapa foi concluída após a ida ao campo, pois de posse dos pontos obtidos e dos afloramentos visitados foi possível melhorar a cartografía do *stock*. Neste processo fez-se correlação entre as informações de campo com a etapa de interpretação das imagens aéreas e as de satélite. Para a realização dessa etapa foi utilizado o *software* de geoprocessamento ArcGis 10.2.2[®], além do programa de edição vetorial CorelDRAW-X8[®].

1.4.3. Trabalho de Campo

A melhor época para ir a campo é no período menos chuvoso, que em Sergipe inicia em dezembro até meados de maio. De maneira geral a chegada aos afloramentos se dá por estradas carroçáveis que cortam o SSV principalmente de oeste para leste.

Duas missões de campo foram realizadas. Elas tiveram como objetivos fazer o reconhecimento da geologia local, realizar a amostragem de rochas representativas, coletar dados estruturais e texturais. Nos trabalhos de campo foram utilizados: mapa topográfico (Folha Piranhas), mapa geológico do estado de Sergipe (Teixeira et al., 2014), bússola do tipo CLAR para as medidas estruturais, lupa de bolso, martelo geológico, GPS, máquina fotográfica e fichas para a descrição dos afloramentos.

No total foram visitados cerca de 21 afloramentos, sendo coletadas um total de 14 amostras, das quais 10 correspondem às rochas do SSV e 4 do migmatito de Poço Redondo (embasamento). As fichas de campo com os dados obtidos, fotografías e localização geográfica encontram-se no final deste volume (Apêndice I).

1.4.4. Preparação de Amostras

Essa etapa começou nos afloramentos, quando as amostras coletadas com cerca de um quilograma tiveram que sofrer redução de tamanho para, no máximo, o tamanho aproximado de um punho fechado (10 cm³).

Na etapa de laboratório, essas rochas foram lavadas e catalogadas. Cada amostra dividida em, pelo menos, 3 partes de iguais com dimensões médias de 8 cm x 8 cm x 8 cm. Uma parte foi destinada para a confecção de lâmina delgada polida. Essa etapa foi gentilmente realizada no laboratório de Laminação da Superintendência de Salvador do Serviço Geológico do Brasil (CPRM). A segunda parte foi arquivada na litoteca do Laboratório de Petrologia Aplicada à Pesquisa Mineral (LAPA). Por fim, a terceira parte foi britada e pulverizada em fração inferior a 200 Mesh para a realização dos estudos geoquímicos. A britagem e pulverização foram realizadas no Departamento de Geologia da UFS (DGEOL-UFS).

A etapa de preparação de amostras ainda contou com a fase de preparação de pastilhas de pó de rocha prensada para a realização da análise geoquímica na Florescência de Raio-X (FRX). Para a confecção das pastilhas foi utilizado o ácido bórico (H₃BO₃) tanto para compor a base da pastilha bem como servir de agente aglutinante (proporção de 3:1). A preparação das pastilhas e as análises na FRX foram feitas no Condomínio de Laboratórios Multiusuários das Geociências da UFS (CLGeo-UFS).

1.4.5. Estudo Petrográfico

Descrições petrográficas foram realizadas em 14 lâminas no Laboratório de Petrografia e Metalografia do CLGeo-UFS. Utilizou-se neste processo microscópio petrográfico de luz transmitida e refletida da marca Opton[®] modelo TNP-09NT.

As análises modais das rochas estudadas foram feitas com o auxílio do *charriot* a partir da estimativa visual de 40 campos não superpostos por lâmina. As fotomicrografias foram obtidas através de um microscópio Olympus[®] BX47TF o qual apresenta uma câmera acoplada marca Olympus[®] SC30.

A nomenclatura das rochas estudadas segue os critérios propostos por Streckeisen (1976) e Le Maître et al. (2002). As abreviaturas dos minerais apresentados nas fotomicrografias seguiram as recomendações propostas por Whitney e Evans (2010). Todas as fichas de descrição petrográfica estão no final deste volume no Apêndice II.

1.4.6. Estudo Mineraloquímico

Os estudos de química mineral foram realizados em 11 lâminas delgado-polidas. As lâminas estudadas foram metalizadas com uma fina camada de ouro, para permitir a condução do feixe de elétrons na superfície da amostra. Para isso utilizou-se o metalizador Quorum[®], modelo Q150R ES.

Os dados químicos pontuais dos minerais foram obtidos no CLGeo-UFS utilizando o Espectrômetro de Energia Dispersiva (EDS), modelo X-act do fabricante Oxford Instruments[®]. As condições analíticas foram sob uma aceleração potencial de 15 Kv e corrente variável entre 15 e 17 nA, com o diâmetro do feixe de elétrons estando entre 300 a 830 nm. O tempo de contagem médio foi de 30 segundos.

Os cálculos das fórmulas estruturais utilizados para os minerais analisados foram elaborados seguindo as recomendações de Deer et al. (1992) para o número de oxigênios. As concentrações de Fe³⁺ nos óxidos foram obtidas utilizando o critério estequiométrico consoante as recomendações por Droop (1987). As tabelas com todas as análises de química mineral obtidas podem ser visualizadas no final deste volume (Apêndice III).

1.4.7. Estudo Geoquímico

O estudo geoquímico foi realizado em 13 amostras (10 do SSV e 3 do migmatito). As composições dos elementos maiores foram obtidas por meio da técnica de FRX no CLGeo-UFS. Já os elementos traços foram obtidos utilizando-se a técnica de ICP-MS no laboratório comercial da SGS GEOSOL em Minas Gerais. As avaliações dos resultados químicos foram feitas com análises de padrões internacionais de minerais da Artimex (silicatos e óxidos).

Os dados geoquímicos foram alocados em gráficos e diagramas discriminantes com o objetivo de classificar e identificar a afinidade química das rochas estudadas. Nesta fase foram utilizadas planilhas Excel® em conjunto com o software GCDkit® (Janousek et al., 2006) para o tratamento dos dados.

1.5. ESTRUTURAÇÃO DO VOLUME

A estrutura desse volume compreende três capítulos elaborados de acordo com as normas e recomendações contidas na Resolução 01/2018 do PGAB.

O primeiro capítulo, intitulado "Introdução", apresenta o objeto de estudo, os objetivos, localização da área, a metodologia empregada e as referências bibliográficas.

O segundo capítulo intitula-se "Petrologia do *Stock* Serra da Vaca, Domínio Poço Redondo, Sistema Orogênico Sergipano". Ele consiste no artigo científico a ser submetido à Série Científica da Revista do Instituto de Geociências da Universidade de São Paulo (Qualis CAPES em nível B2).

No terceiro capítulo, intitulado "Conclusões", são apresentadas as considerações finais obtidas a partir da realização dessa pesquisa.

Ao final do volume são apresentados os anexos e os apêndices. O anexo 1 transcreve as normas da Revista do Instituto de Geociências da USP. Já o anexo 2 compreende o comprovante de submissão na revista científica aludida. Os apêndices apresentam: [1] Fichas de afloramentos; [2] Fichas de descrição petrográficas; [3] Análises químicas de minerais (3.1 - Feldspatos; 3.2 - Biotita; 3.3 - Epídoto).

REFERÊNCIAS BIBLIOGRÁFICAS

- Almeida F. F. M., Neves B. B. B., Fuck R. A. (1977). Províncias Estruturais Brasileiras. In: SBG, VIII Simp. Geol. Nordeste, Campina Grande, Atas p. 363-391.
- Bueno, J. F., Oliveira, E. P., McNaughton, N., Laux, J. H. (2009). U–Pb dating of granites in the Neoproterozoic Sergipano Belt, NE-Brazil: Implications for the timing and duration of continental collision and extrusion tectonics in the Borborema Province. *Gondwana Research*, 15, 86-97. https://doi.org/10.1016/j.gr.2008.06.003
- Brito Neves, B. B., Sial, A. N., Albuquerque, J. P. T. (1977). Vergência centrífuga residual no sistema de dobramentos Sergipano. *Revista Brasileira de Geociências*, 7, 102-114.
- Carvalho, M. J. (2005). Evolução Tectônica do Domínio Marancó Poço Redondo: Registro das Orogêneses Cariris Velhos e Brasiliana na Faixa Sergipana, NE do Brasil. Tese (Doutorado). Campinas: Universidade de Campinas UNICAMP.

- Conceição, J. A. (2014). *Petrologia do Stock Granítico Glória Sul, Faixa Sergipana, setor sul da Provincia Borborema, Sergipe*. Dissertação (Mestrado). São Cristóvão: Programa de Pós-Graduação em Geociências e Análise de Bacias UFS.
- Conceição, J. A., Rosa, M. L. S., Conceição, H. (2016). Sienogranitos leucocráticos do Domínio Macururé, Sistema Orogênico Sergipano, Nordeste do Brasil: Stock Glória Sul. *Brazilian Journal of Geology*, 46(1), 63-77. https://doi.org/10.1590/2317-4889201620150044
- Conceição, H., Rosa, M. L. S., Conceição, J. A., Lisboa, V. A. C., Pereira, F. S., Teles, D. S., Fernandes, D. M., Sousa, E. S., Cruz, J. W. S., Rezende, H. J. C., Oliveira, I. R., Souza, J. M. D. S., Oliveira, I. L. (2017). Magmatismos no Domínio Macururé, Sistema Orogênico Sergipano: estado de conhecimento. 27º Simpósio de Geologia do Nordeste. João Pessoa: SBG.
- Deer, W. A., Howie, R. A., Zussman, J. (1992). *An Introduction to the Rock-Forming Mineral*. (2nd ed.). Harlow: Longman Scientific and Technical.
- Droop, G. T. R. (1987). A general equation for estimating Fe³⁺ concentrations in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. *Mineralogical Society*, 51, 361-431.
- Gentil, T. F. C. (2013). Petrologia e Geoquímica do Batólito Shoshonítico Serra do Brejo no Domínio Poço Redondo, Faixa Sergipana (sul da Província Borborema). Dissertação (Mestrado). São Cristóvão: Programa de Pós-Graduação em Geociências e Análise de Bacias UFS.
- Humphrey, F. L., Allard G. O. (1969). Geologia da área do Domo de Itabaiana (Sergipe) e sua relação com a geologia do geossinclinal de Propriá: um elemento tectônico recém-reconhecido no escudo brasileiro. Rio de Janeiro: PETROBRÁS/CENPES, Divisão de Documentação Técnica e Patentes. 160 p.
- Janousek, V., Farrow, C. M., Erban, V. (2006). Interpretation of whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDKit). *Journal of Petrology*, 47, 1255-1259.
- Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P. A., Schimd, R., Sorensen, H., Woolley, A. R. (2002). *Igneous Rocks A classification and glossary ofterms. Recommendations of the International Union of Geological Sciences-Subcommission on the Systematics of Igneous Rocks.* (2nd ed.). New York: Cambridge University Press.
- Lima, D. R. (2016). Caracterização petrológica e geoquímica do Plúton Curituba, Domínio Poço Redondo-Marancó, Cinturão Sergipano. Dissertação (Mestrado). Recife: Universidade Federal de Pernambuco UFPE.

- Lisboa, V. A. C. (2014). *Petrologia e Geocronologia do Maciço Glória Norte, Faixa de Dobramentos Sergipana, NE do Brasil*. Dissertação (Mestrado). São Cristóvão: Programa de Pós-Graduação em Geociências e Análise de Bacias UFS.
- Lisboa, V. C. A., Conceição, H., Rosa, M. L. S., Fernandes, D. M. (2019). The onset of post-collisional magmatism in the Macururé Domain, Sergipano Orogenic System: The Glória Norte Stock. *Journal of South American Earth Sciences*, 89, 173-188. https://doi.org/10.1016/j.jsames.2018.11.005
- Long, L. E., Castellana, C. H., Sial, A. N. (2005). Age, origin and cooling history of the Coronel João Sá Pluton, Bahia, Brazil. *Journal of Petrology*, 46, 255-273.
- Oliveira, E. P., Windley, B. F., Araújo, M. N. C. (2010). The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in Western Gondwana. Precambrian Research, 181, 64-84.
 - https://doi.org/10.1016/j.precamres. 2010.05.014
- Oliveira, E. P., Bueno, J. F., McNaughton, N. J., Silva Filho, A. F., Nascimento, R. S., Donatti-Filho, J. P. (2015). Age, composition, and source of continental arc- and syn-collision granites of the Neoproterozoic Sergipano Belt, Southern Borborema Province, Brazil. *Journal of South American Earth Sciences*, 58, 257-280. https://doi.org/10.1016/j.jsames.2014.08.003
- Oliveira, E. P., Windley, B. F., McNaughton, N. J., Bueno, J. F., Nascimento, R. S., Carvalho, M. J., Araújo, M. N. C. (2017). The Sergipano Belt. In: M. Heilbron, U. Cordani, F. Alkmim (Eds.), São Francisco Craton, Eastern Brazil. Regional Geology Reviews. Springer: Cham. https://doi.org/10.1007/978-3-319-01715-013
- Oliveira, D. B. (2016). Aspectos Geológicos, Petrográficos e Geoquímicos do Stock Serra da Vaca, Sistema Orogênico Sergipano. Trabalho de Conclusão de Curso. São Cristóvão: Universidade Federal de Sergipe UFS.
- Pinho Neto, M. A., Rosa, M. L. S., Conceição, H. (2019). Petrologia do Batólito Sítios Novos, Sistema Orogênico Sergipano, Província Borborema, NE do Brasil. *Geologia USP. Série Científica*, 19(2), 135-150. https://doi.org/10.11606/issn.2316-9095.v19-152469
- Santos, R. A., Menezes Filho, N. R., Souza, J. D. (1988). Programa de Levantamentos Geológicos Básicos do Brasil: carta geológica, carta metalogenética/previsional Escala 1:100.00 (Folha SC.24-X-C-VI Piranhas). Estados de Sergipe, Alagoas e Bahia: DNPM/CPRM. 154 p.
- Santos, L. R. (2016). *Petrologia do Stock Canindé Velho, Sistema Orogênico Sergipano, NE do Brasil*. Dissertação (Mestrado). São Cristóvão: Programa de Pós-Graduação em Geociências e Análise de Bacias UFS.

- Silva Filho, M. A., Santana, A. C., Silva, B. C. E., Andrade Filho, E. L., Souza, G. T. M., Figueroa, I., Bonfim, L. F. C., Braz Filho, P. A., Santos, R. A., Azevedo, R. R., Leal, R. A. (1979). Geologia da Geossinclinal Sergipana e do seu embasamento Alagoas, Sergipe e Bahia Projeto Baixo São Francisco/Vaza-Barris. Salvador: DNPM, Seção Geologia Básica, 13. 131 p.
- Soares, H. S. (2018). Petrografia, Química mineral e Geoquímica dos Stocks Monte Pedral, Santa Maria, Boa Esperança, Bom Jardim e Niterói, Sistema Orogênico Sergipano. Dissertação (Mestrado). São Cristóvão: Programa de Pós-Graduação em Geociências e Análise de Bacias UFS
- Sousa, C. S., Soares, H. S., Rosa, M. L. S, Conceição, H. (2019). Petrologia e geocronologia do Batólito Rio Jacaré, Domínio Poço Redondo, Sistema Orogênico Sergipano, NE do Brasil. *Geologia USP. Série Científica*, 19(2), 171-194. https://doi.org/10.11606/issn.2316-9095.v19-152494
- SUDENE Superintendência do Desenvolvimento do Nordeste. (1989). Ministério do Exército Departamento de Engenharia e Comunicação, Região Nordeste do Brasil. Carta Topográfica Folha Piranhas, Folha SC.24-X-C-VI, Escala 1:100.000.
- Streckeisen, A. L. (1976). To each plutonic rock its proper name. *Earth Science Reviews*, 12(1), 1-33. https://doi.org/10.1016/0012-8252(76)90052-0
- Teixeira, L. R., Lima, E. S., Neves, J. P., Santos, R. A., Santiago, R. C., Melo, R. C. (2014). Mapa Geológico e de Recursos Minerais do Estado de Sergipe. Escala 1:250.000. Aracaju: CPRM-CODISE.
- Janousek, V., Farrow, C. M., Erban, V. (2006). Interpretation of Whole-rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDKit). *Journal of Petrology*, 47, 1255-1259.
- Whitney, D. L., Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. *American Mineralogist*, 95, 185-187. https://doi.org/10.2138/am.2010.3371
- Van Schmus, W. R., Oliveira, E. P., Da Silva Filho, A., Toteu, S. F., Penaye, J., Guimarães, I. P. (2008). Proterozoic Links between the Borborema Province NE Brazil and the Central African Fold Belt. *Geological Society Lond. Special Publ*, 294, 69–99. https://doi.org/10.1144/SP294.5

CAPÍTULO 2 – PETROLOGIA DO STOCK SERRA DA VACA, DOMÍNIO POÇO REDONDO, SISTEMA OROGÊNICO SERGIPANO

Petrologia do Stock Serra da Vaca, Domínio Poço Redondo, Sistema Orogênico Sergipano

Douglas Barreto de Oliveira¹, Herbet Conceição¹, Maria de Lourdes da Silva Rosa¹

¹Programa de Pós-Graduação em Geociências e Análise de Bacias (PGAB), Laboratório de Petrologia Aplicada à Pesquisa Mineral (LAPA), Universidade Federal de Sergipe – UFS, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, CEP 49100-000 – São Cristóvão, SE, BR (dbogeo@gmail.com; lrosa@academico.ufs.br; herbet@academico.ufs.br)

Resumo

O Stock Serra da Vaca (SSV, 19 km²) é alongado NE-SW e localiza-se no norte do Subdomínio Poço Redondo, no Sistema Orogênico Sergipano. A orientação deste stock trunca a foliação metamórfica regional NW-SE. O SSV é constituído por biotita granodioritos leucocráticos de cor cinza, textura equigranular fina a média e têm estrutura macica. Sienogranitos e álcali-feldspato granito são presentes. Os minerais acessórios destas rochas são epídoto, zircão, apatita e minerais opacos. O feldspato alcalino é pertítico. Andesina e oligoclásio dos granodioritos apresentam zonação normal, indicativa de cristalização fracionada. A biotita marrom é primária, tem razão Fe/(Fe+Mg) variando de 0,47-0,84 e exibe afinidade química com suítes cálcioalcalinas. O epídoto primário (19,9<%pistacita<28,85) indica cristalização em condições relativamente oxidantes a pressão de 6 kbar (~25 km). Os dados geoquímicos indicam que as rochas do SSV são evoluídas (70%<SiO₂<77,5%), peraluminosas e magnesianas. A filiação magmática dos granodioritos é cálcio-alcalina de alto K, enquanto os sienogranitos apresentam afinidade shoshonítica. As razões (La/Yb)_N variam de 21-70 dos granodioritos, 40 no álcali-feldspato granito e 1,4-2,8 nos sienogranitos. As anomalias de Eu são pouco pronunciadas para a maioria das amostras (0,57<Eu/Eu*<0,94), a exceção do álcali-granito e dos sienogranitos que exibem forte anomalia negativa em európio (0,16-0,30). Os dados químicos de elementos maiores sugerem que o magma SSV tenha se formado a partir de protólitos ígneos máficos e potássicos. As relações entre elementos traços (e.g. Th, Ta, Hf, Y, Nb, Rb) indicam que esses granitos foram gerados em ambiente orogênico em período pós-tectônico. Sugerese que os granodioritos do SSV pertençam à Suíte Intrusiva Coronel João Sá do Subdomínio Macururé, uma vez que apresentam assinatura geoquímica de magmas máficos potássicos, pós-colisionais e intrusivos em arco vulcânico com assinatura de fluidos de subducção.

Palavras-chave: *Stock* Serra da Vaca; Granito Orogênico; Sergipe; Província Borborema

Abstract

The Serra da Vaca Stock (SSV, 19 km²) is elongated NE-SW and is located in the north of the Poco Redondo Subdomain, in the Sergipano Orogenic System. The orientation of this stock cut off the NW-SE regional metamorphic foliation. The SVS is composed of biotite gray leucocratic granodiorites of gray color, fine to medium equigranular texture and have isotropic structure. Syenogranites and alkali-feldspar granite are present. The accessory minerals of these rocks are epidote, zircon, apatite and opaque minerals. Alkaline feldspar is perthitic. Andesine and oligoclase of granodiorites have normal zonation, indicating fractional crystallization. Brown biotite is primary and has Fe/(Fe + Mg) ratio ranging from 0.47-0.84 and exhibits chemical affinity for calc-alkaline suites. The primary epidote (19.9< % pistacite< 28.85) indicates crystallization under relatively oxidizing conditions at a pressure of 6 kbar (~ 25 km). Geochemical data indicate that SVS rocks are evolved (70%<SiO₂<77.5%), peraluminous and magnesian. The magmatic affiliation of granodiorites is high K calc-alkaline, while syenogranites, which are the most evolved, have shoshonitic affinity. The (La / Yb)_N ratios range from 21-70 of the granodiorites, 40 in the alkali granite and 1.4-2.8 in the sienogranites. Eu anomalies are poorly pronounced for most samples (0.57 <Eu / Eu * <0.94), except for alkali-granite and syenogranites which exhibit a strong europium negative anomaly (0.16-0.3). The trace elements data suggest that SVS magma was formed from potassium mafic igneous protoliths. Relationships between trace elements (e.g. Th, Ta, Hf, Y, Nb, Rb) indicate that these granites were generated in an orogenic environment in a post-tectonic period. It is suggested that the SSV granodiorites belong to the Coronel João Sá Intrusive Suite of the Macururé Subdomain, since they have a geochemical signature of potassic, post-collisional and intrusive magmatic magmas in a volcanic arch with the signature of subduction fluids.

Keywords: Serra da Vaca Stock, Orogenic Granite; Sergipe; Borborema Province.

INTRODUÇÃO

A Província Borborema (Almeida et al., 1977), localizada no nordeste brasileiro, tem área de aproximadamente 450.000 km² e sua origem, segundo Van Schmus et. al. (2008), é relacionada a eventos de convergência (ca. 600 Ma) de blocos cratônicos do Oeste da África, Congo-São Francisco e Amazônia. Van Schmus et al. (2008) dividem a Província Borborema em três domínios: setentrional, central e sul.

O domínio sul da Província Borborema reúne o Bloco Pernambuco-Alagoas e o Sistema Orogênico Sergipano (SOS). Esse orógeno, anteriormente denominado de Faixa Sergipana, foi objeto de estudo de vários pesquisadores durante as décadas de 60 e 70 (e.g. Humphrey e Allard, 1969; Silva Filho et al., 1979) e em anos recentes (e.g. Oliveira et al., 2010, 2015, 2017; Conceição et al., 2017). Os resultados destas pesquisas permitiram identificar que a evolução do SOS é de complexa história geológica (Oliveira et al., 2010, 2017) que resultou da formação da parte ocidental do supercontinente Gondwana.

O SOS é interpretado como um orógeno neoproterozoico resultante da colisão entre o Cráton São Francisco e Bloco Pernambuco-Alagoas há aproximadamente 600 Ma (Brito Neves et al., 1977; Oliveira et al., 2010; 2015). Bueno et al. (2009) argumentam, com base em datações U–Pb_{Shrimp} em granitos, que a orogenia que formou o SOS durou 57 Ma (628-571 Ma).

Uma feição importante no SOS é a presença de granitos ediacaranos (e.g. Long et al., 2005; Bueno et al., 2009; Oliveira et al., 2015; Conceição et al., 2017; Lisboa et al., 2019). O desenvolvimento de pesquisas recentes e sistemática em granitos do SOS (e.g. Gentil, 2013; Conceição, 2014; Lisboa, 2014; Santos, 2016; Conceição et al., 2016; Soares, 2018; Sousa et al., 2019; Pinho Neto et al., 2019; Lisboa et al., 2019) aportaram novas informações geológicas, petrográficas, mineraloquímicas e idades. Embora tenhase avançado bastante, ainda existem várias intrusões graníticas carentes de dados sistemáticos de geologia, petrografía, mineraloquímica, geoquímica e geocronologia.

Este trabalho apresenta e discute os primeiros dados petrográficos, de química mineral e geoquímica das rochas que compõem o *Stock* Serra da Vaca (SSV), que é uma intrusão localizada no Domínio Poço Redondo (SPR), norte do SOS. Neste contexto compara-se os dados obtidos do SSV com o de outros corpos graníticos do SPR, bem como rochas migmatíticas encaixantes de forma a se investigar a possibilidade de derivação do SSV a partir da fusão parcial desses migmatitos.

CONTEXTO REGIONAL

O Sistema Orogênico Sergipano (SOS) é formado por faixas que têm orientação ESE-WNW e não se limitam a Sergipe, mas ocorreram igualmente nos estados de Alagoas e Bahia (Figura 1; Brito Neves et al., 1977; Oliveira et al., 2017). As faixas que formam o SOS correspondem a terrenos com características geológicas distintas e são limitadas por zonas de cisalhamentos (Davison e Santos, 1989). Esses subdomínios geológicos identificados por Davison e Santos (1989), Mendes et al. (2011) e Neves et al. (2016) foram nomeados de: Estância, Vaza Barris, Macururé, Marancó, Poço Redondo, Canindé e Rio Coruripe.

Os subdomínios meridionais (Estância e Vaza Barris) são formados por rochas metassedimentares fracamente deformadas a baixo grau metamórfico (Davison e Santos, 1989; Oliveira et al., 2010). O Subdomínio Macururé ocorre na porção central do SOS, compreende rochas metassedimentares, deformadas e submetidas as condições fácies anfibolito, e com várias intrusões graníticas (e.g. Davison e Santos, 1989; Bueno et al., 2009; Conceição et al., 2016). O Subdomínio Marancó é composto por rochas vulcanossedimentares metamorfisadas nas fácies xisto verde e anfibolito e por granitos (Santos et a. 1988; Carvalho, 2005; Oliveira et al., 2015). O Subdomínio Canindé é formado por rochas metavulcanossedimentares, complexos máfico-ultramáficos, diques máficos e félsicos (Davison e Santos, 1989; Oliveira et al., 2010). O Subdomínio Rio Coruripe, localizando na parte norte do SOS, é constituído por rochas supracrustais e granitos de composições variadas (Lima, 2013).

A área deste estudo localiza-se no Subdomínio Poço Redondo (SPR), porção norte do SOS (Figura 2). O SPR é o único subdomínio do SOS que possui migmatitos. A presença desses migmatitos foi utilizada por Santos et al. (1988) e Carvalho (2005) para inferir que o SPR representa o nível crustal mais profundo no SOS.

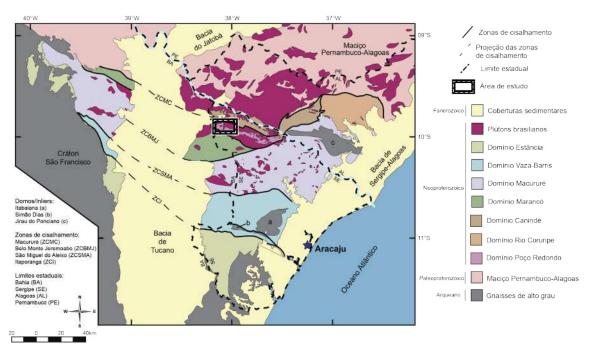


Figura 1. Esquema geológico da parte sul da Província Borborema segundo a compilação elaborada por Pinho Neto et al. (2019).

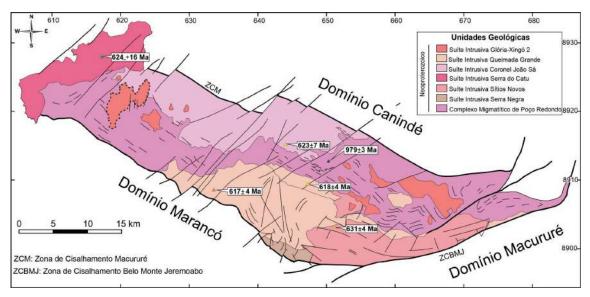


Figura 2. Esquema geológico do Subdomínio Poço Redondo segundo Teixeira et al. (2014). O Stock Serra da Vaca, objeto deste estudo, tem contorno destacado por linha tracejada. Apresenta-se o valor das idades absolutas U-Pb_{Shrimp} obtidas em cristais de zircão disponíveis na literatura para corpos das diferentes suítes intrusivas no Domínio Poço Redondo (Oliveira et al., 2015; Lima, 2016; Sousa et al., 2019). A idade do migmatito de 979 ± 3 Ma foi obtida por Carvalho (2005).

O SPR faz contato tectônico a sul com o Subdomínio Marancó e a norte com o Subdomínio Canindé pela Zona de Cisalhamento Macururé (Figura 2). Ele é composto pelo Complexo Migmatítico Poço Redondo e por várias intrusões graníticas (Santos et al., 1988; Davison e Santos, 1989; Carvalho, 2005; Oliveira et al., 2015; Sousa et al., 2019; Pinho Neto et al., 2019).

Carvalho (2005) classifica os migmatitos do SPR como sendo granodioritos cálcio-alcalinos e os interpreta como a crosta de um arco magmático. Esse mesmo autor obteve idades variando de 960 - 980 Ma (U-Pb $_{Shrimp}$ em zircão) para os paleossomas dos migmatitos e interpreta essas idades como a de cristalização dos protólitos magmáticos. A idade T_{DM} de 1,48 associada a valores E_{Nd} fracamente negativos e positivos dos migmatitos levaram a Carvalho (2005) a interpretar que essas rochas são formadas no Mesoproterozoico a partir de protólito mantélico.

No SPR ocorrem intrusões graníticas ediacaranas com dimensões variadas (Santos et al., 1988; Davison e Santos, 1989; Carvalho, 2005; Oliveira et al., 2015; Sousa et al., 2019). Segundo Teixeira et al. (2014), no SPR ocorrem cinco das suítes intrusivas presentes no SOS: Sítios Novos, Serra do Catu, Coronel João Sá, Queimada Grande e Glória-Xingó 2. A maioria dos granitos dessas suítes (e.g. Queimada Grande, Sítios Novos, Coronel João Sá) segue a orientação regional NW-SE do SPR, sugerindo que a deformação regional influenciou no alojamento destes magmas (Figura 2). Os corpos da Suíte Glória-Xingó 2, diferentemente das demais suítes intrusivas, ocorrem

como diques e estão relacionados às falhas tardias NE-SW do SOS (Santos et al. 1988; Carvalho, 2005). O Batólito Curituba, entretanto, representante da Suíte Serra do Catu, trunca as zonas de cisalhamentos NW-SE (Figura 2), indicando que a sua intrusão foi posterior a estruturação das zonas de cisalhamentos.

Os dados geocronológicos (U-Pb_{Shrimp}) disponíveis para o magmatismo no SPR (Oliveira et al., 2015; Lima, 2016; Sousa et al., 2019) evidenciam que este plutonismo foi ativo durante 14 Ma (617-631 Ma), posicionando-se durante a fase pré-colisional ao evento que formou o SOS (Bueno et al., 2009; Oliveira et al., 2015, 2017).

O *Stock* Serra da Vaca, objeto deste estudo, é associado por Teixeira et al. (2014) ao magmatismo da Suíte Intrusiva Glória-Xingó 2. Essa suíte é descrita como constituída por leucogranitos peraluminosos com muscovita ou biotita contendo granada ou turmalina. A realização de trabalhos em escala de detalhe em corpos desta suíte (e.g. Oliveira, 2016; Gouveia, 2016) identificou que as rochas da Suíte Intrusiva Glória-Xingó 2, no SPR, apresentam composições granodioríticas e monzograníticas, e essas rochas são desprovidas de granada ou turmalina, e a biotita é o mineral máfico dominante. Os dados geoquímicos apresentados por Oliveira (2016) e Gouveia (2016) evidenciam que as rochas da Suíte Intrusiva Glória-Xingó 2 no SPR são fortemente evoluídas (SiO₂>71%), peraluminosas e apresentam afinidades geoquímicas com as séries magmáticas Cálcio-Alcalina de alto K e Shoshonítica, além de exibirem assinatura de granitos de arco vulcânico.

MATERIAIS E MÉTODOS

Para este estudo foram descritos 21 afloramentos nos quais coletou-se 14 amostras representativas. As 14 rochas foram laminadas e as descrições microscópicas foram feitas com microscópios petrográfico (luz transmitida e refletida) e eletrônico de varredura (MEV), utilizando nesse último o detector de elétrons retroespalhados (BSE = *Backscattered Electrons*).

A moda das rochas foi estabelecida com base na estimativa visual de 40 campos em cada lâmina. A nomenclatura das rochas seguiu as recomendações de Le Maître et al. (2002). Após a petrografia, as lâminas foram metalizadas com ouro para posterior análise com os detectores BSE no MEV. As análises químicas pontuais dos minerais foram obtidas com espectrômetro de energia dispersiva (EDS) da marca *Oxford Instruments*[®], modelo X-act, acoplado a um ao MEV (*Tescan*, modelo LMU) do Condomínio de Laboratórios Multiusuários das Geociências da UFS.

As condições de operação do MEV neste estudo foram aceleração de 20 kV, corrente de 17 nA, feixe de elétrons com diâmetro de 0,4 µm e tempo de contagem médio de 30 segundos. As correções utilizadas na quantificação dos dados químicos foi a ZAF (Z=número atômico, A=absorbância e F=fluorescência). A composição química pontual dos cristais foi obtida utilizando-se do *software Quant* da Oxford Instruments[®]. As avaliações dos resultados químicos foram feitas com análises de padrões internacionais de minerais da Artimex (silicatos e óxidos). Os cálculos das fórmulas estruturais dos minerais analisados foram realizados utilizando-se as recomendações de Deer et al. (1992).

A preparação física das amostras de rocha para a realização das análises geoquímicas foi feita no Departamento de Geoquímica do Departamento de Geologia da Universidade Federal de Sergipe. O peso das amostras utilizadas na preparação variou de 1-3 kg. A brita foi obtida com britador de mandíbula de marca Pavitest (I-4198), obtendo-se fragmentos de rocha com dimensões inferiores a 1,5 cm. Cerca de 200 g de brita foi obtida por quarteamento para a confecção do pó. Obteve-se o pó, com granulação inferior a 200 *mesh*, utilizando-se moinho com panela de tungstênio da maraca Pavitest (I4227).

As análises químicas dos elementos maiores foram obtidas no CLGeo-UFS por Fluorescência de Raios-X, utilizando o equipamento Shimadzu 180[®], pelo método do pó prensado e a perda ao fogo foi obtida pela calcinação da amostra a 1000° C. Os elementos traços foram dosados unicamente nas rochas do SSV. As análises dos elementos traços foram dosados por ICP-MS (*inductively coupled plasma mass spectrometry*), após fusão multiácida das amostras, no laboratório comercial da Geosol S.A em Minas Gerais.

GEOLOGIA LOCAL

Stock Serra da Vaca

O SSV (19 km²) é uma intrusão orientada NNE-SSW (Figura 3). O relevo nessa região é caracterizado pela presença de morros esparsos cujas cotas chegam até 400 metros. Os contatos com as rochas encaixantes são de difícil visualização em campo. Todavia, utilizando-se de fotografías áreas, foi possível inferir os contatos com os terrenos do Complexo Migmatítico Poço Redondo, a sul, oeste e leste, e com o Batólito Granítico Poço Redondo, a nordeste (Figura 3). O caráter intrusivo do SSV foi inferido

pela presença de xenólitos de migmatitos encaixantes (Figura 4A). As rochas do SSV têm cor clara (esbranquiçada e acinzentada) e granulação fina a média (Figura 4B). A textura dessas rochas é equigranular, contudo em algumas amostras tem-se textura inequigranular, com fenocristais de plagioclásio e feldspato alcalino. Por vezes, percebese a presença de foliação magmática orientada NNE-SSW, que é marcada pelo alinhamento dos cristais de biotita. Diques graníticos de granulação fina e coloração creme (Figura 4C) também ocorrem de forma esporádica.

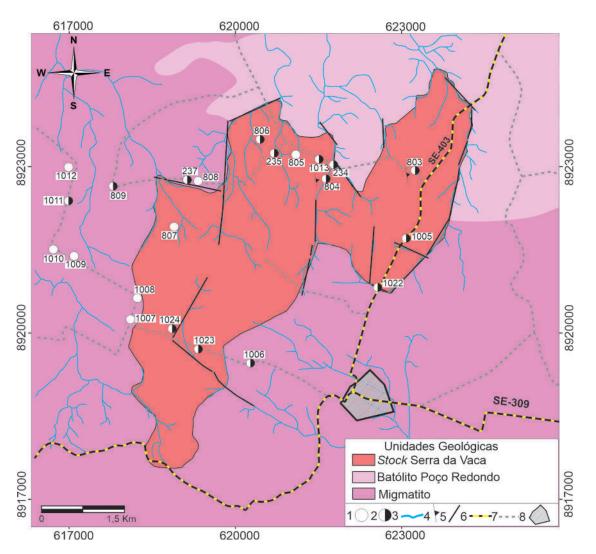


Figura 3. Esquema geológico do *Stock* Serra da Vaca. 1: ponto visitado; 2: ponto amostrado; 3: drenagens; 4: foliação; 5: fraturas/falhas; 6: rodovia estadual; 7: estrada vicinal; 8: Povoado Capim Grosso no município de Canindé de São Francisco, Sergipe.

Figura 4. Imagens de afloramentos da região estudada. (A) Xenólito de migmatito (rocha bandada) em granito do *Stock* Serra da Vaca (SSV). (B) Granito de coloração acinzentada, textura equigranular e com foliação magmática (FM) marcada pelo alinhamento dos cristais de biotita (pontos e traços pretos). (C) Granito inequigranular cortado por dique granito de granulação fina e cor creme. (D) Aspecto da estrutura gnáissica geral observada em afloramentos de migmatitos do Complexo Migmatítico Poço Redondo; a rocha apresenta estrutura gnáissica, exibindo ainda feições nebulíticas e enclaves de gnaisse máfico bandado (centro da imagem) com foliação pré-existente transposta pelo bandamento do migmatito encaixante.

Migmatitos

Os terrenos do Complexo Migmatítico Poço Redondo na área de estudo são constituídos predominantemente por diatexitos. Nessas rochas é possível observar estruturas nebulítica e *schlieren*. O bandamento e a foliação do migmatito seguem o *trend* regional NW-SE. O leucossoma tem cor clara, granulação média a grossa, estrutura maciça e textura inequigranular. O paleossoma exibe cor cinza, textura inequigranular com fenoblastos (0,9-6 cm) de feldspato alcalino dispostos de forma caótica e imersos em matriz de granulação média. Com frequência têm-se enclaves (20 cm- 2 m) de anfibolitos e de gnaisses máficos bandados com foliação discordante daquele presente no migmatito (Figura 4D), o que indica rotação e uma complexa história deformacional.

PETROGRAFIA E QUÍMICA MINERAL

Os dados modais das rochas estudadas são apresentados na tabela 1. As rochas do SSV correspondem predominantemente a biotita granodioritos (amostras 234, 235, 804, 806, 1005, 1013 e 1022). De forma subordinada tem-se biotita álcali-feldspato granito (amostra 803) e sienogranitos (amostras 1023 e 1024; Figura 5).

Tabela 1. Resultados da análise modal dos granitos do *Stock* Serra da Vaca e de rochas migmatíticas do Complexo Migmatítico Poço Redondo. Bt Grd= Biotita granodiorito; Bt Mzg= Biotita monzogranito; Sgr= Sienogranito; Bt Al Gr= Biotita álcali-feldspato granito.

Stock Serra da Vaca										Migmatito				
Amostra	234	235	803	804	806	1005	1013	1022	1023	1024	237	809	1006	1011c
Nome da	Bt	Bt	Bt Al	Bt	Bt	Bt	Bt	Bt	Sgr	Sgr	Bt	Bt	Bt	Bt
rocha	Grd	Grd	Gr	Grd	Grd	Grd	Grd	Grd	_	_	Mzg	Grd	Mzg	Grd
Plagioclásio	47,4	43,0	5,0	49,0	45,0	53,5	45,5	46,1	22,1	21,3	36,0	51,1	36,0	45,0
Microclina	16,5	15,0	67,0	22,5	23,0	16,5	20,5	21,2	43,1	47,1	33,0	15,0	30,0	5,2
Quartzo	28,0	34,0	18,0	19,0	20,0	22,7	24,0	26,0	33,0	29	25,0	20,0	31,0	25,0
Biotita	5,4	5,8	8,9	8,5	11,0	5,5	7,5	5,1	1,3	1,4	5,1	11,2		23,0
Muscovita	1,5	0,9	0,3	0,3	0,4	0,3	0,2	0,3		0,2	0,3	1,0		
Epídoto	0,6	0,8	0,2	0,2	0,1	0,3	0,9	0,4		0,2	0,2		0,3	0,3
Allanita	0,1	0,2	0,1	0,1	0,1	0,2	0,2	0,2		0,1	0,1		0,1	0,1
M. Opacos	0,2	0,1	0,2	0,2	0,1	0,8	0,7	0,4	0,3	0,5	0,1	0,5	1,6	0,9
Apatita	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Zircão	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Titanita	0,1		0,1		0,1		0,3	0,2					0,8	0,2
Pirita														0,1

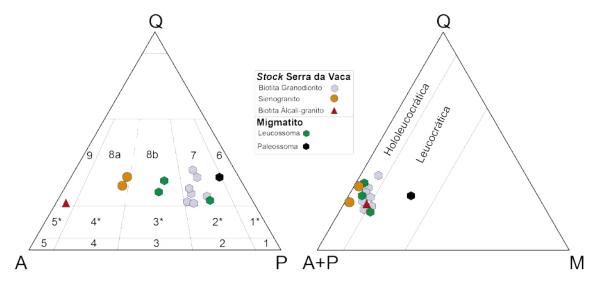


Figura 5. Diagramas ternários QAP e Q(A+P)M para classificações de rochas plutônicas segundo Streckeisen (1976) aplicado às rochas estudadas. Quartzo (Q), feldspato alcalino (A), plagioclásio (P), minerais máficos (M). 1 = diorito, 2 = monzodiorito, 3 = monzonito, 4 = sienito, 5 = álcali-feldspato sienito, 6= tonalito, 7=granodiorito, 8a= sienogranito, 8b= monzogranito; 9 = álcali-feldspato granito. O asterisco corresponde as variedades de rochas com quartzo.

Biotita granodiorito

Os biotita granodioritos ocorrem nas regiões centro-norte do SSV e são as que predominam neste *stock*. Essas rochas apresentam coloração acinzentada a esbranquiçada, granulação fina a média, com texturas hipidiomórfica equigranular (Figura 6A) e ocasionalmente inequigranular.

Os cristais de plagioclásio (Tabela 2; Figura 7A) dos biotita granodioritos correspondem a oligoclásio (An₁₄₋₂₉) e andesina (An₃₀₋₄₉). Esses cristais são subédricos, anédricos e têm tamanhos em torno de 0,9 mm. Ocorrem geminados albita e albita-Carlsbad (Figura 6B) e com frequência exibem núcleos sericitazados e periferia sem alteração, sugerindo existência de zonação composicional. O tipo de zonação nos cristais de plagioclásio nas rochas do SSV é normal e é mais evidente nos granodioritos (Figura 7B). O plagioclásio inclui com frequência cristais de: quartzo; biotita; epídoto com núcleo de allanita e figuras de corrosão (Fig. 6F); zircão e apatita.

O feldspato alcalino é pertítico, geminado segundo a lei albita-periclina e por vezes percebe-se relíquias da geminação Carlsbad (Figura 6D). Os tamanhos variam de 0,5 mm a 10 mm, predominando cristais com 1 mm. É poiquílitico e inclui quartzo, biotita marrom, apatita, epídoto e zircão. As composições das fases exsolvidas são: potássica varia de $Or_{83}Ab_{17}$ até $Or_{98}Ab_2$ e a sódica varia de $Or_{0,5}Ab_{98,2}An_{1,3}$ a $Or_0Ab_{100}An_0$ (Figura 7A).

O quartzo é anédrico e exibe extinção ondulante em forma de barra forte a moderada. Os tamanhos variam de 0,15 mm a 2,85 mm. Os contatos são curvilíneos a reentrantes com os demais cristais da rocha. Inclui cristais de zircão, apatita e biotita.

A biotita marrom é euédrica e subédrica (Figura 6E) e os tamanhos variam de 0,12-1,72 mm, predominando cristais com 0,45 mm. Exibe pleocroísmo em tons de marrom escuro (~z'), marrom claro (~y') e amarelo (~x'). Os contatos são retos a irregulares com os demais minerais da rocha. Inclui com frequência apatita; zircão; epídoto zonado e com núcleo de allanita; e minerais opacos. Observa-se a presença de muscovita secundária (<1,1 mm), clorita e minerais opacos posicionados ao longo dos planos de clivagem e fraturas. A biotita tem razão Fe/(Fe+Mg) variando entre 0,565 e 0,678 e valores de Al^{IV} (Tabela 3) que variam de 2,348 a 2,558 átomos por fórmula unitária (apfu; Figura 8A). A maioria dos cristais de biotita apresentam composição magmática preservada, existindo igualmente cristais se alocam no campo da biotita primária reequilibrada (Figura 8B).

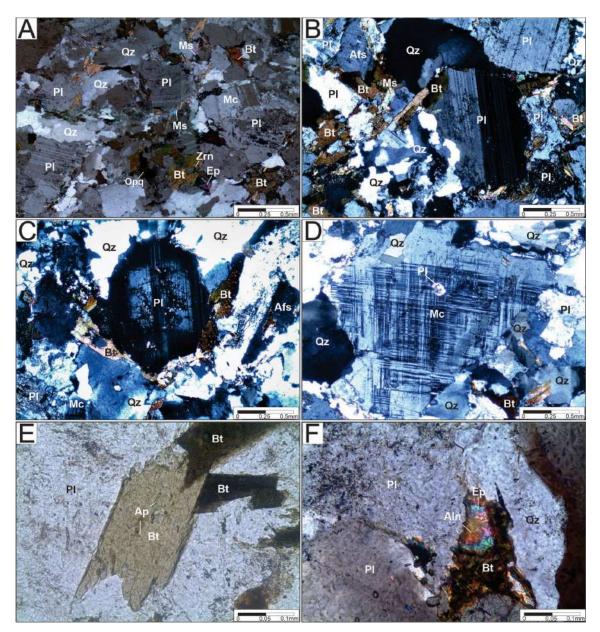
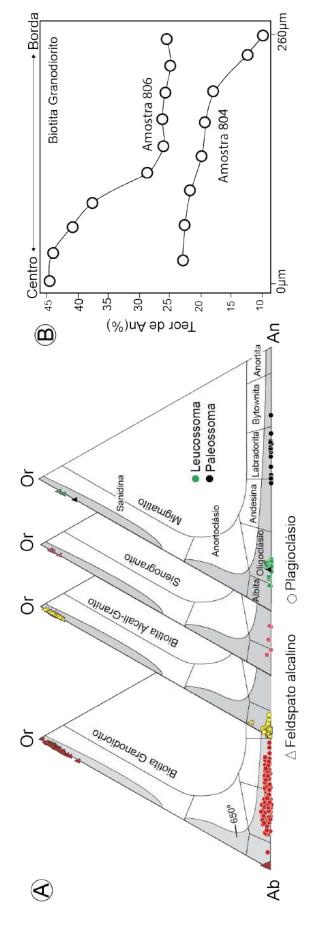



Figura 6. Fotomicrografias de texturas das rochas do *Stock* Serra da Vaca. (A) Textura hipidiomórfica característica das rochas do *Stock* Serra da Vaca. (B) Cristal subédrico de plagioclásio exibindo geminação albita-Carlsbad. (C) Cristal subédrico de plagioclásio com geminação albita-Carlsbad e com extinção ondulante concêntrica, refletindo a zonação composicional. (D) Cristal de microclina anédrica, poiquilítica, incluindo plagioclásio, e com geminação em padrão albita-periclina. (E) Textura frequente dos cristais subédricos de biotita. (F) Cristal de epídoto subédrico com núcleo de allanita, parcialmente incluso em cristais de biotita. Imagens A, B, C, D, F foram obtidas a nicóis cruzados. Imagem E foi obtida a nicóis paralelos. Quartzo (Qz), plagioclásio (Pl), microclina (Mc), feldspato alcalino (Afs), biotita (Bt), epídoto (Ep), allanita (Aln), Muscovita (Ms), Minerais Opacos (Opq), zircão (Zrn), apatita (Ap).

Tabela 2. Análises representativas **por EDS-MEV** de cristais de feldspato com fórmula estrutural calculada com base em 8 oxigênios. Moléculas de ortoclásio (Or), albita (Ab), anortita (An) e celsiana (Cn).

143 88	804	107	8	234 8	46	235	52	194	1005	199	260	1013 266	223	11	1022	274	295 2	1024	4 295
0,7		66,4		61,5 63			8			63,2	6'09	62,4	_	7,	6	0	8		7,
5,0	0 24,9	21,3	25,1		23,0 27,6	,6 24,9	9 19,1	25,9		19,7	25,0	23,8	_	_				22,5 1	19,0 23,4
5,3		1,3		5,2 3			2	7,0	6,1		2,8	4,6		3,7	9,0		3,9	2,8	3,9
8,7		11,0								0,7	8,3	0,6	0,8	9,6		4,0	6,3		
0,3	3						15,6	0,4	0,4	14,8			15,7		1,3	16,3		0,2	16,1
							1,2			1,6			0,4			9,0			2,0
100,0	0 100,0	100,0	100,0	36 6'66	99,9 100,1	,1 100,0	6,66 0	100,1	100,0	100,0	100,0	8,66		100,001	100,001	100,001	99,9 10	100,1 10	100,0 99,9
2,699	9 2,717			2,727 2,818	2,578	78 2,702	2 2,962	2,644	2,697	2,940	2,703	2,765	2,969 2	2,810 2	2,863 2,	2,975 2,	2,795 2,	2,843 2,9	2,962 2,795
2				1,286 1,196	96 1,451	1,304	4 1,048	1,361	1,306	1,080	1,308	1,243	1,037	1,196 1	1,165 1,	1,025 1,	1,218 1,	1,167 1,0	1,042 1,2
53	3 0,228	0,061	0,261 0	0,247 0,142		_	8	0,334	0,291		0,276	0,218	0	0,175 0	0,028	o,	0,185 0,	0,132	0,185
50				0,739 0,855	52 0,675	75 0,784	4 0,036	0,648	069'0	0,063	0,714	0,773	_	0,821 0	0,924 0,	0,036 0,	0,796 0,	0,853 0,0	0,045 0,796
1	2						0,927		0,023	0,878			0,927	0	0,073 0,	0,967	0,	0,011 0,8	55
							0,022			0,029			700,0		ó	0,011		0,0	0,013
တ္သ	5,029 5,019	2,007	5,000 5	5,000 5,011	111 5,034	34 5,038	8 4,995	5,011	5,007	4,991	5,001	2,000	5,012 5	5,002 5	5,053 5,	5,014 4,	4,994 5,	5,006 5,0	5,017 4,994
7,	2						94,1			90,5			92,1			95,4			94,3
73,6	5 77,2	93,9	73,4	75,0 85	85,8 67,2	,2 76,0	0 3,7	64,5	68,8		72,1	78,0	7,1		90,1			85,6	4,5 81,2
24,8		6,1									27,9	22,0		17,6	2,8		18,8	13,2	18,8
							2,2			3,0			0,7			1,1			1,3

Albita (Ab) - Anortita (An) com os resultados da composição dos feldspatos obtidos para os diferentes tipos de rochas do Stock Serra da Vaca e do Complexo Migmatítico Poço Redondo. A área cinza nos diagramas corresponde as composições de feldspatos na temperatura de 650 °C, segundo Fuhrman e Lindslay (1988). [B] Diagrama Teor de Figura 7. Diagramas químicos apresentado as composições dos cristais de plagioclásio e feldspato alcalino nas rochas estudadas. [A] Diagramas ternários Ortoclásio (Or) — Anortita (%An) versus a distância centro-borda em cristais de plagioclásio de granodioritos.

Tabela 3. Análises químicas representativas obtidas com EDS-MEV de cristais de biotita do Stock Serra da Vaca. A fórmula estrutural foi calculada com base em 22 oxigênios.

	0	8	80	80	4	6	4	_		9,5	0	92'6	682	2,211	868	150	337	348	189	582	928	747		19,180
							8,4						_	.,	_	_				` 	٠,			•
808	37,9	2,0	18,4	19,0	0,3	8,4	9,3	0,3			-0,1	_		_	_	_		_		٠.		3 0,142		19,225
							8,9				-0,1		5,67	2,326	0,979	0,33	2,075	0,048	2,071	1,682	3,882	0,093		19,160
	35,8	2,8	16,8	22,8	0,5	8,2	9,1		0,1	96,1	0,0	96,1	5,509	2,491	0,555	0,322	2,940	0,063	1,871	1,790	3,974		0,026	19,541
1022	32,5	2,7	16,8	22,9	0,5	9,7	9,7	0,2		95,9	-0,1	92'8	5,508	2,492	0,579	0,313	2,976	0,063	1,753	1,918	3,902	0,098		19,602
	34,8	3,4	16,5	24,4	0,5	8,9	8,6	0,2	0,1	96,4	, 0,	96,3	5,424	2,576	0,462	0,394	3, 183	0,063	1,586	1,949	3,875	0,099	0,026	19,638
	34,9	3,0	16,5	23,6	0,5	7,4	9,2	0,4	0,1	92'6	-0,2	95,4	5,453	2,547	0,490	0,349	3,082	0,063	1,720	1,834	3,776	0,197	0,026	19,538
013	36,3	5,6	17,6	21,8	0,4	8,2	8,5	9,0	0,1	96,0	6,0	92,8	5,556	2,444	0,726	0,298	2,790	0,050	1,862	1,668	3,684	0,291	0,026	9,395
1									0,1				5,579	2,421	,544	,278	3,007	,063	,853	1,831	3,828), 146	0,026	9,576 1
	36, 1	3,6	17,1	22,1	0,3	7,7	9,2			0,96		0,96		2,477		_		_			_		_	9,427
							9,2		0,1		0,0			2,512 2			_	Ī					026	19,546 19
100							8,4				0,0			.,										
												6		5 2,405									0,026	•
							8,6			95,9		92,	5,57	2,455	0,64	0,23	3,11	0,03	1,64	1,93	4,00			19,622
908	36,1	2,2	17,3	23,1	0,3	7,7	9,2	0,3		96,2	-0,1	96,3	5,554	2,446	0,688	0,255	2,977	0,038	1,762	1,809	3,854	0,146		19,528
	37,2	2,7	17,7	20,7	0,2	8,3	8,9	0,3	0,1	96,0	, 0,	96,2	5,634	2,366	0,791	0,307	2,630	0,025	1,866	1,727	3,830	0,144	0,026	19,345
							9,5			0'96		0'96	2,607	2,393	0,680	0,427	2,607	0,037	1,759	1,839	4,000			19,349
807	37,5	3,1	17,5	20,0	0,4	8,2	6,3		0,1	0,96	0,0	0,96	2,667	2,333	0,777	0,349	2,521	0,049	1,837	1,793	3,974		0,026	19,326
							9,8		0,1	96,1	0,0	96,1	5,829	2,171	1,383	0,271	2,787	0,037	0,817	1,656	3,975		0,025	18,951
803	36,2	2,0	20,1	27,3	0,4	2,3	7,7			92,9		92,9	5,593	2,407	1,248	0,234	3,524	0,050	0,531	1,514	4,000			19,102
	34,5	2,1	21,4	26,8	0,4	2,0	8,9			96, 1		96, 1	5,363	2,637	1,289	0,247	3,486	0,051	0,468	1,772	4,000			19,313 1
	34,9	3,6	16,2	24,5	0,3	6,5	6,6		0,1	96,1	0,0	96,1	,459	2,541	,447	,429	,199	,038	,520	026,	,974		0,026	19,603
235	35,8	3,6	16,8	23,3		6,9	9,5			0,96		0,96		2,479 2	_	_		_		,869	_		0	19,464 19
						8,0	9,5	0,7	0,1		-0,3	96,0	-	•••	_	_	``		_	_	4	0,339	026	19,453 19,
	_	3,1								96,1	•	96,1 9		2,429 2,4	_	_					_	0,	0	19,339 19,4
2								0,4	0,1		-0,2				_	_		_			Ì	0,193	,026	•
												Total		2	o	Õ	ΖĬ	Õ	Ť	Ť	က်	Ö	o	19
Ja																								

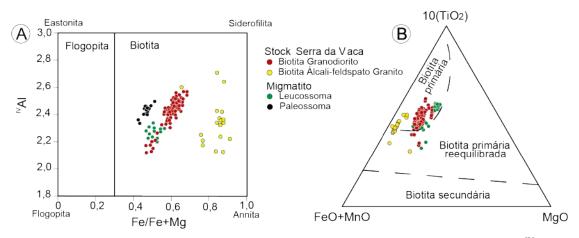


Figura 8. Diagramas utilizados para a classificação de cristais de biotita. (A) Diagrama Al^{IV} *versus* Fe/(Fe+Mg) para nomear cristais de mica marrom segundo Speer (1984). (B) Diagrama triangular (10.TiO₂)-(FeO+MnO)=MgO proposto por Nachit et al. (2005) para discriminação entre cristais de biotita primário, primário reequilibrado e secundário.

O epídoto ocorre em dois grupos distinguíveis nas rochas por suas texturas distintas. O primeiro grupo é formado por cristais euédricos e subédricos com tamanho médio de 0,2 mm e que têm comumente núcleo de allanita (Figura 6F). Estes cristais foram considerados magmáticos de cristalização precoce, anterior aos dos feldspatos e biotita; adicionalmente, presentam também texturas de embainhamento. Cristais com estas feições são interpretados como magmáticos por Zen e Hammarstrom (1984) e Sial (1990). O segundo grupo, com granulometria < 0,08 mm, é formado por cristais anédricos, subédricos e euédricos aciculares e estão associados à saussutização do plagioclásio. As análises químicas dos cristais de epídoto apresentam conteúdo da molécula de pistacita ([Fe³⁺/Fe³⁺+Al]*100) variando de 19,9% a 28,8% (Tabela 4), sendo que os cristais do primeiro grupo apresentaram os maiores conteúdos de pistacita. Segundo alguns autores (e.g. Tulloch, 1979; Johnston e Wyllie, 1988; Sial, 1990; Sial e Ferreira, 2015) o percentual de pistacita (Ps) no epídoto pode indicar origem magmática ou hidrotermal. Quando os cristais de epídoto apresentam teores de Ps, variando de 24% a 29%, infere-se origem magmática. Por outro lado, quando os teores de Ps são menores que 24% e no intervalo de 36-48% atribui-se origem hidrotermal. Deste modo, com base nos dados obtidos, os cristais de epídoto do SSV são magmáticos com alguns indivíduos hidrotermais.

Os minerais acessórios destas rochas são: allanita (<0,2 mm) subédrica, zonada e metamitizada; ilmenita; magnetita; titanita; zircão e apatita. O EDS possibilitou ainda identificar a presença dos seguintes minerais acessórios: torita, bastnäsita, calcita, fluorita e monazita. A torita, bastnäsita e calcita ocorrem associados à allanita, sendo provavelmente produto de sua alteração. A fluorita e monazita são inclusões frequentes em biotita.

Tabela 4. Análises químicas representativas de cristais de epídoto obtidas por EDS-MEV de rochas do Stock Serra da Vaca. O cálculo da fórmula estrutural foi feito com base anidra em 25 oxigênios.

		234			235			804			908			1005		1013		1022	
SiO ₂	38,4	39,4	40,8	37,4	38,9	39,9		41,9	42,5	42,8	39,6	40,2	38,9	39,3	39,0	39,0		40,5	41,6
Al_2O_3		25,9	24,8	23,4	24,9	26,0		26,6	26,1	25,6	25,0	26,7	23,8	24,9	25,0	24,8		24,9	24,5
FeO		11,0	11,3	13,1	12,1	10,5	11,5	2,6	9,6	10,3	12,0	9,6	13,6	12,1	12,2	12,2	12,5	12,1	11,8
CaO		23,8	23,1	26,0	24,1	23,6		21,8	21,7	21,3	23,4	23,5	23,6	23,4	23,6	23,6		22,5	21,2
Total		100,1	100,0	6,66	100,0	100,0	7	100,0	99,9	100,0	100,0	100,0	6,66	2,66	8,66	9,66		100,0	99,1
S	5,88	6,01	6,21	5,83	2,97	6,07		6,30	6,38	6,42	6,05	6,10	5,99	6,03	5,99	00'9	90'9	6,16	6,31
¥	4,80	4,66	4,45	4,30	4,51	4,66		4,71	4,62	4,53	4,50	4,77	4,32	4,50	4,53	4,50	4,45	4,47	4,38
Fe ³⁺	1,45	1,40	1,44	1,71	1,55	1,34	1,46	1,22	1,21	1,29	1,53	1,22	1,75	1,55	1,57	1,57	1,60	1,54	1,50
Ca	3,89	3,89	3,76	4,34	3,96	3,85		3,51	3,49	3,42	3,83	3,82	3,90	3,85	3,88	3,89	3,80	3,67	3,45
I	1,00	1,00	1,00	1,00	1,00	1,00		1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Total	17,00	16,96	16,85	17,17	17,00	16,93	_	16,74	16,70	16,67	16,93	16,91	16,97	16,94	16,96	16,96	16,91	16,84	16,63
%Ps	23,2	23,2	24,4	28,4	23,2 23,2 24,4 28,4 25,6 22,3	22,3	24,5	20,6	20,7	22,2	25,4	20,3	28,8	25,6	25,7	25,9	26,4	25,6	25,5

Biotita álcali-feldspato granito

A amostra 803 tem composição de biotita álcali-feldspato granito e ocorre na região nordeste do SSV. Essa rocha tem cor acinzentada, textura inequigranular, granulação fina a média e a foliação magmática orienta cristais de biotita.

O plagioclásio é albita (An ₂₋₄, Figura 7A), diferindo das outras rochas que compõem o SSV. Esses cristais apresentam formas subédrica, anédrica e exibe geminação albita. Os tamanhos variam de 0,2-2,0 mm, predominando os de 0,8 mm. Os contatos são irregulares com os demais cristais da rocha. Por vezes, quando em contato com o feldspato potássico nota-se a presença da textura mirmequítica. Inclui quartzo anédrico (<0,2 mm), epídoto anédrico (<0,2 mm), biotita subédrica (>0,5 mm) e apatita euédrica (<0,05 mm).

A microclina pertítica é subédrica, anédrica e apresenta geminação albitapericlina com resquícios da Carlsbad. A granulação varia de 0,8 mm a 2,0 mm,
predominando indivíduos com 1,2 mm. Os contatos são irregulares com os demais
cristais da rocha. Observam-se inclusões de quartzo anédrico (<0,15 mm), epídoto
anédrico (<0,2 mm), biotita subédrica (<0,4 mm), apatita subédrica (<0,05 mm) e albita
(<0,4 mm). As composições das fases exsolvidas na microclina são: potássica
Or_{91,3}Ab_{8,7}An_{0,0} até Or_{97,1}Ab_{2,9} An_{0,0} e sódica Ab₉₈Or₂An₀ até Ab₁₀₀Or₀An₀ (Figura 7)

Os cristais de quartzo são anédricos, com tamanhos variando de 0,2-1,66 mm, e predomina os cristais com 0,5 mm. É frequente a presença de extinção ondulante em barra. Os contatos são amebóides com outros cristais da rocha.

A biotita marrom (<2 mm) subédrica exibe pleocroísmo marrom avermelhado a marrom amarelado. Os contatos são irregulares com albita, microclina e quartzo. Inclui zircão, minerais opacos e quartzo. As análises químicas destes cristais apresentam razões Fe/(Fe+Mg) variando de 0,77-0,91 (Figura 8A) e são superiores a de outros cristais de biotita do SSV. No diagrama de Nachit et al. (2005) esses cristais posicionam-se no campo da biotita primária (Figura 8B).

Sienogranitos

Os sienogranitos (amostras 1023 e 1024) localizam-se na região sul do SSV (Figura 3). Apresentam estrutura maciça, coloração rósea, textura equigranular e granulação fina a média.

A microclina pertítica é subédrica, anédrica e apresenta geminação albitapericlina. Os tamanhos dos cristais variam de 0,3-2,0 mm, com o predomínio daqueles com 0,9 mm. Inclui frequentemente plagioclásio, quartzo e biotita. As composições das fases exsolvidas são: potássica (Or_{91,7-95,4}Ab_{8,3-4,6}An₀₋₀) e a sódica (Ab₁₀₀Or₀An₀; Figura 7A).

O plagioclásio nessas rochas é zonado e corresponde à albita (An₇₋₁₀) e oligoclásio (An₁₃₋₁₉; Figura 7). Os tamanhos variam de 0,2 a 2,0 mm, predominando cristais com 0,8 mm. Apresenta também geminação albita e inclusões de quartzo; epídoto zonado e com núcleo de allanita e biotita.

Os cristais de biotita (<0,4 mm) apresentam-se alterados para clorita e muscovita. Associados tem-se cristais anédricos de ilmenita e magnetita anédricas. O quartzo (0,1 mm a 1,9 mm) é anédrico e apresenta extinção ondulante por setor. O epídoto tem cor verde-clara e exibe forma anédrica. Os tamanhos variam de 0,04 mm a 0,1 mm, com o predomínio dos cristais com 0,08 mm. Os cristais de zircão e apatita são euédricos e seus tamanhos não ultrapassam 0,12 mm. Os cristais de magnetita e ilmenita (0,08 mm a 0,6 mm) são anédricos e ocorrem intimamente associados à desestabilização da mica marrom.

Migmatito

O leucossoma do migmatito apresenta composições de monzogranito (amostras 809 e1006) a granodiorito (amostra 237) (Figura 5). Essas rochas têm granulação fina a média, com texturas inequigranular, porfiroblástica de matriz granoblástica. O plagioclásio é subdioblástico e corresponde ao oligoclásio (An_{15,4-20}; Figura 7A). A microclina (Or_{84,2} Ab_{15,8} – Or_{90,8}Ab_{9,2}) é subdioblástica e tem tamanhos menores que 2,0 mm. A biotita marrom (Figura 8A) apresenta razões Fe/(Fe+Mg) variando entre 0,469-0,538 e valores de Al total de 3,1-3,5 apfu. Apresenta composições que se alocam no campo dos cristais primários na Figura 8B. Os minerais acessórios são: epídoto, zircão, apatita, rutilo e ilmenita e magnetita

O paleossoma do migmatito estudado (amostra 1011C) corresponde a granodiorito leucocrático. Esta rocha tem granulação média, textura granoblástica e inequigranular. Os cristais de plagioclásio são subdioblásticos (0,3-6 mm), apresentam geminação albita e têm composições de andesina (An₄₈₋₅₀), labradorita (An₅₁₋₆₇) e bytownita (An₇₄; Figura 7). Ocasionalmente alguns cristais exibem *kink-bands* e em outros observam-se bordas recristalizadas. A microclina (Or₈₄₋₉₀Ab₁₆₋₁₀) é subdioblástica

e geminada albita-periclina, por vezes as bordas apresentam-se recristalizadas. O quartzo é xenoblástico e tem tamanho entres intervalos de 0,1-2,1 mm e exibe extinção ondulante. A biotita marrom (0,1-2,8 mm), subdioblástica, ocorre orientada pela foliação metamórfica. Exibe razão Fe/(Fe+Mg) variando de 0,42 a 0,51 e o conteúdo de Al_{total} variando de 2,8-3,1 apfu (Figura 8A). A mineralogia acessória do paleossoma é constituída por epídoto (<0,4 mm), allanita (<0,34 mm), titanita (<0,9 mm), ilmenita (0,35 mm), pirita (0,1 mm), zircão (<0,07 mm) e apatita (0,03mm).

GEOQUÍMICA

Foram realizadas 13 análises químicas em rocha total em amostras representativas do SSV (10 amostras) e do migmatito (3 amostras). Os dados químicos obtidos estão apresentados na tabela 5.

As rochas do SSV são evoluídas, com os conteúdos (em peso) de SiO₂ variando de 70,3-77,4%. Os biotita granodioritos são as rochas que apresentam os menores valores de sílica (70<%SiO₂<74), já o biotita álcali-granito e os sienogranitos exibem os valores mais elevados (75<%SiO₂<77,5%). As razões K₂O/Na₂O dessas rochas variam de 0,81 a 4,35, sendo que as amostras SOS-803 (biotita álcali-granito), 1023 e 1024 (sienogranitos) são as que exibem as maiores razões (2,63< K₂O/Na₂O<4,35).

No diagrama total de álcalis *versus* SiO₂ (Figura 9A), com os campos de Middlemost (1985), as rochas do SSV alocam-se no campo dos granitos. As rochas menos evoluídas do SSV exibem aumento do total de álcalis com o aumento do SiO₂, sugerindo que a cristalização do feldspato alcalino é tardia. As amostras do migmatito posicionam-se nos campos do granodiorito (paleossoma) e do granito (leucossoma).

As rochas do SSV são peraluminosas (1<A/CNK<1,1). Os migmatitos apresentam-se metaluminoso (paleossoma) e peraluminoso (leucossoma). Essas rochas (SSV e migmatitos) alocam-se no domínio dos granitos do tipo-I de Chappel e White (1992) indicando fonte e protólito ígneos (Figura 9B).

A afinidade geoquímica das rochas estudadas é investigada de acordo com a correlação entre SiO₂ e K₂O proposta por Peccerillo e Taylor (1976). Neste diagrama (Figura 9C) as rochas menos diferenciadas (granodioritos) se posicionam no campo delimitado para as suítes cálcio-alcalina de alto K₂O. As outras rochas (biotita álcaligranito e sienogranitos) posicionam-se no campo das suítes shoshoníticas. Observa-se ainda neste mesmo diagrama que estas rochas do SSV exibem correlação positiva do K₂O com o aumento do SiO₂, reforçando a hipótese que a cristalização do feldspato alcalino é tardia.

Tabela 5. Análises químicas de elementos maiores e traços das rochas do *Stock* Serra da Vaca, do Complexo Migmatítico de Poço Redondo e alguns parâmetros geoquímicos. LOI: perda ao fogo. Bt Grd= Biotita granodiorito; Bt Mzn= Biotita monzogranito; Sgr= Sienogranito; Bt Al Gr= Biotita álcali-granito. Parâmetros geoquímicos: somatório dos Elementos Terras Raras (Σ ETR); razão entre La_N e Yb_N ((La/Yb)_N); e (Eu/Eu*) = Eu_N/ $\sqrt{(Sm_NGd_N)}$.

			Stoc	ck Serra	da Vaca						M	ligmatite	os
Amostra	806	1005	804	234	235	1022	1013	803	1024	1023	1011C	237	1006
Nome da rocha	Bt Grd	Bt Al Gr	Sgr	Sgr	Bt Grd	Bt Grd	Bt Mzn						
% peso													
SiO_2	70,30	71,00	71,30	71,43	71,73	72,60	73,20	75,10	75,30	77,40	68,3	70,10	76,83
TiO ₂	0,38	0,35	0,33	0,37	0,31	0,19	0,31	0,18	0,09	0,05	0,4	0,25	0,12
Al_2O_3	15,20	15,75	14,85	14,67	14,52	14,00	15,05	10,70	12,30	11,75	15,5	14,96	12,31
Fe_2O_3	2,56	2,66	2,33	2,70	2,69	1,57	1,98	1,91	1,21	0,95	3,35	2,69	1,44
MnO	0,04	0,04	0,05	0,06	0,04	0,03	0,05	0,03	0,02	0,01	0,06	0,04	0,02
MgO	0,65	0,71	0,58	0,65	0,55	0,36	0,53	0,08	0,10	0,04	1,78	0,56	0,04
CaO	2,68	3,15	2,37	2,28	1,99	1,72	2,05	0,11	0,50	0,30	3,29	2,46	0,42
Na ₂ O	3,83	3,67	3,73	3,66	3,47	3,44	4,12	1,53	2,34	2,11	3,73	3,31	2,71
K_2O	3,09	3,02	3,54	3,21	3,92	4,57	3,64	6,65	6,16	6,32	2,28	5,45	6,11
P_2O_5	0,14	0,13	0,11	0,12	0,10	0,08	0,12	0,01	0,02	< 0.01	0,13	0,12	0,01
LOI	0,56	0,61	0,43	0,60	0,40	0,74	0,64	0,41	0,46	0,56	0,51	0,5	0,24
Total	99,43	101,09	99,62	99,75	99,72	99,30	101,69	96,71	98,50	99,49	99,56	100,44	100,24
ppm													
Cr	<10,0	10,0	<10	10,0	10,0	<10,0	10,0	<10,0	<10,0	<10,0			
V	31,0	36,0	30,0	18,0	11,0	18,0	35	8,0	7,0	8,0			
Sn	2,0	1,0	2,0	2,0	2,0	1,0	2,0	1,0	<1,0	<1,0			
Ba	1085	1475	936	1033	1471	956	886	281	1600	1285			
Rb	101	75,8	108,5	114,60	110,8	133,50	111	149,50	164	151			
Sr	441	538	347	374,60	440,2	292	334	73,40	127	183			
Ga	22,6	20,9	22,80	20,10	18,20	19,70	25,40	24,0	16,70	15,10			
Zr	258	297	238	265,90	197,40	123,0	199	716	163	149			
Y	9,2	8,60	16,50	11,90	8,50	14,40	15,40	23,10	71,00	11,20			
Cs	2,65	1,47	4,49	5,0	2,60	1,42	1,42	1,95	3,64	1,56			
Nb	11,8	6,20	14,10	17,80	9,30	12,10	22,70	17,30	5,70	3,10			
U	0,57	0,76	1,36	1,50	0,80	1,73	0,49	0,92	2,44	2,29			
La	41,60	53,70	52,80	43,0	52,10	30,20	36,80	100,50	28,90	4,20			
Ce	86,90	112,50	120	88,40	104,10	62,70	84,50	234	100,50	22,70			
Pr	9,30	11,80	12,45	9,77	11,02	7,14	9,18	25,10	8,40	1,40			
Nd	34,30	41,70	45,10	34,70	39,50	26,30	33,30	90,80	33,70	5,60			
Sm	5,82	6,55	7,84	5,59	6,63	5,00	5,77	18,55	8,92	2,57			
Eu	1,34	1,53	1,23	1,12	1,39	0,86	1,19	0,82	0,94	0,63			
Gd	3,36	3,81	4,35	3,54	4,27	4,37	4,17	14,10	10,20	2,16			
Tb	0,42	0,46	0,64	0,47	0,46	0,57	0,56	1,79	1,73	0,43			
Dy	2,41	2,22	3,71	2,45	2,02	3,59	3,45	8,78	12,45	2,92			
Но	0,30	0,32	0,64	0,47	0,32	0,69	0,58	1,22	2,78	0,60			
Er	0,86	0,89	1,89	1,16	0,61	1,86	1,52	2,66	7,64	2,03			
Tm Yb	0,14	0,13 0,84	0,28	0,18	0,08	0,30	0,21	0,29	1,10	0,31			
r b Lu	0,64 0,10	0,84	1,65 0,24	1,29 0,22	0,50 0,08	1,74 0,30	1,13 0,14	1,70 0,27	6,93 1,09	1,94 0,41			
Lu Ta	0,10	0,15	1,20	0,22	0,08	0,30	0,14	0,27	0,60	0,41			
1a Hf	7,20	8,0	7,30	7,20	5,20	0,70 4,0	5,50	20,20	0,60 6,90	0,50 7,70			
Th	13,0	10,90	13,90	10,60	17,60	10,0	10,60	14,05	13,05	10,45			
ΣETR	187,49	236,6	252,82	192,36	223,08	145,62	182,5	500,58	225,28	47,9			
K ₂ O+Na ₂ O	6,92	6,69	7,27	6,87	7,39	8,01	7,76	8,18	8,50	8,43	6,11	8,76	8,82
K ₂ O/Na ₂ O K ₂ O/Na ₂ O	0,92	0,82	0,95	0,88	1,13	1,33	0,88	4,35	2,63	3,00	0,64	1,65	2,25
$(La/Yb)_N$	43,47	42,75	21,40	22,29	69,68	11,61	21,78	39,53	2,79	1,45	J,U-T	1,00	2,23
Eu/Eu*	0,93	0,94	0,65	0,77	0,80	0,57	0,75	0,16	0,30	0,82			

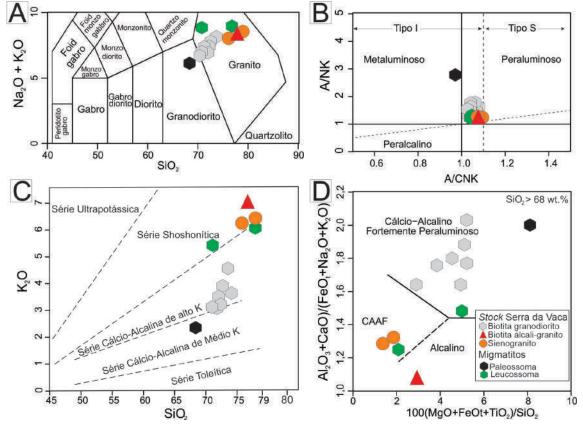


Figura 9. Diagramas geoquímicos aplicados às rochas estudadas. A) Diagrama TAS (Na_2O+K_2O versus SiO_2) com campos definidos por Middelmost (1985). B) Diagrama A/KN [$Al_2O_3/(K_2O+Na_2O)$] versus A/CNK [$Al_2O_3/(CaO+Na_2O+K_2O)$] de Maniar e Piccoli (1989) e com os campos dos granitos dos tipos I e S, segundo Chappell e White (1992). C) Diagrama K_2O versus SiO_2 de Peccerillo e Taylor (1976) modificado por Corriveau e Gorton (1993). D) Diagrama ($Al_2O_3+CaO)/(FeO_t+Na_2O+K_2O)$] versus [100(MgO+FeOt+TiO₂)/SiO₂] de Sylvester (1989) para classificação de granitos diferenciados ($SiO_2>69\%$). CAAF = cálcio-alcalino altamente fracionado.

Alguns autores, como por exemplo Sylvester (1989), chamam atenção para o fato dos granitos diferenciados (SiO₂>68%) convergirem para mesma posição ao serem alocados em digramas geoquímicos elaborados com os elementos maiores, existindo dificuldade em identificar a série magmática a que pertencem. Neste sentido, Sylvester (1989) propõe o diagrama com razões entre elementos maiores para separar os tipos de granitos fracionados: cálcio-alcalinos altamente fracionados, cálcio-alcalino fortemente peraluminoso e alcalino (Figura 9D). As amostras dos granodioritos do SSV neste diagrama alocam-se no campo cálcio-alcalino fortemente peraluminoso, já os sienogranitos (1024 e1023), que correspondem as rochas mais evoluídas, posicionam-se no campo cálcio-alcalino fortemente diferenciado. A amostra 803 posiciona-se no campo alcalino.

A maioria das amostras do SSV se posicionam no diagrama de Frost et al. (2001) no campo magnesiano, o que é coerente com ambiência orogênica do Sistema Orogênico Sergipano. As rochas mais evoluídas (803, 1023 e 1024) do SSV mostram assinaturas "ferroanas" (Figura 10A). No diagrama MALI (Frost et al., 2001) os granitos estudados abrangem dois campos: o cálcio-alcalino e o álcali-cálcico (Figura 10B).

Os espectros dos elementos terras raras (ETR) dos granodioritos e do álcalifeldspato granito apresentam-se com padrões inclinados e marcados enriquecimento dos ETR leves em relação ao ETR pesados (11<(La/Yb)_N<70; Figura 11). Os sienogranitos, que se representam as rochas mais evoluídas (SiO₂>75%), exibem espectros distintos das outras rochas do SSV e se caracterizam por baixas razões (La/Yb)_N, com valores de 1,45 e 2,79 (Tabela 5). Os padrões da maioria das amostras são paralelos, sobretudo entre os granodioritos. Percebe-se que os padrões dos sienogranitos e do álcali-feldspato granito são bem distintos dos granodioritos, podendo indicar que essas rochas não são cogenéticas aos granodioritos ou sofreram processos de modificações posteriores. As anomalias de Eu são pouco pronunciadas para a maioria das amostras (0,57<Eu/Eu*<0,97), a exceção das amostras 803 (biotita álcali-granito) e 1024 (sienogranito) que exibem forte anomalia negativa 0,16 e 0,30, respectivamente.

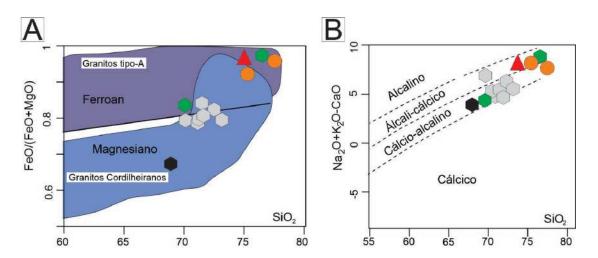


Figura 10. Diagramas geoquímicos de Frost et al. (2001). A) Diagrama SiO₂ versus FeO/(FeO+MgO) com os campos de associações magnesiana (granidos cordilheiranos) e *ferroan* (granitos do tipo A). B) Diagrama SiO₂ versus Modified Alkali-lime Index [MALI=Na₂O+K₂O-CaO] com os campos de rochas segundo Frost et al. (2001). Mesmos símbolos da figura 9.

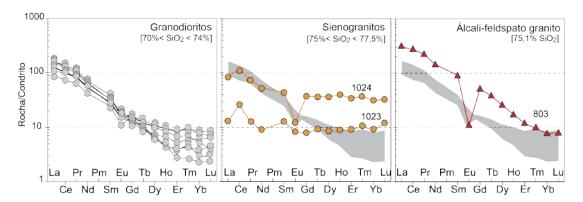


Figura 11. Diagramas com Elementos Terras Raras, normalizados pelo condrito de Nakamura (1974), dos granitos do *Stock* Serra da Vaca. A área sombreada representa aquela ocupada pelos espectros dos biotita granodioritos para efeito de comparação.

Em diagramas multielementares (Figura 12) observa-se, em todas as amostras do SSV, o enriquecimento dos elementos LILE (K, Ba, Rb e Th) em comparação com os HFSE (Ta, Nb e Y). Essa característica é, segundo Fowler et al. (2008), feição típica de granitos cálcio-alcalinos (Figura 12). Ainda é possível observar empobrecimentos relativos em Nb, Sr, P e Ti, sendo esses mais marcados nos termos mais evoluídos (álcali-feldspato granito e sienogranitos).

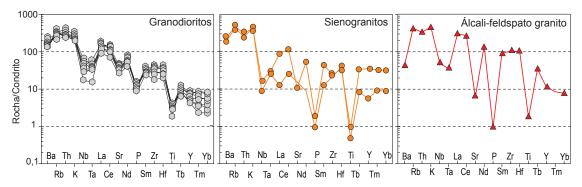


Figura 12. Diagramas multielementar de distribuição de elementos traços para os granitos do SSV, normalizados pelos valores do condrito de Thompson (1982).

DISCUSSÃO

A orientação NE-SW do *Stock* Serra da Vaca é paralela ao conjunto de falhas presentes na região norte do Domínio Poço Redondo. Santos et al. (1988) e Carvalho (2005) propuseram que os granitos no Domínio Poço Redondo com orientação NE-SW, como é o caso do SSV, reflitam colocação condicionada às falhas em período póstectônico. A ausência nas rochas do SSV da foliação regional (NW-SE) bem desenvolvida nos migmatitos é a favor da hipótese que a colocação deste *stock* seja posterior ao metamorfismo regional de médio grau.

Os dados modais das rochas estudadas do SSV evidenciam que este *stock* é constituído essencialmente por granodioritos (região central), com ocorrências subordinadas sienogranitos (região sul) e álcali-feldspato granitos (região leste). Esses mesmos dados indicam afinidade cálcio-alcalina e origem dos granodioritos a partir de fusão parcial de protólito ígneo (Figura 13A). Os sienogranitos e álcali-feldspato granito alocam-se no campo das rochas de tipo-A. Enquanto que os granodioritos assemelham-se aos granitos de tipo-I. A composição química dos cristais de biotita dos granodioritos indicam afinidade cálcio-alcalina (Figura 13B) das rochas. Os cristais de biotita do álcali-granito posicionam-se nos campos cálcio-alcalino e peraluminoso.

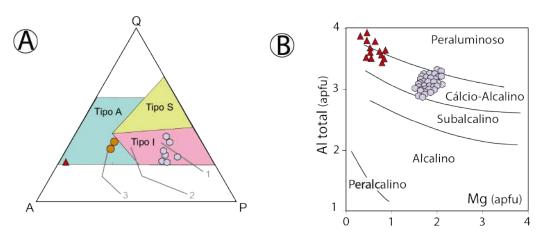


Figura 13. [A] Diagrama modal QAP com campos estabelecidos por Bowden et al. (1984) para diferente tipos de granitos: anorogênicos (Tipo A) e formados por fusão de protólito metassedimentar (Tipo S) e ígneo (Tipo I). As retas no diagrama correspondem as evoluções das séries ígneas propostas por Lameyre e Bowden (1982): (1) Cálcio-Alcalina de médio K (Tonalítica); (2) Cálcio-Alcalina de alto K (Granodiorítica); (3) Shoshonítica (Monzonítica). [B] Diagrama Mg *versus* Al_{total} de Nachit et al. (1985) para inferência da afinidade peraluminosa, cálcio-acalina, subalcalina, alcalina e peralcalina, aplicado aos cristais de biotita das rochas do *Stock* Serra da Vaca. Mesmos símbolos da figura 9.

Nos granodioritos do SSV o plagioclásio apresenta zonação química normal (Figura 7B) e têm composições variando de andesina até oligoclásio (Figura 7A). Essas feições são indicativas para vários autores (e.g. Loomis, 1982; Galindo et al., 2012) de evolução magmática controlada pelo processo de cristalização fracionada. Observou-se boa correlação negativa entre o SiO₂ e outros óxidos (Figura 14) no SSV que sugere o fracionamento de plagioclásio (CaO, Na₂O, Al₂O₃), minerais opacos (FeOt, TiO₂), epídoto (CaO, FeO, Al₂O₃), apatita (CaO, P₂O₅) e biotita (TiO₂, Al₂O₃, MgO). A presença de anomalias negativas, em Sr, Ti e P nos diagramas multielementares (Figura 12) reforçam a hipótese de fracionamento de plagioclásio, biotita/minerais opacos e apatita respectivamente. Já a correlação positiva do K₂O com o SiO₂ sugere cristalização tardia do feldspato alcalino. O posicionamento dos sienogranitos e álcali-feldspato granito deslocados da tendência evolucional nos diagramas do tipo Harker pode indicar que estas rochas não representem produto da cristalização do magma granodiorítico.

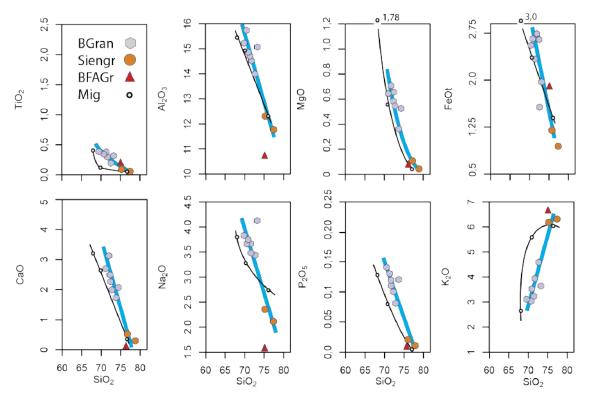


Figura 14. Diagramas de Harker aplicados aos granitos do SSV. Biotita granodiorito (BGran), sienogranito (Siengr), Biotita álcali-feldspato granito (BFAGr) e migmatito (Mig). A linha na cor azul indica a evolução das rochas do SSV e a em preto dos migmatitos.

Ao se comparar as evoluções químicas dos elementos maiores entre as rochas do SSV e os migmatitos (Fig. 14) percebe-se que o TiO₂, FeOt, Na₂O, P₂O₅ e K₂O mostram comportamentos diferentes, com o aumento do SiO₂. As evoluções distintas entre os dois conjuntos de rochas sugerem que o magma do SSV não se originou dos migmatitos.

A presença de epídoto magmático nos granodioritos do SSV indica cristalização deste mineral a pressões da ordem de 6 kbar, conforme sugerido em trabalhos experimentais (e.g Naney, 1980; Zen e Hammarstrom, 1984; Shmidt e Thompson, 1996). Essas pressões equivalem a cerca de 25 km de profundidade. Pressões próximas a estas são descritas em outras regiões da Província Borborema para alojamento de granitos cálcio-alcalinos com epídoto primário (Ferreira et al., 2011; Brasilino et al., 2011; Sial e Ferreira, 2015). Rochas similares com epídoto magmático foram identificadas nas suítes intrusivas Queimada Grande (Sousa et al., 2019) e Sítios Novos (Pinho Neto et al., 2019) no Domínio Poço Redondo. Segundo Brandon et al. (1996), para preservar cristais de epídoto formados a profundidades elevadas é necessário que o magma ascenda relativamente rápido para que o epídoto não seja reabsorvido pelo *melt*.

A associação allanita-epídoto, presente nos granodioritos do SSV, sugere cristalização em condições relativamente oxidantes para diversos autores (e.g. Frost, 1991; Shmidt e Thompson, 1996; Ferreira et al., 2011; Galindo et al., 2012). Condições oxidantes são igualmente responsáveis pela estabilidade da associação titanita-magnetita-quartzo (Wones, 1989) presente nas rochas estudadas. A ausência de pronunciadas anomalias negativas em Eu nos granodioritos pode refletir a presença dessas condições oxidantes. Pois, segundo Hanson (1980) alta fugacidade de oxigênio faz que o Eu⁺² oxide para Eu⁺³ e esse íon não tem tamanho para ser alojado na estrutura do plagioclásio, substituindo o cálcio. Por outro lado, a presença de importante anomalia negativa de Eu no álcali-granito (803) e no sienogranito (1023) podem indicar diminuição das condições de oxidação ou que estas rochas não tenham sido formadas pelo magma responsável pela formação dos granodioritos do SSV.

O caráter pós-tectônico do SSV inferido a partir de geologia e petrografía encontra suporte nos elementos-traço Rb (75-164 ppm), Y (8-71 ppm), Nb (3-22 ppm, Figura 15). A relação entre estes mesmos elementos indica que o magmatismo SSV tem assinatura de ambiente de arco vulcânico. As relações entre os conteúdos de Th, Ta e Hf indicam que as rochas do SSV correspondem a produto de magmatismo de margem continental ativa (Figura 16B). O enriquecimento em Th em relação ao Ta (Figura 15B) reflete, segundo Gorton e Schandl (2002), a assinatura de fluídos ricos em Th característicos de magmas formados em zonas de subducção. Os vales em Ti, Ta e Nb presentes nos diagramas multielementares reforçam essa hipótese (Figura 12).

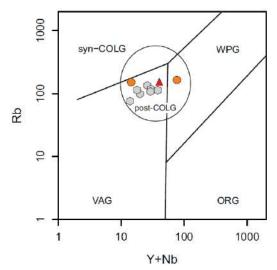


Figura 15. Diagrama Rb *versus* Y + Nb de ambiência tectônica após Pearce et al. (1984) e Pearce (1996). Mesmos símbolos da figura 9. WPG – granitos intra-placa; ORG –granitos de cadeias oceânicas; syn-COLG – granitos sin-colisionais, VAG – granitos de arco-vulcânico; post-COLG – granitos póscolisionais.

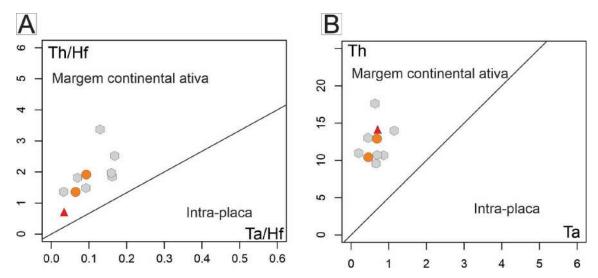


Figura 16. Diagramas de ambiência tectônica após Gorton e Schandl (2002) aplicados aos granitos do SSV. A) diagrama Th/Hf *versus* Ta/Hf. B) diagrama Th *versus* Ta. Mesmos símbolos da figura 9.

Os dados petrográficos, mineraloquímicos e geoquímicos sobre o SSV permitem avaliar a sua filiação com a Suíte Intrusiva Glória Xingó 2 como proposta por Teixeira et al. (2014). De acordo com Santos et al. (1998) e Teixeira et al. (2014) os granitos desta suíte representam o plutonismo mais jovem do Subdomínio Poço Redondo, os quais ocorrem essencialmente na forma de diques e pequenos *stocks*, constituídos por granitos róseos a cinza, granulação fina a média, maciços, classificados como leucogranitos (mais comuns), biotita granitos, muscovita granitos e turmalina-moscovita granitos. Ou seja, têm mineralogia característica de granitos formados a partir da fusão parcial de rochas metassedimentares: granitos tipo S (Chappell e White, 2001). A petrografía dos granodioritos do SSV corresponde a granitos cujo máfico é a biotita, sendo ausente mineralogia peraluminosa. Os dados obtidos sugerem que os granodioritos do Stock Serra da Vaca pertençam a Suíte Intrusiva Coronel João Sá definida por Teixeira et al. (2014), que se caracteriza por reunir granodioritos, dioritos e granitos equigranulares de cor cinza, com poucos autólitos máficos, natureza magnesiana, cálcio-alcalina de alto K metaluminosa a peraluminosa, com assinatura de tipo-I como aparece na figura 17.

As rochas do SSV correspondem a granodioritos cálcio-alcalinos, que segundo Barbarin (1999), resultam de magmatismo com contribuições mantélica e crustal. A inferência sobre a provável fonte para as rochas do SSV é feita utilizando-se dados geoquímicos, e esses indicam que os granodioritos podem ter sido formados por rochas máficas de alto K (Figura 17). Neste mesmo diagrama as fontes para os sienogranitos e migmatito são indicadas como rochas metassedimentares.

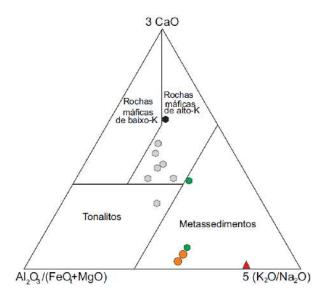


Figura 17. Diagrama ternário Al₂O₃/(FeO+MgO), 3CaO, 5(K₂O/Na₂O) com campos que representam composições de magmas derivados de variadas fontes após Laurent et al. (2014). Mesmos símbolos da figura 9.

CONCLUSÕES

O *Stock* Serra da Vaca, com19 km², é uma intrusão alongada na direção NE-SW, localizada na região NW do Domínio Poço Redondo, no Sistema Orogênico Sergipano. Atribui-se com base nos dados obtidos que este *stock* tem colocação controlada pelas falhas e posiciona-se em período pós-tectônico.

O estudo petrográfico identificou no SSV a presença dominante de biotita granodioritos (centro) e de forma subordinada de sienogranito (sul) e álcali-granito (leste). As texturas ígneas preservadas suportam cristalização pós-tectônica. A variação de composição do plagioclásio (andesina-oligoclásio) e zonação normal sugerem que a evolução do magma granodiorítico se processou por cristalização fracionada. Os dados químicos suportam essa hipótese. Os sienogranitos e álcali-feldspato granito aparentemente não correspondem a produtos fracionados desta cristalização fracionada.

As presenças de epídoto magmático e a paragênese titanita-magnetita-quartzo indicam início da cristalização a profundidades da ordem de 25 km, sob condições relativamente oxidantes. As fracas anomalias em Eu nestas nos granodioritos suportam essa hipótese.

Os dados obtidos para o SSV revelaram que este *stock* não apresenta as características descritas para o magmatismo da Suíte Glória-Xingo 2, de gênese essencialmente crustal. Os dados obtidos sugerem que os granodioritos do SSV pertençam Suíte Intrusiva Coronel João Sá que é bem representada no Domínio Macururé. Nesse contexto, magma cálcio-alcalino responsável pela geração dos granodioritos do SSV apresenta assinatura geoquímica de magmas oriundos de fontes máficas de alto K₂O, pós-colisional e intrusivos em arco vulcânico com assinatura de fluidos da subducção.

AGRADECIMENTOS

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) - 001. O autor D.B. de Oliveira agradece à CAPES por sua bolsa de mestrado. Os autores externam igualmente agradecimento ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo suporte financeiro que permitiram a realização desta pesquisa (processos: 384713/2015-7, 405387/2016-4, 310391/2017-2, 311008/2017-8). Este trabalho é parte da dissertação de mestrado do primeiro autor que foi realizada no Laboratório de Petrologia Aplicada à Pesquisa Mineral (LAPA-UFS). Gostaríamos igualmente de agradecer as contribuições dos revisores da revista.

REFERÊNCIAS

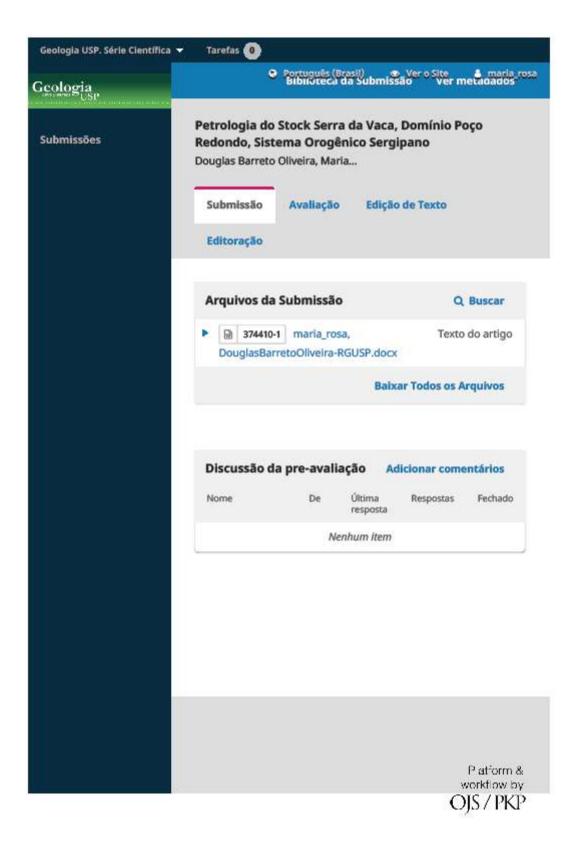
- Almeida F. F. M., Neves B. B. B., Fuck R. A. (1977). Províncias Estruturais Brasileiras. In: SBG, VIII Simp. Geol. Nordeste, Campina Grande, Atas p. 363-391.
- Barbarin, B. (1999). A review of the relationships between granitoid types, their origins and their geodynamic environments. *Lithos*, 46, 605-626. https://doi.org/10.1016/S0024-4937(98)00085-1
- Bowden, P., Batchelor, R. A., Chapell, B. W., Didier, J., Lameyre, J. (1984). Petrological,
 - geochemical and source criteria for the classification of granitic rocks: a discussion. *Physics of the Earth and Planetary Interiors*, 35, 1-11. https://doi.org/10.1016/0031-9201(84)90029-3
- Bueno, J. F., Oliveira, E. P., McNaughton, N., Laux, J. H. (2009). U–Pb dating of granites in the Neoproterozoic Sergipano Belt, NE-Brazil: Implications for the timing and duration of continental collision and extrusion tectonics in the Borborema Province. *Gondwana Research*, 15, 86-97. https://doi.org/10.1016/j.gr.2008.06.003
- Brandon, A. D., Creaser, R. A., Chacko, T. (1996). Constraints on rates of granitic magma transport from epidote dissolution kinetics. *Science*, 271, 1845-1848. https://doi.org/10.1126/Science.271.5257.1845

- Brasilino, R. G., Sial, A. N., Ferreira, V. P., Pimentel, M. M. (2011). Bulk rock and mineral chemistries and ascent rates of high-K calc-alkalic epidote-bearing magmas, Northeastern Brazil. *Lithos*, 27, 441-454.http://doi.org/10.1016/j.lithos.2011.09.017
- Brito Neves, B. B., Sial, A. N., Albuquerque, J. P. T. (1977). Vergência centrífuga residual no sistema de dobramentos Sergipano. *Revista Brasileira de Geociências*, 7, 102-114.
- Carvalho, M. J. (2005). Evolução Tectônica do Domínio Marancó Poço Redondo: Registro das Orogêneses Cariris Velhos e Brasiliana na Faixa Sergipana, NE do Brasil. Tese (Doutorado). Campinas: Universidade de Campinas UNICAMP.
- Conceição, J. A., Rosa, M. L. S., Conceição, H. (2016). Sienogranitos leucocráticos do Domínio Macururé, Sistema Orogênico Sergipano, Nordeste do Brasil: Stock Glória Sul. *Brazilian Journal of Geology*, 46(1), 63-77. https://doi.org/10.1590/2317-4889201620150044
- Conceição, H., Rosa, M. L. S., Conceição, J. A., Lisboa, V. A. C., Pereira, F. S., Teles, D. S., Fernandes, D. M., Sousa, E. S., Cruz, J. W. S., Rezende, H. J. C., Oliveira, I. R., Souza, J. M. D. S., Oliveira, I. L. (2017). Magmatismos no Domínio Macururé, Sistema Orogênico Sergipano: estado de conhecimento. *27º Simpósio de Geologia do Nordeste*. João Pessoa: SBG.
- Corriveau, L., Gorton, M. P. (1993). Coexisting K-rich alkaline and shoshonitic magmatism are affinities in the Proterozoic: a reassessment of syenitic stocks in the southwestern Grenville Province. *Contribution to Mineralogy and Petrology*, 113, 262-279
- Chappell, B. W., White A. J. R. (1992). I- and S-type granites in the Lachlan Fold Belt. *Transation of Royal Society Edinburg: Earth Sciences*, 83(1-2),1-26. https://doi.org/10.1130/SPE272-pl
- Chappell, B. W., White, A. J. R. (2001). Two contrasting granite types: 25 years later. *Australian Journal of Earth Sciences*, 48, 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
- Davison, I., Santos, R. A. (1989). Tectonic evolution of the Sergipano fold belt, NE Brazil, during the Brasiliano orogeny. *Precambrian Research*, 45, 319-342. https://doi.org/10.1016/0301-9268(89)90068-5
- Deer, W. A., Howie, R. A., Zussman, J. (1992). *An Introduction to the Rock-Forming Mineral*. (2nd ed.). Harlow: Longman Scientific and Technical.
- Ferreira, V. P., Sial, A. N., Pimentel, M. M., Armstrong, R., Spicuzza, M., Guimarães, I. P., Silva Filho, A. F. (2011). Contrasting sources and P-T crystallization conditions of epidote-bearing granitic rocks, northeastern Brazil: O, Sr, and Nd Isotopes. *Lithos*, 121, 189-201. https://doi.org/10.1016/j.lithos.2010.11.002
- Fowler, M. B., Kocks, H., Darbyshire, D. P. F., Greenwood, P. B. (2008). Petrogenesis of high Ba-Sr plutons from the Northern Highlands Terrane of the British Caledonian Province. *Lithos*, 105, 129-148. https://doi.org/10.1016/j.lithos.2008.03.003
- Fuhrman, M. L., Lindsley, D. H. (1988). Ternary-feldspar modeling and thermometry. *American Mineralogist*, 73, 201-215.
- Frost, R.B. (1991). Introduction to oxigen fugacity and its petrologic importance. In: Lindsley, D.H. (Ed.). *Oxide minerals: petrologic and magnetic significance*. Mineralogical Society of America, Reviews in Mineralogy, 25, 1-10.
- Frost, B. R., Arculus, R. J., Barnes, C. G., Collins, W. J., Ellis, D. J., Frost, C. D. (2001). A geochemical classification of granitic rocks. *Journal of Petrology*, 42(11), 2033-2048. https://doi.org/10.1093/petrology/42.11.2033

- Galindo, A. C., Silva, F. C. A., Souza, Z.S. (2012). Química mineral de leucomicrogranitos neoproterozoicos do Domínio Rio Grande do Norte. *Geochimica Brasiliensis*, 26 (1), 19-28. https://doi.org/10.21715/gb.v26i1.347
- Gorton, M. P., Schandl, E. S. (2002). From Continents to Island Arc: A Geochemical Index of Tectonic Setting for Arc-Related and within Plate Felsic to Intermediate Volcanic Rocks. *Canadian Mineralogist*, 38, 1065-1073. http://dx.doi.org/10.2113/gscanmin.38.5.1065
- Gouveia, S. G. (2016). Contribuição à petrografia e geoquímica do Stock Umbuzeiro do Matuto, Sistema Orogênico Sergipano. Trabalho de Conclusão de Curso. São Cristóvão: Universidade Federal de Sergipe UFS.
- Guimarães, I. P., Silva Filho, A. F. (1995). An example of in situ granite formation in the northern boundary of the Proterozoic Sergipano fold belt, NE Brazil: The Xingó Complex. *Journal of South American Earth Sciences*, 8, 341-354. https://doi.org/10.1016/0895-9811(95)00018-B
- Hanson, G. N. (1980). Rare earth elements in petrogenetic studies of igneous systems. *Annual Review of Earth and Planetary Sciences*, 8, 371-405. https://doi.org/10.1146/annurev.ea.08.050180.002103
- Johnston, A.D., Wyllie, P.J. (1988). Constraints on the origin of Archeant trondhjejemites based on phase relationships of Nuk gneiss with H2O at 15 kbar. *Contributions to Mineralogy and Petrology*, 100, 35-46. https://doi.org/10.1007/BF00399438
- Lamayere, J., Bowden, P. (1982). Plutonic rocks types series: discrimination of various granitoide series and related rocks. *Volcanology and Geothermal Research*, 14, 169-186.
- Laurent, O., Martina, H., Moyena, J. F., Doucelance, R. (2014). The diversity and evolution of late-Archean granitoids: Evidence for the onset of "modern-style" plate tectonics between 3.0 and 2.5 Ga. *Lithos*, 205, 208-235. http://dx.doi.org/10.1016/j.lithos.2014.06.012
- Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J., Sabine, P. A., Schimd, R., Sorensen, H., Woolley, A. R. (2002). *Igneous Rocks A classification and glossary ofterms. Recommendations of the International Union of Geological Sciences-Subcommission on the Systematics of Igneous Rocks*. (2nd ed.). New York: Cambridge University Press.
- Lima, M. M. C. (2013). Caracterização geoquímica, isotópica e geotectônica dos Complexos Araticum e Arapiraca, Faixa Sergipana, Alagoas, Nordeste do Brasil. Dissertação (Mestrado). Recife: Universidade Federal de Pernambuco UFPE.
- Lima, D. R. (2016). *Caracterização petrológica e geoquímica do Plúton Curituba, Domínio Poço Redondo-Marancó, Cinturão Sergipano*. Dissertação (Mestrado). Recife: Universidade Federal de Pernambuco UFPE.
- Loomis, T. P. (1982). Numerical simulations of cristallization processes of plagioclase in complex melts: the origin of major and Oscillatoy zoning in plagioclase. *Contributions to Mineralogy and Petrology*, 81, 219-229. https://doi.org/10.1007/BF00371299
- Maniar, P. D., Picolli, P. M. (1989). Tectonic discrimination of granitoids. *Geological Society American*, 101, 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

- Mendes, V. A., Brito, M. F. L., Santos, C. A. (2011). Zona de cisalhamento contracional de Palmeira dos Índios. Um possível testemunho do evento Cariris Velhos na Província Borborema. *In*:13th Simpósio Nacional de Estudos Tectônicos, Campinas, Resumo expandido.
- Middelmost, E. A. K. (1985). Magmas and Magmatic Rocks: an Introduction to Igneous Petrology. Longmam, London and New York, pp. 253-257.
- Nachit, H., Razafimahefa, N., Stussi, J. M., Carron, J. P. (1985). Composition chimiquedes biotites et typologie magmatiquedes granitoides. *Comptes Rendus del'Académiedes Sciences Paris*, 301, 813-818.
- Nachit, H., Ibhi, A., Abia, E. H., Ohoud, M. B. (2005). Discrimination between primary magmatic biotites, reequilibrated and neoformed biotites. *C. R. Geoscience*, 337, 1415-1420. https://doi.org/10.1016/j.crte.2005.09.002
- Naney, M. T. (1980). Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. *American Journal of Earth Sciences*, 283, 993-1033.
- Nakamura, N. 1974. Determination of RRE, Ba, Fe, Mg, Na and K in carbonaceus and ordinary chondrites. *Geochimicaet Cosmochimica Act*, 38(5), 757-775. https://doi.org/10.1016/0016-7037(74)90149-5
- Neves, S. P., Silva, J. M. R., Bruguier, O. (2016). The transition zone between the Pernambuco-Alagoas Domain and the Sergipano belt (Borborema Province, NE Brasil): Geochronological constraints on the ages of deposition, tectonic setting and metamorphism of metasedimentary rocks. *Journal of South American Earth Sciences*, 72, 266-278. https://doi.org/10.2016/j.jsames.2016.09.010
- Oliveira, D. B. (2016). Aspectos Geológicos, Petrográficos e Geoquímicos do Stock Serra da Vaca, Sistema Orogênico Sergipano. Trabalho de Conclusão de Curso. São Cristóvão: Universidade Federal de Sergipe UFS.
- Oliveira, E. P., Windley, B. F., Araújo, M. N. C. (2010). The Neoproterozoic Sergipano orogenic belt, NE Brazil: a complete plate tectonic cycle in western Gondwana. *Precambrian Research*, 181, 64-84. https://doi.org/10.1016/j.precamres. 2010.05.014
- Oliveira, E. P., Bueno, J. F., McNaughton, N. J., Silva Filho, A. F., Nascimento, R. S., Donatti-Filho, J. P. (2015). Age, composition, and source of continental arc- and syncollision granites of the Neoproterozoic Sergipano Belt, Southern Borborema Province, Brazil. *Journal of South American Earth Sciences*, 58, 257-280. https://doi.org/10.1016/j.jsames.2014.08.003
- Oliveira, E. P., Windley, B. F., McNaughton, N. J., Bueno, J. F., Nascimento, R. S., Carvalho, M. J., Araújo, M. N. C. (2017). The Sergipano Belt. In: M. Heilbron, U. Cordani, F. Alkmim (Eds.), *São Francisco Craton, Eastern Brazil. Regional Geology Reviews*. Springer: Cham. https://doi.org/10.1007/978-3-319-01715-013
- Pearce, J. A., Harris, N. B. W., Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. *Journal of Petrology*, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956
- Pearce, J. A. (1996). Source and settings of Granites rocks. *Episodes*, 19(4), 120-125.
- Peccerillo, A., Taylor, S. R. (1976). Geochemistry of Eocene Calc-Alkaline Volcanic Rocks form the Kastamonu Area, Northen Turkey. *Contribution Mineralogy Petrology*, 58, 63-81. https://doi.org/10.1007/BF00384745
- Pinho Neto, M. A., Rosa, M. L. S., Conceição, H. (2019). Petrologia do Batólito Sítios Novos, Sistema Orogênico Sergipano, Província Borborema, NE do Brasil. *Geologia USP. Série Científica*, 19(2), 135-150. https://doi.org/10.11606/issn.2316-9095.v19-152469

- Santos, R. A., Menezes Filho, N. R., Souza, J. D. (1988). Programa de Levantamentos Geológicos Básicos do Brasil: carta geológica, carta metalogenética/previsional Escala 1:100.00 (Folha SC.24-X-C-VI Piranhas). Estados de Sergipe, Alagoas e Bahia: DNPM/CPRM. 154 p.
- Sial, A. N. (1990). Epidote-bearing calc-alkaline granitoids in Northeast Brazil. *Revista Brasileira de Geociências*, 20, 88-100.
- Sial, A. N., Ferreira, V. P. (2015). Magma associations in Ediacaran granitoids of the Cachoeirinha-Salgueiro and Alto Pajéu terrane, northeastern Brazil: Forty years of studies. *Journal of South American Earth Sciences*, 68, 113-133. https://doi.org/10.1016/j.jsames.2015.10.005
- Sousa, C. S., Soares, H. S., Rosa, M. L. S, Conceição, H. (2019). Petrologia e geocronologia do Batólito Rio Jacaré, Domínio Poço Redondo, Sistema Orogênico Sergipano, NE do Brasil. *Geologia USP. Série Científica*, 19(2), 171-194. https://doi.org/10.11606/issn.2316-9095.v19-152494
- Schmidt, M. W., Thompson, A. B. (1996). Epidote in calc-alkaline magmas: an experimental study of stability, phase relationships, and the role of epidote in Magmatic evolution. *American Mineralogist*, 81, 424-474. https://doi.org/10.2138/am-1996-3-420.
- Speer, J. A. (1984). Micas in igneous rocks. In: Bailey, S.W., ed. *Reviews in Mineralogy*. Blacksburg, Mineralogical Society of America, 13, 299-356.
- Stussi, J. M., Cuney, M., (1996). Nature of biotites from alkaline, calc-alkaline and peraluminous magmas by Abdel-Fattah M. Abdel-Rahman: a comment. *Journal of Petrology*, 37, 1025-1029. https://doi.org/10.1093/petrology/37.5.1025
- Streckeisen, A. L. (1976). To each plutonic rock its proper name. *Earth Science Reviews*, 12(1), 1-33. https://doi.org/10.1016/0012-8252(76)90052-0
- Sylvester, P. J. (1989). Post-collisional alkaline granites. *Journal of Geology*, 97, 261-280.
- Teixeira, L. R., Lima, E. S., Neves, J. P., Santos, R. A., Santiago, R. C., Melo, R. C. (2014). *Mapa Geológico e de Recursos Minerais do Estado de Sergipe*. Escala 1:250.000. Aracaju: CPRM-CODISE.
- Thompson R. N. (1982). Magmatism of the British Tertiary volcanic Province. *Scottish Journal of Geology*, 18, 50-107. https://doi.org/10.1144/sjg18010049
- Wones, D. R. (1989). Significance of the assemblage titanite + magnetite + quartz in granitic rocks. *American Mineralogist*, 74:744-749.
- Van Schmus, W. R., Oliveira, E. P., Da Silva Filho, A., Toteu, S. F., Penaye, J., Guimarães, I. P. (2008). Proterozoic Links between the Borborema Province NE Brazil and the Central African Fold Belt. *Geological Society Lond. Special Publ*, 294, 69–99. https://doi.org/10.1144/SP294.5
- Zen, E-An., Hammarstrom, J. (1984). Magmatic epidote and its petrologic significance. *Geology*, 12, 515-518. https://doi.org/10.1130/00917613(1984)12<515: MEAIPS>2.0.CO;2


CAPÍTULO 3 – CONCLUSÕES

O Stock Serra da Vaca (SSV), com 19 km², tem forma alongada e direção NNE-SSW concordante com um sistema de falhas extensionais características da região norte do Sistema Orogênico Sergipano. As rochas do SSV são intrusivas nos migmatitos do Domínio Poço Redondo, elas têm coloração cinza, são equigranulares a inequigranulares com granulação fina a média e apresentam estrutura anisotrópica, que é marcada pelo alinhamento dos cristais de biotita. As composições são predominantemente granodioríticas, com alcáli-granito e sienogranito subordinados. A mineralogia principal compreende: plagioclásio (oligoclásio-andesina), microclina e quartzo. A biotita ocorre como máfico predominante. Os minerais acessórios são epídoto, allanita, zircão, apatita, ilmenita, magnetita e titanita.

Os dados de química mineral identificaram que o plagioclásio exibe composição que varia de andesina-oligoclásio nas rochas menos diferenciadas (granodioritos) a albita nas rochas mais evoluídas (álcali-granito). Perfis composicionais mostram que o teor de anortita tende a diminuir do centro para a borda no plagioclásio, indicando o zoneamento normal. Essa textura sugere que a evolução dessas rochas foi controlada pelo processo de cristalização fracionada. O feldspato alcalino tem composição próxima à fase pura (ortoclásio), com alguns deles exibindo exsoluções posicionando-se no campo da albita, indicando um reequilíbrio pós-magmático A mica marrom pertence ao grupo da biotita. Esses cristais apresentam razões Fe/Fe+Mg sempre maiores que 0,4 e valores moderados átomos de Al_{Total} > 2,7. Em diagramas discriminantes, as análises dos cristais de biotita do SSV alocam-se no campo dos cristais primários formados a partir de magmas cálcio-alcalinos, que são típicos de ambientes orogênicos. A presença do epídoto com núcleo de allanita e com teores de Pistacita maiores que 24% sugerem origem magmática para esses cristais. Com base na presença do epídoto magmático, estima-se que início da cristalização do magma SSV se deu em profundidades elevadas (~25 Km) a pressões da ordem de 6 kbar.

As rochas do SSV são fracionadas (SiO₂ > 70%), peraluminosas, magnesianas com algumas amostras (rochas mais evoluídas 77% SiO₂) apresentando afinidade com a série ferrosa. Os dados químicos também indicam que as rochas do SSV, sobretudo os granodioritos, apresentam afinidade com a série cálcio-alcalina de alto potássio. Os termos mais evoluídos (álcali-granito e sienogranitos) exibem afinidade shoshonítica, sugerindo que a cristalização do feldspato alcalino é tardia. Os padrões de ETR dos granitos estudados mostram-se fracionados com o enriquecimento dos ETR leves em relação aos ETR pesados. A anomalias discretas de Eu para os granodioritos indicam que essas rochas foram formadas em um ambiente oxidante. Por outro lado, as rochas mais evoluídas (álcali-granito e sienogranito) apresentam anomalias de Eu fortemente negativas, provavelmente devido ao fracionamento do plagioclásio. Em diagramas multielementares, observa-se em todas as amostras o enriquecimento dos elementos LILE (K, Ba, Rb e Th) em comparação com os HFSE (Ta, Nb e Y). Ainda é possível observar depleções em Nb, Sr, P e Ti, sendo essas mais marcadas nos termos mais evoluídos (álcali-granito e sienogranitos). Outrossim, as razões Th/Ta, Th/Hf e Ta/Hf e as relações entre os elementos traços Y, Nb, Rb dos granitos estudados indicam que eles foram gerados em uma margem continental ativa em um período pós-colisional.

ANEXO – COMPROVANTE DE SUBMISSÃO DO ARTIGO

APÊNDICES

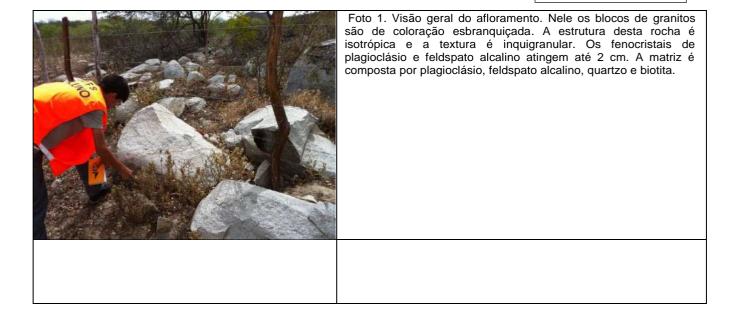
APÊNDICE I – FICHAS DE AFLORAMENTO

FICHA DE AFLORAMENTO

ados de Campo 1. Data	ı: 16/12/12		2. Nº do Aflora	amento/Miss	são FDS-234/XIII
2 Folko Mono A Foo	ala da Mana	5.	Coordenadas	alitM Da	tum SAD 60
	ala do Mapa	Э.	0621739		8922932
111111111111111111111111111111111111111	00.000		0021739		0922932
6. Acesso e Localização do <i>F</i>	Afloramento				
Seguindo pela Rodovia SE-4 Capim <i>Grosso</i> , entra-se à dir oeste. Essa estrada dá aces	eita numa estrad	a de	chão que corta a parte		
7. Unidade Estratigráfica	8. Elementos E	ctruti	uraie 0 A	mostra(s)	
Stock Serra da Vaca	Orientação do	195		FDS-234	
Stock Scria da Vaca	afloramento	133	021444	1 00-204	
	Direção do	330	63NE		
	Dique				
quartzo-feldspáticos e enc afloramento, sendo que os e				áfica é bas	stante comum nesse
11. Fotos do Afloramento Dados de Laboratório	X		Número de Fotos	1 Foto	Descrição das Fotos 1: Detalhe da textura da rocha
13. Análise Petrografia X					
14. Análise Química	15. Aná	lise I	sotópica		
Elementos Maiores X			•		
Elementos Menores X		` '			
ETR's X	0.0				
	Sm-Nd				
	Rb-Sr				

Número do Afloramento/Missão

FDS-234/XIII


Foto 1. Textura do granito cinza de granulação fina a média, cuja mineralogia principal é formada por plagioclásio, feldspato alcalino e quartzo. A biotita ocorre como máfico predominante, por vezes aparaece na forma de pequenos agregados que ocorrem de foma aletória na rocha.

FICHA DE AFLORAMENTO

Dad	os de Campo) 1.	Data: 16/12/12		2. Nº do Afloramento	o/Missão	FDS-235/XIII
3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTM	– Datum	SAD 69
	Piranhas		1:100.000		0620721		8923172
6. /	Acesso e Localiz	ação	do Afloramento				
Seg	guindo adiante d	o poi se po	nto 234, pela mesma o or cerca de 1 km. Qua	ndo	ada chão que corta a parte nor chegar a um entrocamento, e de rocha rolados à beira da e	ntra-se à	
7. l	Jnidade Estratigi Stock Serra da Va	ráfica				a(s)	
O a est cor em	trutura anisotróp mposta por quar n cristais de bio	bloc ica, a zo, f otita	o rolado. O granito de a qual é marcada pel feldspato alcalino, plaç	o ali giocl ior.	r cinza claro, equigranular con nhamento dos cristais de mic ásio, muscovita e biotita. Ness Vale ressaltar também a pr é 2 cm.	a marron se ponto a	n. A mineralogia é a rocha é mais rica
	Fotos do Aflora		_^_		Número de Fotos 1	Foto 1: V	rição das Fotos isão geral do
Dac	dos de Labor	atór	rio			aflora	amento
13.	Análise Petrogra	afia	X				
EI EI	Análise Química ementos Maiore ementos Menore TR's	S	X Amostra X Pb-Pb X U-Pb Sm-Nd Rb-Sr		Isotópica :		

Número do Afloramento/Missão

FDS-235/XIII

FICHA DE AFLORAMENTO

Dad	los de Camp	O 1.	Data: 16/12/12		2. N° do Afloramento	/Missão FDS-237/XIII
3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTM	- Datum SAD 69
	Piranhas		1:100.000		0619124	8922736
Loc		xima		ros d	o ponto 235. Este afloramento	o é do tipo lajedo ocorrendo
	Unidade Estratiç natito de Poço R			_	urais 5º N FDS-	
Afl est po rod alc	trutura anisotró rfiroblastos de f cha. A matriz te	ajedo pica, eldsp m gr	o do migmatito de F devido á foliação o pato alcalino e plagio ranulação média, sen	dos clási do c	Redondo. A rocha apresent cristais de biotita, e granula o alcançam até 3 cm, apareo omposta predominantemente sico é outra estrutura caract	ação média a grossa. Os cendo de forma caótica na por plagioclásio, feldspato
	Fotos do Aflora				Número de Fotos	12. Descrição das Fotos
13. 14. Ele	Análise Petrogr Análise Química Análise Química ementos Maiores ementos Menore R's	áfia	x	as(s)	Isotópica :	

FICHA DE AFLORAMENTO

Dad	los de Camp	O 1.	Data: 07/09	9/16			2. N° c	lo A	florar	nento	o/Missão	SOS-803/X	XVI
	-										-		
3.	Folha-Mapa	4.	Escala do	Мара	5.		Coor	den	adas	UTM	1 – Datum	SAD 69	
	Piranhas		1:100.000	•			06231	25				8922921	
6. <i>A</i>	Acesso e Localiz	ação	do Afloran	nento									
	guindo pela rodo , entra-se à direi												
7 1	Jnidade Estratig	ráfica	9 FI	ementos E	etrut	uraie		1 [9. An	noetr	2(c)	7	
	Stock Serra da V		Foliaç		_	S180°	20°	1 -		SOS.	` '		
	Oloch Ocha da v	aoa	minera		ı `	3100	20	-		000	000	_	
			Dique			180°	20°	1				1	
							-						
	Descrição do A												
api gra cris fen qua	afloramento do resentam-se sã anulação fina a stais de biotita. nocristais de plaçartzo-feldspática chas.	s, se médi Ess gioclá	m muita al ia e estrutu sa foliação ásio imerso	teração si ura leveme o tem atit s em uma	uperi ente eude mat	ficial. O anisotro de S1 riz de g	granito ópica. A 80º/20º. ranulaçã	des folia Por o m	se at ação vez ais fi	florar é ma es, c na. C	mento ap arcada pe observa-s Diques ap	resenta cor dela orientação de a presenç líticos de nati	cinza, o dos a de ureza
11.	Fotos do Aflora	amen	to X			Núme	ero de Fo	tos	2	1 2	2. Descriç	ão das Fotos	
D		-15-		•						┙ ┃ F	oto 1: Deta	alhe do aflorar	mento.
Dac	dos de Labor	ator	10								oto 2: Das	crição da roch	12
13.	Análise Petrogr	afia	Х								010 2. D00	onção da rooi	iu.
14.	Análise Químic	<u>а</u>		15. Aná	alise	Isotópio	:a						
EI	ementos Maiore	es	Х	Amostr									
EI	lementos Menor	es	Х	Pb-Pb									
E.	TR's		Х	U-Pb									
		· ·		Sm-Nd									
				Rb-Sr									

Número do Afloramento/Missão

SOS-803/XXVI

Foto 1. Visão geral do afloramento tipo lajedo do *Stock* Serra da Vaca. Pelo fato da região de estudo está localizada no alto sertão sergipano, os aflorametos desse stock são facilmente avistados dentro da vegetação típica da caatinga.

Foto 2. Detalhe do afloramento anterior. Observa-se que o granito apresenta cor cinza e textura inequigranular e estrutura isotropica, com granulação fina a média. O granito é composta essencialmente por plagioclásio, feldspato alcalino, quartzo e biotita. As pontuações pretas na imagem corresponde a cristais

FICHA DE AFLORAMENTO

Dad	os de Campo	0 1.	Data: 07/09/	′16		2. Nº do Aflora	mento/Missão	SOS-804/XXVI
3.	Folha-Mapa Piranhas	4.	Escala do 1 1:100.000	Мара	5.	Coordenadas 0621733	UTM – Datum	SAD 69 8922991
Par	acesso e Localiz tindo-se do pont ck no sentido oe	to 80	3, seguindo	por mais) metros pela estrada de 04.	chão que cor	a a região norte do
	Jnidade Estratig ck Serra da Vaca			mentos E	strut	urais 9. A	mostra(s) SOS-804	
O a mig a n que	gmatito em rocha nedia e estrutura e no ponto anter	ipo la as qu a iso rior. <i>i</i>	ajedo que oc ue compõe c trópica. Nes A mineralogi	SSV. A se ponto ia é comp	rocha foi p osta	a estrada de chão. Ness a desse afloramento apre ercebido que as presenç por plagioclásio, quartz na amostra (SOS-804).	esenta cor cinz ças de minerai	za, granulação fina s máficos é menor
11.	Fotos do Aflora	ımen	to X			Número de Fotos 2		ão das Fotos
	los de Labor Análise Petrogra		rio X				Foto 2: con	tato intrusivo do com o migmatito.
EI EI	Análise Química ementos Maiore ementos Menore FR's	s	X X X	15. Aná Amostra Pb-Pb U-Pb		sotópica :		

Rb-Sr

Número do Afloramento/Missão

SOS-804/XXVI

Foto 1. Visão geral do afloramento que ocorre ao lado da estrada de chão. Neste local as rochas estão um pouco alteradas, contudo foi possível realizar amostragem. Descreva mais a imagem.

Foto 2. Contato intrusivo que o granito faz com o migmatito. No centro da imagem pode-se observar um xenólito do migmatito encaixante. O xenólito apresenta o bandamento gnáissico bem marcado (centro da imagem). O granito (lado direito e esquerdo da imagem) tem granulação fina e textura isotrópica. A mineralogia dele é essencilmente composta por plagioclásio, feldspato alcalino e quartzo.

Dad	los de Camp	0 1.	Data: 07/09/16		2. Nº do Afloramento/N	Missão SOS-805/XXVI
3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTM –	Datum SAD 69
	Piranhas		1:100.000	0.	0621180	8923281
			do Afloramento da estrada de chão	que (deu acesso ao ponto SOS-804,	distante cerca de 1 km.
10. F		flora	mento e local ocorrem pesqu	ueno	gen amostración sem amostració	o SSV dentro de algumas
Dac 13.	Fotos do Aflora dos de Labor Análise Petrogr	ató ı afia	rio	-0.104	Número de Fotos	12. Descrição das Fotos
E E	Análise Química ementos Maiore ementos Menora TR's	S	15. Anális Amostras Pb-Pb U-Pb Sm-Nd Rb-Sr		otopica	

FICHA DE AFLORAMENTO

Dad	los de Camp	O 1.	Data: 07/09/1	16		2. N° do Aflo	rame	nto/Missão	SOS-806/XXVI
3.	Folha-Mapa Piranhas	4.	Escala do M	Лара	5.	Coordenad 0620721	as U	ΓM – Datum	SAD 69 8923607
Seg		tir do a um	do Aflorame ponto SOS-8 encontrocar	305, pel		rada secundária que c e à esquerda. Depois			
7. 0 10. O chi	Jnidade Estratig Stock Serra da V Descrição do A afloramento cor ão. O granito de comum ocorrer	ráfica aca florar nstitu sse p	mento ído por lajed ponto apreser cristais de p	nta-se co lagioclás	cos rem te	olados que se distribu xtura inequigranular, co feldspato alcalino (o otita, muscovita e qua	sc nem r or cir	za e granul	ação fina a média.
11.	Fotos do Aflora	amen	to X			Número de Fotos	3		ção das Fotos
	dos de Labor Análise Petrogr		rio X						alhe do afloramento. alhe da textura da
El El	Análise Químic lementos Maiore lementos Menor TR's	es	X X X	15. And Amostr Pb-Pb U-Pb Sm-Nd	as(s)	Isotópica :			talhe da textura Iranular da rocha.

Rb-Sr

Número do Afloramento/Missão

SOS-806/XXVI

Foto 1. Visão geral do afloramento constituído por lajedos e blocos rolados que ocorre nos lados da estrada de chão. Neste local as rochas estão bem preservadas, sem alteração superficial.

Foto 2. Detalhe da textura da rocha apresentada na foto 1. Observa-se que esse granito tem coloração acinzentada, estrutura isotrópica e granulação variando fina a média. A mineralogia identificada é constituída por plagioclásio, feldspato alcalino, quartzo e biotita. O máfico é biotita, a qual ocorre reunida em pequenos agregados de cor preta distribuídos aleatoriamente na rocha.

Foto 3. Detalhe da imagem da foto 1. Observa-se que este granito tem coloração acinzentada, textura inequigranular, com fenocristais centimétricos de feldspato (até 2 cm). As pontuações de cor preta na imagem correspondem a agregados de cristais de biotita. Nesta imagem é ainda possível observar a presença de um dique centimétrico de coloração creme, granulação fina, com contatos bem definidos com o granito e marcado por uma faixa branca, que corresponde a granulação maior dos cristais de feldspato.

Dad	los de Campo) 1.	Data: 07/09/16		2. Nº do Afloramento	/Missão	SOS-807/XXVI
3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTM	- Datum	SAD 69
	Piranhas		1:100.000		0618772		8921756
6. /	Acesso e Localiz	ação	do Afloramento				
					strada de chão principal que cort que está localizado à esquerda.	a o corpo	. Segue-se por
	Unidade Estratig <i>Stock</i> Serra da Va		8. Elementos E	strut	urais 9. Amostra Sem amo		
Po	. Descrição do Al Into controle. Po ssa localidade.			s lim	ites do <i>Stock</i> Serra da Vaca.	Não exi	stem alforamentos
11.	Fotos do Aflora	men	to		Número de Fotos	12. D	escrição das Fotos
Dad	dos de Labor	atór	io				
13.	Análise Petrogra	afia					
E	Análise Química lementos Maiore lementos Menore TR's	s	15. Anális Amostras Pb-Pb U-Pb Sm-Nd Rb-Sr		otópica		

Dad	os de Campo) 1.	Data: 07/09/16		2. N° do Afloramento.	/Missão	SOS-808/XXVI
3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTM	Datum	SAD 69
	Piranhas		1:100.000		0619071		8922605
6. /	Acesso e Localiz	ação	do Afloramento				
Ser		jue-s	e por volta de 1,4 kn		estrada de chão principal que o ssa estrada até se chegar a ur		
7. l	Jnidade Estratig	ráfica	8. Elementos E	strut	urais 9. Amostra	a(s)]
Migr	natito de Poço Re	edon	do		sem amostr	agem	
			 				_
um					de Poço Redondo. Afloramen as, pois as rochas estavam		
11.	Fotos do Aflora	men	to		Número de Fotos	12. D	escrição das Fotos
Dad	los de Labor	atór	io				
13.	Análise Petrogra	afia					
EI	Análise Química ementos Maiore ementos Menore TR's	S	15. Aná Amostr Pb-Pb U-Pb		Isotópica):		
	1113		Sm-Nd Rb-Sr				

Dad	los de Camp	O 1.	Data: 07/09/16		2. N° do Afloram	ento/Missão SOS-809/XXVI
3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas U	JTM – Datum SAD 69
	Piranhas		1:100.000		0617904	8922546
Pa		éess		cer	ca 1,5 km do ponto SOS-8	08 ainda pela estrada de chão
	Jnidade Estratig natito de Poço R			strut		ostra(s) OS-809
Afl gra Po leu (po mii	anulação média r vezes, o gnais cossoma. Tais odendo ser cor neralogica defo	ajedo estr sse a dobra nfudio rmad	do migmatito de Poutura anisotrópica. O presenta partes dobras podem ser simétra com o restito do a, é uma feição cor	bandas adas icas miq mum	damento gnáissico é uma s (típicas dobras isoclinais ou assimétricas. A prese gmatito) e de blocos de	a apresenta cor cinza escuro, feição comum nessas rochas.), principalmente na porção do nça de xenólitos de anfibolitos gnaisse, este com a trama observar estruturas schlieren
	Fotos do Aflora				Número de Fotos 3	12. Descrição das Fotos Foto 1: detalhe do afloramento
13.	Análise Petrogr	afia	X			Foto 2: detalhe da textura da rocha
EI	Análise Químic ementos Maiore ementos Menor TR's	es	X Amostri X Pb-Pb X U-Pb Sm-Nd Rb-Sr		Isotópica):	Foto 3: xenólito de anfibolito

Número do Afloramento/Missão

SOS-809/XXVI

Foto 1. Visão geral do afloramento tipo lajedo do migmatito.

Foto 2. Detalhe da textura da rocha nesse ponto. A rocha apresenta cor cinza escuro, granulação média e estrutura anisotrópica. O bandamento gnáissico é uma feição comum nessas rochas. Por vezes o gnaisse apresenta partes dobradas, principalmente o leucossoma. As dobras podem ser simétricas ou assimétricas.

Foto 3. Ocorrência de xenólito de anfibolito (podendo ser confudido com o restito do migmatito) e de blocos de gnaisse, este com a trama mineralogica deformada, é uma feição comum nesse ponto. É comum observar estruturas *schlieren* (bandas de leocossoma englobando o melanossoma) ao redor do xenólito.

Dad	los de Camp	O 1.	Data: 24/05/18		2. Nº do Afloramento	o/Missão SOS-1005/XXXI
3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTM	- Datum SAD 69
	Piranhas		1:100.000		0623123	8921699
			do Afloramento direito da Rodovia	SE-403	sentido sul (partiindo de Canind	é rumo à Capim Grosso).
	Jnidade Estratig Stock Serra da V		8. Elemento	os Estru	turais 9. Amostr SOS-	
Afle Ca min agl O obs	nindé. O granito neralogia é cons omerados de mir relevo do SSV o	oco r dest stituíd nerais é ma ranha	olado ao lado da e ponto apresenta a por plagioclásic s escuros placoíde rcado pela ocorrê as, percebe-se qu	coloraça , feldsp s, possiv ncia de	SE-403, sentido ao povoado (ão acinzentada, textura equigra ato alcalino e quartzo. Em po elmente biotita. pequenos morros bem delinea rma do Stock Serra da Vaca p	nular e textura isotróprica. A ntos específicos observa-se dos (vide foto 1). Ao se
11.	Fotos do Aflora	amen	to x		Número de Fotos 3	12. Descrição das Fotos Foto 1: detalhe da rocha
Dad	dos de Labor	ató	io			
13.	Análise Petrogr	afia	X			Foto 2: relevo da região Visada sul-norte
El	Análise Químic ementos Maiore ementos Menor TR's	s		ostras(s Pb b -Nd	Isotópica):	Foto 3: relevo da região de estudo

Número do Afloramento/Missão

SOS-1005/XXXI

Foto 1. O granito do ponto 1005 é equigranular, tem cor cinza e textura isotrópica. Sua mineralogia é constituída basicamente por plagioclásio, feldspato alcalino e quartzo. A biotita é o máfico principal.

Foto 2. A região onde ocorre os afloramentos do Stock Serra da Vaca é marcada pela ocorrência de um relevo constituído por morros e morretes, como se pode observar na imagem. Visada SUL/NORTE

Foto 3. A região onde ocorre os afloramentos do *Stock* Serra da Vaca é marcada pela ocorrência de um relevo constituído por morros e morretes com cotas de até 400 metros. Visada NORTE/SUL. Perfil E-W

Dac	los de Camp	0 1.	Data: 24/05/18		2. N° do Afloramento	o/Missão	SOS-1006/XXXI			
3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTM	I – Datum				
	Piranhas		1:100.000		0620332		8919415			
De	Acesso e Localiz pois do Povoado perança.			l) entra a	à direita numa estrada secund	ária, senti	do a Fazenda Nova			
_	Unidade Estratig matito de Poço R			Estrutu	9. Amostr SOS-					
Afl rós pla oc	10. Descrição do Afloramento Afloramento tipo bloco rolado, provavelmente do Migmatito de Poço Redondo. A rocha apresenta coloração rósea, equigranular (por vezes inequigranular), com textura isotróprica. Minerais observados: porfiroblastos de plagioclásio e feldspato alcalino. A Matriz é composta por plagioclásio, feldspato alcalino e quartzo. A biotita ocorre como máfico predominante Amostra SOS-1006: Representa a parte do leucossoma do migmatito.									
11.	Fotos do Aflora	ımen	to X		Número de Fotos 1	12. D	escrição das Fotos			
13.	dos de Labor Análise Petrogr	afia	X				1: Detalhe do floramento			
E	Análise Química lementos Maiore lementos Menora TR's	S		tras(s):	otópica					

Número do Afloramento/Missão

SOS-1006/XXXI

Foto 1: Afloramento com alguns blocos do migmatito de Poço Redondo. A rocha apresenta-se sã, tem coloração esbranquiçada, textura inquigrnaular e estrutura isotrópica.

5/18	2. N° do Afloramento	p/Missão SOS-1007/XXXI
o Mapa 5.	Coordenadas UTM	1 – Datum SAD 69
0	0618174	8920298
mento ponto SOS-1006, ei	ntra à direita em uma estrac	da de chão
		a(s)
o gnassico é outra	característica relevante des	ssa rocha. Diques de granitos
N	úmero de Fotos	12. Descrição das Fotos
15. Análise Isot Amostras(s): Pb-Pb U-Pb Sm-Nd	ópica	
	mento ponto SOS-1006, el lementos Estruturai do da estrada de cho gnassico é outra no migmatito. O leur feldspatos. 15. Análise Isot Amostras(s): Pb-Pb U-Pb	Mapa Mento Men

Dad	los de Campo	o 1.	Data: 24/05/18		2. N° do Afloramento	/Missão	SOS-1008/XXXI				
						_					
3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTM	Datum	SAD 69				
	Piranhas		1:100.000		0618215		8920649				
6. /	Acesso e Localiz	acão	do Afloramento								
				SO	S-1007 seguindo a mesma estra	da do po	nto anterior				
			•			•					
7. \	7. Unidade Estratigráfica 8. Elementos Estruturais 9. Amostra(s)										
Migi	matito de Poço R	edon	do		SOS-1	800					
oc ap	orrem blocos rola	idos	in situ. A rocha amos	trada	rca de 50 metros de largura p a corresponde a parte do leuco Minerais observados no leucos	ssoma do	o migmatito. A rocha				
	Fotos do Aflora		^_		Número de Fotos 1	Foto	escrição das Fotos 1: Detalhe do				
Dad	dos de Labor	atóı	rio			A	floramento				
13.	Análise Petrogr	afia									
14.	Análise Química	<u>а</u>	15. Aná	lise	Isotópica						
Е	lementos Maiore	s	X Amostra	as(s)	:						
	lementos Menore	es	X Pb-Pb								
E	TR's		X U-Pb								
			Sm-Nd								
			Rb-Sr								

Número do Afloramento/Missão

SOS-1008/XXXI

Foto 1. Afloramento visitado do tipo bloco rolado. Notar os blocos do migmatito de Poço Redondo ocorrendo em uma ampla área. A rocha apresenta-se sã, tem textura isotrópica e é inequigranular. Minerais observados no leucossoma: plagioclásio, feldspato alcalino e quartzo. A biotita é o anfibólio tende a se concentrar na parte mais escuras da rocha, constituíndo agloramerados de minerais máficos.

Dad	os de Campo	0 1.	. Data: 24/05/18		2. Nº do Aflorar	ner	nto/Missão	SOS-1009/XXXI
3.	Folha-Mapa Piranhas	4.	Escala do Mapa 1:100.000	5.	Coordenadas 0617075	UT	M – Datum	SAD 69 8921308
	cesso e Localiz		o do Afloramento	1008	3, segue-se por cerca de 1	km	até o ponto	
	Jnidade Estratig natito de Poço R			strut	S	OS OS	stra(s) -1009 A -1009 B -1009 C	
Af la ap N co pl de m	rgura. A orientoroximadamente o afloramento formo xenólito em agioclásio e felde feldspato, ele lelanossoma.	ajedo ação leste ram o algo spato ocoro	o do migmatito ao lado o principal do aflorar e-oeste. coletadas três amostras umas partes do migma o alcalino. O paleosson re sob a forma de peresenta u	ment s, se atito. na (d eque	strada. O lajedo mede 15 o segue o trend do E ndo uma do leucossoma e O leucossoma tem cor o que não foi coletado) apres nos blocos (até 40 cm) o specto maciço, tendo gra ólitos que ocorrem no mig	om du lar sen jua	nínio Poço uas de um a a e é consi ta cor cinza se sempre lação fina e	Redondo, que é nfibolito que ocorre ituído por quartzo, com porfiroblastos em contato com o
11.	Fotos do Aflora	ımen	nto X		Número de Fotos 3			ição das Fotos talhe do Afloramento.
	los de Labor Análise Petrogra		rio X				Foto 2: De	talhe da rocha. leossoma do migmatito
Ele	Análise Química ementos Maiore ementos Menoro FR's	S	X Amostra X Pb-Pb X U-Pb Sm-Nd Rb-Sr		Isotópica :			-

Número do Afloramento/Missão

SOS-1009/XXXI

Foto 1: Visão geral do afloramento. Neste ponto o migmatito ocorre sob a forma de lajedos que ocupam uma grande área.

Foto 2. Detalhe do migmatito. Observa-se neste ponto estruturas tipo *schlieren* com a presença de minerais máficos, como biotita e anfibólio. Neste ponto ainda é possível observar xenólitos de anfibolitos que apresentam até 60 cm de tamanho. Os xenólitos exibem aspecto maciço e são compostos predominantemente por anfibólio.

Foto 3. O paleossoma do migmatito apresenta coloração acizentada e tem textura porfirítica. Os porfiroblastos de plagioclásio e feldspato alcalino ocorrem de maneira caótica na matriz e pode ter tamanhos de até 3 cm. Normalmente, o paleossoma ocorre como bandas de até 60 cm.

ad	os de Campo) 1.	Data	a: 24/05/18			2. Nº d	Missão	SOS-1010/XXXI		
3.	Folha-Mapa	4.	Esc	ala do Mapa	5.		Coord	denada	as UTM -	- Datum	SAD 69
	Piranhas			00.000			0616788				8921690
6. /	Acesso e Localiz	ação	do A	Afloramento							
	guindo pela estrac gar a esse ponto		ıe foi	marcado o ponto	o ante	erior (S	OS-1009), ¡	percor	re-se cer	a 1000	metros até se
7. l	Jnidade Estratig	ráfica	a	8. Elementos E	Estru	turais		9.	Amostra	(s)]
Mig	matito de Poço Re	edono	do	Direção		34°	29°	Se	em amost	ragem	
											_
me		mpos	sto p	or aglomerados							alguma biotita. O bólio. Não houve
11.	Fotos do Aflora	men	to	Х		Nún	nero de Fot	os	2	12 . De	escrição das Fotos
		_	_							Foto 1	: Visão do afloramer
)ac	los de Labor	atór	'io	_						Foto 2	: Detalhe do migmat
13.	Análise Petrogra	afia	Х								
14.	Análise Química	<u></u>		15. An	nálise	s Isotór	oica				
	ementos Maiore			Amost		s):					
	ementos Menore TR's	es		Pb-Pb U-Pb)						
	111.3			Sm-No	<u></u>						
				Ph-Sr							

Número do Afloramento/Missão

SOS-1010/XXXI

Foto 1. Visão geral do afloramento. O migmatito ocorre neste ponto sob a forma de de um grande lajedo. Ao fundo da imagem, tem-se a estrada de chão que deu acesso ao afloramento.

Foto 2. O migmatito neste ponto apresenta porções em que a rocha exibe coloração acizentada e textura porfirítica. Os fenoblastos de plagioclásio e feldspato alcalino ocorrem de maneira não orientada em uma matriz composta por plagioclásio, feldspato alcalino e quartzo.

FICHA DE AFLORAMENTO

Dados de Campo	1. Data: 24/05/18
----------------	--------------------------

2. Nº do Afloramento/Missão

SOS-1011/XXXI

3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTM – Datum SAD 69		
	Piranhas		1:100.000		0616912	8922145	

6. Acesso e Localização do Afloramento

Seguindo pela estrada que foi marcado o ponto anterior, ainda na mesma estrda, percorre-se cerca de 800 metros até chegar ao ponto 1011

7. Unidade Estratigráfica
Migmatito de Poço Redondo

8. Elementos Estruturais							

9. Amostra(s)
SOS-1011 A
SOS-1011 B
SOS-1011 C

10. Descrição do Afloramento

Afloramento tipo lajedo do migmatito medindo cerca de 100 metros de largura por 30 de comprimento. O leucossoma tem cor clara, apresenta estrutura isotrópica e exibe textura inequigranular. O palessoma do migmatito apresenta cor cinza, granulação média e textura isotrópica. Os porfiroblastos de plagioclásio e feldspato alcalino alcançam até 3 cm e estão dispostos de forma caótica. Diques graníticos são comuns e cortam todas as demais unidades. Esses diques têm cor cinza-escuro, exibem textura equigranular com granulação fina e apresentam composição quartzo-feldspática .

Amostras coletadas: SOS-1011 A – parte máfica do migmatito, possivelmente corresponde ao melanossoma

SOS-1011 B - dique granítico

SOS-1011 C – paleossoma do migmatito com a presença de fenoblastos de feldspatos

11. Fotos do Afloramento

Х

Número de Fotos

12. Descrição das Fotos

Dados de Laboratório

13. Análise Petrografia

Elementos Menores

ETR's

Х

14. Análise Química	
Flementos Maiores	Х

15. Análise Isotópica	
Amostras(s):	
Pb-Pb	
U-Pb	
Sm-Nd	
Rb-Sr	

Foto 2: Detalhe do paleossoma do migmatito

Foto 1: Vista geral do afloramento.

Foto 3: Detalhe do bandamento gnáissico.

Foto 4: Dique granítico

Número do Afloramento/Missão

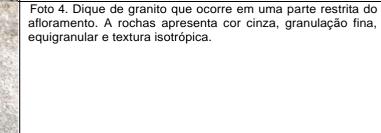

SOS-1011/XXXI

Foto 1. Vista geral do afloramento tipo lajedo do embasamento migmatítico.

Foto 2. Paleossoma do migmatito. A rocha exibe cor cinza e tem textura inequigranular e estrutura isotrópica. Notar a presença de porfiroblastos de feldspato alcalino e plagioclásio dispontos de maneira caótica em uma matriz de granulação fina a média.

Foto 3. Detalhe do palessoma do migmatito (á esquerda) em contato com a parte máfica do migmatito. O bandamento gnássico é bem evidente à direita da imagem.

Dados de Campo 1. Data: 24/05/18					2. N° d	SOS-1012/XXXI			
3.	Folha-Mapa	4.	Escala do Mapa	5.	1		denadas UTM	1 – Datum	
	Piranhas		1:100.000			061759	91		8922612
6. /	Acesso e Localiz	ação	do Afloramento						
		da qu	ue foi marcado o pon	nto ant	terior (S	OS-1011), p	percorre-se ce	erca 600 m	netros até se chegar
ao	ponto 1012.								
7.	Unidade Estratig	ráfic	a 8. Elementos	Estru	uturais		9. Amostr	a(s)	1
Mig	matito de Poço R	edon	do Direção		313	45°	Sem amo	stragem	
									_
									_
	. Descrição do A								
		edo d	lo migmatito. Não ho	ouve d	escrição	o das rocha	s desse aflora	mento. Se	em realização de
an	nostragem.								
11.	. Fotos do Aflora	men	ito 🗍		Núm	nero de Fot	os		12. Descrição das
									Fotos
Dad	dos de Labor	atóı	rio						
13.	. Análise Petrogra	afia							
	3								
14.	. Análise Química	<u> </u>		15. A	nálise Is	sotópica			
	lementos Maiore			Amos	stras(s):				
	lementos Menore	es		Pb-Pl					
E	TR's			U-Pb					
				Sm-N Rb-S					
				וייי					

Dad	los de Camp	0 1.	Data: 26/05/18	2. Nº do Afloramento/Miss	SOS-1013/XXXI	
3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTM – Da	tum SAD 69
J.	Piranhas	7.	1:100.000	J.	0621566	8923009
			o do Afloramento SE-403 partindo de C	Canino	é de São Francisco, sentido o povo	ado Capim Grosso, á
			n uma estrada de ch ca de 1,7 km até se d		corta o corpo no sentido Leste-Oe ao ponto 1013.	este. Ao entrar nessa
	Jnidade Estratig Stock Serra da V		8. Elementos	Estrut	9. Amostra(s) SOS-1013	
Afle equal alte	uigranular e apre eração superfical	oloco esent I. Mir	rolado localizado e a textura isotrópica.	Obser	a pequena propriedade. O granit /a-se que as rochas estão sãs, ou la de mão: plagioclásio, feldspato a	seja, sem manto de
11.	Fotos do Aflora	amen	ito X		Numero de Fotos 1	2. Descrição das Foto
Dad	dos de Labor	ató	rio		·	oto il dotalilo do giali
13.	Análise Petrogr	afia	X			
El	Análise Químico lementos Maiore lementos Menoro TR's	s	X A F	5. Anamosti Pb-Pb J-Pb	lise Isotópica as(s):	
				h-Sr		

Número do Afloramento/Missão

SOS-1013/XXXI

Foto 1. Detalhe da rocha desse ponto. O granito tem coloraçao acinzentada, é equigranular e tem textura isotrópica. A mineralogia é composta por plagioclásio, feldspato alcalino e quartzo. A biotita ocorre como máfico predominante. O pontos pretos na rocha correpondem a aglomerações de biotita.

)ad	os de Camp	0 1.	Data: 25/05/18	2. N° do Afloramento	SOS-1022/XXXI		
3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTM	– Datum	SAD 69
	Piranhas		1:100.000		0622582		8920929
			do Afloramento				
			direito da Rodovia S km da entrada do po		entido sul) seguindo sentido C pim Grosso	anindé-C	apim Grosso. O
	Jnidade Estratig Stock Serra da V		8. Elementos	Estrutur	9. Amostra SOS-1	• •	
Aflo des A r	sse ponto tem co nineralogia é co	oco ro Ioraç nstitu	olado que ocorre um ão acinzentada, é ec ída por plagioclásio	quigranula , feldspat	endas que estão ao longo da ar (granulação fina a média) e o alcalino e quartzo. A biotita largura variando de 5 cm a 2	tem estru a ocorre d	ıtura isotróprica.
11.	Fotos do Aflora	amen	to X		Número de Fotos 3	12. De	escrição das Fotos
ac	los de Labor	atóı	rio				1 e 2: relevo da áre estudo
13.	Análise Petrogr	afia	X			Foto 3	: textura da rocha
EI	Análise Químico ementos Maiore ementos Menoro FR's	s	X X X	15. Análi Amostra: Pb-Pb U-Pb Sm-Nd Rb-Sr	se Isotópica s(s):		

Número do Afloramento/Missão

SOS-1022/XXXI

Foto 1. Imagem que retrata o relevo da área estuda. Ao fundo observa-se a Serra da Vaca. O afloramento visitado corresponde a um lejedo que ocorre em um cota mais baixa do relevo.

Foto 2. Continuação da imagem vista acima.

Foto 3. Detalhe da textura da rocha do ponto 1012. O granito tem cor cinza, apresenta textura equigranular com granulometria fina a média e exibe estrutura isotrópica. A mineraogia compreende plagioclásio, feldspato alcalino e quartzo. A biotita é o máfico principal e ocorre de maneira incipiente.

FICHA DE AFLORAMENTO

Dados de Campo 1. Data: 25/05/18					2. Nº do Afloramento/Missão SOS-1023/XXXI			
3.	Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTM	l – Datum	n SAD 69	
	Piranhas		1:100.000		0619377		8919690	
6 /	Vacana a Lagaliz	0000	do Afloramento					
	Acesso e Localiz							
ent	Depois do ponto anterior (SOS-1022) segue-se sentido ao povoado Capim grosso a sul, no final do povoado entra em uma estrada à direita que corta o corpo de estudo no sentido leste-oeste, sentido a Fazenda Nova Esperança.							
	Unidade Estratig Stock Serra da Va		8. Elementos E	strut	9. Amostr SOS-			
Aflo inte iso	Afloramento tipo bloco rolado ocorrendo ao longo da estrada. A rocha desse ponto se aprensenta muito intemperizada, tem coloração rosada e é equigranular (granulação fina a média). A estrutura exibida é isotrópica. A mineralogia é constituída por plagioclásio, feldspato alcalino e quartzo. O mineral máfico principal continua sendo a biotita.							
11.	Fotos do Aflora	men	to X		Número de Fotos 1	12.	Descrição das Fotos	
Dad	dos de Labor	atór	rio			Foto	o 1: detalhe da rocha	
13.	Análise Petrogra	afia	Х					
	Análise Química lementos Maiore				álise Isotópica ras(s):			
	lementos Menore			-Pb		\dashv		
	TR's			Pb				
			Sn	n-No	ı			

Rb-Sr

Número do Afloramento/Missão

SOS-1023/XXXI

Foto 1: detalhe da rocha do ponto SOS-1023. A rocha exibe coloração rósea, é equigranular e tem estrutura isotrópica. Os cristais de feldspato alcalino aparecem em maior proporção em relação aos outros minerais, como plagioclásio e quartzo. A biotita é o máfico predominante, por vezes ocorre na forma de pequenos aglomerados.

Dados de Camp	o 1.	Data: 25/05/18		2. N° do Aflorament	2. Nº do Afloramento/Missão		
3. Folha-Mapa	4.	Escala do Mapa	5.	Coordenadas UTN	/I – Datum	SAD 69	
Piranhas		1:100.000		0618862		8920041	
6. Acesso e Local	zacã	io do Afloramento					
	stant	e cerca de 800 metro	os do p	ontos SOS-1023, seguindo ain	da na mes	ma estrada, sentido	
7. Unidade Estratigráfica Stock Serra da Vaca 8. Elementos Estruturais SOS-1024 10. Descrição do Afloramento Afloramento tipo bloco rolado in situ. O granito tem cor rósea, exibindo um certo grau de alteração. Ele apresenta textura equigranular (granulação fina a média). e estrutura isotrópica. Minerais observados na amostra de mão: plagioclásio, feldspato alcalino e quartzo (os dois primeiros parecem predominar. A biotita ocorre como máfico principal, porém de forma bem incipiente							
11. Fotos do Aflora	ımen	to X		Número de Fotos 1	I	escrição das otos	
Dados de Labor	atóı	rio			Foto 1	: detalhe da rocha	
13. Análise Petrogr	afia	Х					
14. Análise Químic Elementos Maiore Elementos Menor ETR's	S	X X X	15. Ana Amosti Pb-Pb U-Pb Sm-Nd Rb-Sr				

Número do Afloramento/Missão

SOS-1024/XXXI

Foto 1. Detalhe da rocha do ponto SOS-1024. A amostra exibe coloração rósea, é equigranular e tem estrutura isotrópica. Os cristais de feldspato alcalino aparecem com maior volume em relação aos outros minerais, como plagioclásio e quartzo. A biotita é o máfico predominante, por vezes ocorre na forma de pequenos aglomerados.

APÊNDICE II – FICHAS PETROGRÁFICAS

Ficha de Descrição **PETROGRÁFICA**

Nº da Amostra **FDS 237**

1 - DADOS SOBRE O AFLORAMENTO				
N o de Campo	Latitude	Longitude	Nome da Folha Geográfica (IBGE)	
237/M8	0619349	8922684	Carta Topográfica Folha Piranhas (Folha SC. 24-X-C-VI)	
Nº do Ponto	Referências do Ponto			
237/M8	Indo adiante do ponto 235, entra-se por uma fazenda e segue-se por uma estrada de terra existente, em seguida passa-se por uma cancela, logo em frente tem um pequeno riacho onde se encontram os afloramentos encaixados nessa drenagem.			
Tipo Rocha	Nome do Corpo			
Migmatito	Complexo Migmatítico de Poço Redondo			
2 - DADOS SOBRE A AMOSTRA				
ZEDADIOS SOBI	READMOSIRA			

x | x | x | x | x | x | x | x | x |

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb SP

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

Rocha de cor bege, inequigranular, fanerítica com granulação média a grossa e estrutura isotrópica. Os níveis mais escuros constituídos pelos minerais máficos. Ao microscópio petrográfico foi reconhecida a textura granolepdoblástica. A biotita ocorre como mineral máfico predominante. Os cristais de quartzo, plagioclásio e microclina apresentam-se como fenoblastos. Como minerais acessórios têm-se: epídoto, zircão, apatita e minerais opacos. Como minerais secundários foram identificados: clorita, resultante da alteração da biotita; carbonato, identificado como produto de alteração do plagioclásio.

Resumo das principais caraterísticas macroscópicas da rocha (cor, estruturas e texturas macros). Um resumo com as principais características das feições microscópicas devem ser apresentadas (granulação predominante, equigranular, inequigranular, nomear as texturas presentes minerais essenciais, varietais e acessórios, em caso de alteração pronunciada comentar).

4 - ANÁLISE MODAL

MINERAIS	%
Plagioclásio	36
Microclina	33
Quartzo	25
Biotita	5,1
Muscovita	0,3
Epídoto	0,2
Apatita	0,1
Zircão	0,1
Minerais opacos	0,1
Allanita	0,1

PARÂMETROS			
QAP		Q(A+P) M	
Q	26,32	Q	25,11
Α	35,30	A+P	69,27
Р	38,38	М	5,62
TOTAL	100%	TOTAL	100%

5 - DESCRIÇÃO DOS MINERAIS

Plagioclásio

Os cristais de plagioclásio se apresentam em duas gerações distintas. A primeira é representada por fenoblastos subédricos, com tamanho entre 1,04 mm e 6,66 mm, por vezes alguns desses mostram textura poiquiloblástica. A segunda geração é constituída por cristais menores subédricos com tamanho médio de 0,30 mm. De maneira geral as duas gerações de plagioclásio apresentam geminação segundo as leis da Albita e Albita-Carlsbad, por vezes alguns indivíduos apresentam-se geminados segundo a lei Albita-Periclina. Ocasionalmente, observam-se as texturas antipertitica e mirmequítica em alguns indivíduos. Os contatos são irregulares a curvos com cristais de feldspato alcalino, biotita e quartzo. Inclui cristais de quartzo, epídoto, biotita e muscovita. Nota-se que alguns cristais estão transformados para saussurita, essa alteração quase sempre se faz presente nos centros dos cristais, sendo possível encontrar cristais quase que totalmente alterados. Alguns cristais exibem coroa albítica, principalmente quando ocorrem incluindo fenoblastos de microclina.

Microclina

Ocorrem como fenoblastos subédricos medindo de 1,6 a 5,3 mm, com predominância dos indivíduos de 3,10 mm, são comuns cristais menores medindo em média 1,04 mm. Tanto os fenoblastos como os cristais de tamanho menor apresentam geminação segundo as leis Albita-Periclina, todavia, essa geminação está distribuída de forma mais homogênea nos cristais de maior tamanho. É comum ocorrer intercrescimento pertíticos com exsoluções tipo flâmula em vários indivíduos, só que com mais frequência nos fenoblastos. Observa-se ainda extinção concêntrica em alguns cristais. Faz contato irregular a ameboide com os demais cristais da rocha. Inclui cristais de plagioclásio com coroa albítica medindo em média 0,20 mm, ainda ocorre quartzo, biotita e zircão. Nota-se a presença de cristais com textura poiguiloblástica.

Quartzo

Os cristais de quartzo são anédricos, apresentam hábito granular isolado ou em agregados, às vezes apresentam extinção ondulante. O tamanho dos cristais varia de 0,20 mm alcançando até 2,8 mm. Apresentam-se também como subgrãos na borda dos cristais de plagioclásio e microclina. Faz contato irregular com os demais cristais da rocha. Quando ocorre como agregados monominerálicos os contatos são suturados a reentrante. Ocorrem inclusões de zircão, epídoto e minerais opacos. A maioria dos cristais apresentam-se fraturados. Essas fraturas estão preenchidas por minerais micáceos e/ou por inclusões fluídas. Notam-se em alguns subgrãos contatos serrilhados a reentrante entre si, evidenciando o processo de migração de limite grãos.

Biotita

Apresenta cor a verde a castanha avermelhada, com pleocroísmo variando de verde a marrom. Ocorre subédrica, por vezes euédrica. Os tamanhos variam de 0,25 mm a 1,45 mm. Em alguns locais na lâmina os cristais de biotita apresentam-se sob a forma de agregados (*cluster*). Inclui pequenos cristais de minerais opacos (>0,2 mm), zircão (>0,07 mm) e apatita (>0,08 mm). Faz contato irregular, por vezes reto com cristais de muscovita, plagioclásio, feldspato alcalino e quartzo. Alguns cristais encontram-se substituídos por clorita e muscovita.

Muscovita

Os cristais são subédricos, com tamanhos variando de 0,05 a 0,18 mm, predominando os de 0,16 mm. Mostram intima associação com os cristais de biotita e conjuntamente demarcam a estrutura gnáissica da rocha.

Epídoto

Os cristais são anédricos com tamanho variando de 0,05 mm a 0,08 mm.

Allanita

Os cristais de allanita apresentam forma subédrica, coloração alaranjada e pleocroísmo em tons de laranja a marrom. O tamanho do menor cristal mede 0,056 mm e do maior 0,25 mm. Os cristais de allanita fazem contato irregular com cristais de biotita e plagioclásio.

Apatita

Os cristais são euédricos com hábito acicular. Eles medem de 0,04 mm a 0,32 mm.

Zircão

Ocorre como cristais euédricos com tamanho de 0,07 mm a 0,15 mm.

Minerais Opacos

Ocorrem com forma subédrica a anédrica, com tamanho médio de 0,16 mm. Estão intimamente associados aos cristais de biotita.

6 - NOME DA ROCHA

Biotita monzogranito gnaisse

7 - CONSIDERAÇÕES PETROGRÁFICAS

Rocha apresenta no geral textura hipidiomórfica. Percebe-se a presença de fenoblastos (plagioclásio e microclina) em uma matriz inequigranular com granulação fina a média. A biotita aparece alterando-se para a muscovita e clorita, o que pode ser indício de retrometamorfismo. Os contatos entre os cristais de quartzo mostram, por vezes, contatos serrilhados, evidenciado o processo de migração de limite de grão. É possível notar que alguns cristais de microclina aparecem com bordas recristalizadas. Nota-se ainda cristais menores de quartzo se formam ao redor de cristais maiores (microclina e plagioclásio) formando feições tipo *string beads*.

8 - HISTÓRICO DA ANÁLISE

					-
ĺ	Local	Data de elaboração ¹	Data da última revisão ²	Analista ³	1
	São Cristóvão - SE	29/02/2016	22/02/2019	Douglas Barreto de Oliveira	

¹Data do início da descrição, ²data do término da descrição, ³seu nome completo sem abreviações

Ficha de Descrição **PETROGRÁFICA**

Nº da Amostra

FDS-234

1 - DADOS SOBRE O AFLORAMENTO				
Nº de Campo	Latitude	Longitude Nome da Folha Geográfica (IBGE)		
FDS-234	0621739	8922932	Piranhas(Folha SC.24-X-C-VI)	
Nº do Ponto	Referências do Ponto			
234	Seguindo pela estrada pavimentada que dá acesso ao Povoado Capim Grosso, entramos à direita numa estrada de chão que dá acesso ao Povoado Santa Rita. Tipo de Afloramento: Lajedo.			
Tipo Litológico	Nome do Corpo/Unidade			
Granito	Granito Stock Serra da Vaca			

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra

BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb x | x | x | x | x | x | x | x | x |

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

Rocha de coloração acinzentada, granulação média, estrutura anisotrópica marcada pela orientação dos cristais de biotita. Apresenta fenocristais de plagioclásio e feldspato alcalino. Ao microscópio petrográfico foi identificado textura poiquilítica em fenocristais de plagioclásio. É comum ocorrer pertitas em feldspatos alcalinos, bem como textura micrográfica. Os minerais acessórios são: zircão, epídoto, allanita, apatita e minerais opacos. A mineralogia secundária é a seguinte: clorita, resultante da alteração da biotita; carbonato atribuído a produto de alteração do plagioclásio; argilominerais, resultantes da alteração do feldspato alcalino.

4 - ANÁLISE MODAL

MINERAIS	%
Plagioclásio (14% a 20,7 % de Anortita)	47,4
Quartzo	28,
Microclina	16,5
Biotita	5,4
Muscovita	1,5
Epídoto	0,6
Minerais Opacos	0,2
Apatita	0,1
Allanita	0,1
Titanita	0,1
Zircão	0,1

PARAMETROS			
QAP		Q (A+P) M	
Q	30,46	Q	28,45
Α	17,95	A+P	64,93
Р	51,59	М	6,62
TOTAL	100%	TOTAL	100%

5 - DESCRIÇÃO DOS MINERAIS

Plagioclásio (oligoclásio)

Os cristais subédricos e anédricos estão bem distribuídos por toda a lâmina, tanto na matriz como em fenocristais. Eles apresentam-se geminados segundo as leis da Albita e Albita-Carlsbad. Os tamanhos dos cristais variam 0,2 mm a 3,4 mm, existindo predomínio dos cristais com 1,4 mm. Alguns cristais apresentam-se poiqulíticos, englobando cristais menores de biotita, muscovita e zircão. Por vezes alguns indivíduos apresentam zoneamento composicional múltiplo, visível pelo aparecimento de saussurita, a qual marca o núcleo mais cálcico desses cristais. Nota-se, ainda, a presença da textura mirmequítica em alguns cristais. Essa textura ocorre quando o plagioclásio está em contato com a microclina. Faz contatos irregulares com cristais de feldspato alcalino; cristais anédricos de quartzo, cristais de biotita e muscovita. Inclui cristais euédricos de apatita, medindo cerca de 0,05 mm; cristais subédricos de muscovita medindo 0,15 mm; cristais subédricos de biotita; cristais euédricos de zircão, com tamanho não muito maior que 0,02 mm; cristais anédricos de minerais opacos, com tamanhos não maiores que 0,04 mm.

Os cristais são anédricos e os seus tamanhos dos cristais variam entre 0,05 mm a 2,04 mm, predominando os indivíduos de 1,10 mm. Os cristais maiores que 0,8 mm apresentam com frequência extinção ondulante bem marcada. Os contatos às vezes são do tipo cúspide e/ou irregulares com os próprios cristais de quartzo. Contatos irregulares são comuns com cristais de plagioclásio, microclina e a biotita. Contatos retos são observados com algumas ripas de biotita subédricas. Inclui cristais euédricos de zircão, medindo cerca de 0,03 mm e cristais de apatita, medindo por volta de 0,03 mm.

Os cristais são pertíticos e apresentam forma subédrica a anédrica. O tamanho varia de 0,2 mm a 3,6 mm, com tamanho médio de 0,6 mm. Apresentam-se geminados segundo a lei da Albita-Periclina. Identifica-se por vezes, cristais zonados. Alguns apresentam, por vezes, extinção ondulante. Intercrescimento de quartzo, formando a textura micro-gráfica é comum em alguns indivíduos. Finas vênulas de pertitas são comuns nas bordas dos cristais maiores que 1,0 mm. Faz contato irregular com cristais de quartzo, plagioclásio, muscovita e biotita. Inclui cristais subédricos de muscovita, medindo entre 0,03 e 0,1 mm; cristais anédricos de epídoto menores que 0,08 mm; cristais aciculares de apatita, medindo, cerca de, 0,06 mm; minerais opacos não passando de 0,19 mm. Nota-se que maioria dos cristais estão alterados para sericita, principalmente nas porções centrais dos cristais.

Biotita

Os cristais são euédricos a subédricos e têm marrom. O pleocroísmo varia entre o marrom-claro e o marrom-escuro. A granulação varia entre 0,14 mm e 1,2 mm, predominando cristais de 0,8 mm. Os contatos são irregulares com quase todos os minerais da rocha, porém, às vezes pode ocorre contatos retos com cristais de muscovita, plagioclásio, quartzo e com o epídoto. Inclui cristais euédricos de zircão, com tamanho médio de 0,03 mm; e cristais de minerais opaco, com tamanho não passando de 0,08 mm. Nota-se também, o fenômeno de propilitização em alguns cristais; esse processo é marcado pela presença de cristais de biotita alterados para clorita, epídoto e minerais opacos.

Muscovita

Ocorre como cristais subédricos. Os tamanhos variam dede 0,03 mm a 0,5 mm, predominando indivíduos de 0,23 mm. Apresenta contato irregular com cristais de feldspato alcalino, plagioclásio, quartzo e biotita. Contatos retos são, por vezes, observados com as ripas de biotita.

Epídoto

Tem cor verde pálida e pleocroísmo em tons de verde-claro. São euédricos a subédricos. Quando se apresentam na forma subédrica geralmente estão em agregados de cristais com tamanho inferior a 0,1mm. Já quando ocorrem na forma euédrica, eles se mostram associados à biotita e por vezes aparecem coroando cristais de allanita. A granulação dos cristais euédricos varia de 0,05 mm a 0,25 mm, predominando indivíduos com 0,15 mm. Faz contatos do tipo irregular com a maioria dos cristais da rocha. Por vezes, exibe contato reto com cristais de biotita.

Allanita

Os cristais de allanita apresentam cor laranja com o pleocroísmo variando em tons de laranja. Ocorrem como cristais subédricos, com tamanho variando entre 0,09 mm a 0,25 mm. Faz contatos irregulares com os demais cristais da rocha, com frequência os cristais de allanita são coroados por cristais de epídoto euédrico.

Zircão

Os cristais são euédricos e variam entre 0,02 mm e 0,04 mm, não passando disso. Estes cristais ocorrem como inclusão em cristais de biotita, plagioclásio e quartzo. Por vezes nota-se a presença de halos pleocróicos na biotita, podendo ser cristais de zircão.

Apatita

Os cristais apresentam forma euédrica e hábito prismático curto, a granulação varia entre 0,01 e 0,03 mm, predominando os de 0,02 mm. Esses cristais ocorrem com muita frequência como inclusões em cristais de plagioclásio, feldspato alcalino, quartzo e nas micas.

Titanita

Os cristais de titanita são anédricos e apresentam cor marrom. O tamanho dos cristais mede em torno de 0,2 mm. Ocorrem associados a cristais de biotita e ao epídoto, por vezes, os coroando.

Minerais Opacos

São anédricos e tem granulação variando entre 0,04 mm a 0,32 mm, com os indivíduos de 0,15 mm predominando. Ocorre associado à biotita, em alguns casos como produto de alteração. Com frequência apresentam-se como inclusões em cristais de feldspato alcalino.

6 - NOME DA ROCHA

Biotita Granodiorito

7 - CONSIDERAÇÕES PETROGRÁFICAS

A rocha é caracterizada por apresentar textura hipidiomórfica, inequigranular. Em amostra de mão foi possível notar uma anisotropia incipiente devido a uma orientação dos cristais de biotita. Foi possível identificar alterações como a saussuritização, sericitização e cloritização. Tais processos pode indicar a percolação de fluídos ricos em voláteis durante a fase final da cristalização do magma. A existência das texturas: gráfica, mirmequítica e pertítica podem ser consideradas evidências de mudanças significativas nas condições físico-químicas durante a cristalização do magma. As relações texturais dos cristais de epídoto sugerem uma origem tipicamente magmática para esse mineral. Esse fato também pode indicar também altas condições de fugacidade durante a cristalização do magma.

8 - HISTÓRICO DA ANÁLISE				
Local	Data de elaboração	Data da última revisão	Analista	
São Cristóvão-SE	01/12/2017	22/02/2019	Douglas Barreto de Oliveira	

Nº da Amostra

FDS-235

1 - DADOS SOBRE O AFLORAMENTO				
Nº de Campo	Latitude	Longitude	Nome da Folha Geográfica (IBGE)	
FDS-235	0621739	8922932	Piranhas(Folha SC.24-X-C-VI)	
Nº do Ponto	Referências do Ponto			
235	Seguindo pela estrada pavimentada que dá acesso ao Povoado Capim Grosso, entramos à direita numa estrada de chão que dá acesso ao Povoado Santa Rita.			
Tipo Litológico	Nome do Corpo/Unidade			
Granito	Stock Serra da Vaca			

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

Rocha inequigranular de cor cinza-claro, apresentando granulação fina a média, com a ocorrência de fenocristais de feldspato alcalino e plagioclásio. A rocha apresenta estrutura isotrópica. Os minerais essenciais são: quartzo, plagioclásio e feldspato alcalino. A biotita é o mineral máfico que ocorre com mais frequência. Os minerais acessórios são: zircão, apatita, allanita, epídoto, minerais opacos. Minerais de alteração tais como clorita e carbonato ocorrem na biotita e no plagioclásio, respectivamente. Os plagioclásios, por vezes, apresentam-se zonados; esses cristais ainda exibem as texturas tipo mirmequita e antipertita. Os fenocristais, na maioria das vezes, são poiquilíticos. Os cristais de quartzo exibem extinção ondulante, bem como inclusões de cristais de apatita acicular.

4 - ANÁLISE MODAL

MINERAIS	%
Plagioclásio (15,5 a 22,04% de Anortita)	43
Quartzo	34
Feldspato Alcalino	15
Biotita	5,8
Muscovita	0,9
Epídoto	0,8
Allanita	0,2
Apatita	0,1
Zircão	0,1
Minerais Opacos	0,1

	PARÂMETROS				
QAP Q (A+P) M					
Q	36,95	Q	34,34		
Α	16,32	A+P	58,58		
Р	46,73	M	7,08		
TOTAL	100%	TOTAL	100%		

5 - DESCRIÇÃO DOS MINERAIS

Plagioclásio (oligoclásio)

Os cristais apresentam-se geminados segundo as leis da Albita, Albita-Carlsbad e Albita-Periclina. Ocorrem como fenocristais subédricos, com variação de tamanho de 2,29 mm até 4,89 mm, e na forma de cristais menores anédricos, medindo entre 0,32 mm e 1,19 mm.

Os fenocristais geralmente exibem textura poiquilítica. Alguns indivíduos exibem as texturas mirmequítica e antipertítica. Foi observado que alguns cristais apresentam extinção concêntrica, e outros estão zonados. Faz contatos irregulares com cristais de feldspato alcalino, quartzo, epídoto, biotita e muscovita. Há também contatos retos com cristais de biotita. Inclui cristais de microclina com até 0,13 mm; biotita euédrica medindo até 0,3 mm; cristais aciculares de apatita (0,02 mm e 0,05 mm); cristais de quartzo, medindo entre 0,05 mm a 0,1 mm; muscovita subédrica (<0,12 mm); zircão, medindo em média 0,05 mm; minerais opacos, com tamanho máximo de 0,15 mm. Alguns dos cristais mostram-se saussuritizados e essa alteração se faz presente quase sempre nas partes centrais dos cristais.

Microclina

Os cristais são subédricos a anédricos, cujos tamanhos variam de 0,13 mm a 3,04 mm, predominando os de 0,82 mm. Apresentam-se geminados segundo as leis Carlsbad e Albita-Periclina. Alguns cristais exibem extinção concêntrica bem marcada. Outros indivíduos exibem textura pertítica tipo flâmula. Os contatos são irregulares, com cristais de plagioclásio, quartzo, biotita e muscovita; e retos com cristais de biotita e às vezes do tipo reentrante com cristais de quartzo. Inclui cristais de quartzo, medindo entre 0,58 e 0,03 mm; biotita subédrica, medindo em média 0,15 mm; cristais menores de zircão e apatita, e minerais opacos com tamanhos inferiores a 0,04 mm.

Quartzo

Os cristais são anédricos com tamanho variando de 0,05 mm a 2,85 mm, predominando os de 0,95 mm. Alguns dos indivíduos apresentam extinção ondulante por setor. Inclusões fluídas ocorrem com frequência em alguns cristais. Os contatos são irregulares (curvos a amebóides) com os demais cristais da rocha. Nota-se a presença de inclusões de apatita (<0,04 mm) e zircão (<0,04 mm).

Biotita

Os cristais são subédricos e euédricos, apresentam cor marrom e pleocroísmo variando entre o marromclaro e o castanho escuro. A maioria dos cristais apresentam hábito lamelar. Os seus tamanhos variam de 0,15 mm a 1,2 mm, predominando os cristais de 0,45 mm. Faz contatos retos e/ou irregulares com cristais de plagioclásio, feldspato alcalino, quartzo e muscovita. Inclui cristais de zircão, medindo em média 0,03 mm; cristais de apatita, não maiores de 0,04 mm e minerais opacos, não superiores a 0,14 mm. Nota-se que a maioria dos cristais estão alterados, muitas vezes essa alteração impede a visualização da clivagem. Alguns estão alterados para clorita, em outros, observa-se a alteração para mica muscovita.

Muscovita

Os cristais apresentam forma subédrica. Os tamanhos variam de 0,08 mm a 1,1 mm. Faz contatos irregulares com todos os cristais da rocha, às vezes o contato pode ser reto com a biotita. Inclui cristais de zircão, apatita e minerais opacos.

Epídoto

Os cristais apresentam cor verde pálida, com pleocroísmo incipiente, ocorrem como cristais anédricos, com dimensão variando de 0,2 mm a 0,13 mm. Os cristais, na maioria das vezes, apresentam-se como agregados, estão relacionados à muscovita, biotita e clorita, e, por vezes, apresentam-se coroando cristais de allanita. Faz contato reto com cristais de biotita e muscovita e irregular com os demais cristais da rocha. Inclui quartzo vermicular.

Allanita

Os cristais apresentam cor laranja, com o pleocroísmo variando em tons de laranja. Ocorrem anédricos, com tamanho variando entre 0,09 mm a 0,19 mm. Frequentemente, ocorre coroada por epídoto subédrico. Faz contatos irregulares com os demais cristais da rocha.

7ircão

Apresentam-se euédricos, com dimensões variando de 0,05 mm a 0,02 mm, predominando os de 0,03 mm.

Apatita

Ocorrem como cristais euédricos, apresentando habito acicular. Os tamanhos desses cristais variam de 0,01 mm a 0,05 mm, com predominância dos indivíduos de 0,03 mm.

Minerais Opacos (ilmenita e magnetita)

Ocorrem na forma anédrica, na maioria das vezes associado à biotita e a clorita. O tamanho varia de 0,05 a 0,14 mm, predominando os de 0,13 mm.

6 - NOME DA ROCHA

Biotita Granodiorito

7 - CONSIDERAÇÕES PETROGRÁFICAS

A rocha apresenta textura hipidiomórfica. Os cristais de plagioclásio com extinção concêntrica sugerem zoneamento composicional. A extinção ondulante nos cristais de quartzo pode indicar que a região do *Stock* Serra da Vaca sofreu pequenas tensões após o resfriamento das rochas. A saussuritização nos cristais de plagioclásio, bem como as inclusões fluidas nos cristais de quartzo, corrobora com a ideia de que as rochas do SSV sofreram a ação de fluídos hidrotermais tardios. As textura pertítica e mirmequítica observadas sugere mudanças físico-químicas no magma durante o processo de cristalização.

8 - HISTÓRICO DA ANÁLISE

Local	Data de elaboração	Data da última revisão	Analista
São Cristóvão-SE	01/12/2017	22/02/2019	Douglas Barreto de Oliveira

Nº da Amostra

SOS-803

1 - DADOS SOBRE O AFLORAMENTO					
Nº de Campo	Latitude	Longitude	Nome da Folha Geográfica (IBGE)		
SOS-803	623125	8922921	Piranhas(Folha SC.24-X-C-VI)		
Nº do Ponto	Referências do Ponto				
803	O ponto 803 foi o primeiro afloramento encontrado durante a missão de campo. Seguindo pela SE-403 sentido Canindé- Capim Grosso, entra-se em uma estrada de chão à direita da rodovia. O ponto 803 fica logo na parte inicial dessa estrada vicinal.				
Tipo Litológico	Nome do Corpo/Unidade				
Granito	Stock Serra da Vaca				

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra

BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb SP | x | x | x | x | x | x | x | x | x |

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

A rocha apresenta cor acinzentada, textura inequigranular e estrutura levemente anisotrópica. Os fenocristais identificados foram de plagioclásio (albita) e feldspato alcalino, eles frequentemente atingem até 4 cm, sendo comumente poiguilíticos. A matriz tem granulação fina a média, sendo constituída por quartzo, feldspatos e biotita. A anisotropia é incipiente, marcada pela orientação dos minerais micáceos. como a biotita. Em seção delgada, os cristais de plagioclásio e feldspato alcalino apresentam textura poiguilítica. O plagioclásio apresenta textura mirmequítica, geralmente quando está em contato com o feldspato alcalino.

4 - ANÁLISE MODAL

MINERAIS	%
Microclina	67,0
Albita (An 1,87 a 8,86%)	5,0
Quartzo	18,0
Biotita	8,9
Epídoto	0,2
Muscovita	0,3
Minerais Opacos	0,2
Allanita	0,1
Zircão	0,1
Apatita	0,1
Titanita	0,1

PARÂMETROS				
QAP Q (A+P) M				
Q	20,0	Q 20,10		
Α	74,4	A+P	70,35	
Р	5,6	М	9,55	
TOTAL	100 %	TOTAL	100 %	

5 - DESCRIÇÃO DOS MINERAIS

Microclina

Ocorrem subédrico a anédrico, com granulação variando de 0,8 mm a 2,0 mm, predominando indivíduos com 1,2 mm. Identificou-se a presença de ortoclásio e microclina devido a geminações Carslbad e Albita-Periclina. Frequentemente apresenta textura pertítica do tipo flâmula, que ocorre restrita em alguns cristais. Em raros casos, percebe-se a fraca extinção ondulante. Os contatos são irregulares com os demais cristais da rocha. Observam-se inclusões de quartzo anédrico (<0.15 mm), epídoto anédrico (<0,2 mm), biotita subédrica (<0.4 mm), apatita subédrica (<0.05 mm) e albita (<0.4 mm), Em geral, apresentam um aspecto "sujo", devido ao elevado grau de alteração para argilominerais.

Albita (An _{1,87 a 8,86%})

Os cristais de albita ocorrem bem distribuídos por toda a lâmina. Apresentam forma subédrica a anédrica, exibindo geminação segundo as leis da Albita e Albita-Periclina, sendo que a primeira é bem. A granulação varia de 0,2 mm a 2,0 mm, predominando os de 0,8 mm. Alguns cristais exibem zonação bem marcada. Os contatos são irregulares com os demais cristais da rocha. Nos casos em que a albita faz contato com o feldspato potássico e quartzo, nota-se a presença da textura mimerquítica bem desenvolvida. Faz contato irregular com os demais cristais da rocha. É comum observar inclusões de quartzo anédrico (<0,2 mm), epídoto anédrico (<0,2 mm), biotita subédrica (>0,5 mm) e apatita euédrica (<0.05 mm). Alguns cristais encontram-se alterados à sericita, principalmente nas porcões centrais. Percebe-se que, localmente, o grau de alteração está tão elevando que a geminação foi quase que totalmente obliterada.

Os cristais de quartzo são anédricos. O tamanho dos cristais varia de 0,2 mm a 1,66 mm, predominando

cristais com 0,5 mm. É frequente a presença de extinção ondulante forte a moderada. Os cristais maiores (~1 mm) mostram-se quase sempre fraturados. Em pontos localizados na lâmina, os cristais de quartzo exibem-se na forma de agregados monominerálicos, coroando o plagioclásio e a microclina. Por vezes, o quartzo é intersticial quando está em contato com o feldspato alcalino e o plagioclásio. Os contatos são amebóides a irregulares com outros os cristais da rocha. Quando ocorrem na forma de agregados monominerálicos, os contatos são reentrantes. Inclui pequenos cristais de biotita e epídoto.

Biotita

Os cristais de biotita apresentam cor marrom, o pleocroísmo é moderado, ocorrendo em tons de marrom avermelhado a marrom amarelado. Os cristais desse mineral apresentam-se na forma subédrica, com hábito lamelar. Frequentemente ocorrem alterados para clorita. O tamanho dos cristais varia de 0,4 mm a 1,5 mm, sendo que predomina os de 0,5 mm. É comum observar agregados de cristais de biotita sobrepostos. Os contatos são irregulares com plagioclásio, feldspato alcalino e quartzo; contatos retos são observados com outros cristais de biotita. Inclui quartzo, zircão e minerais opacos. Observa-se que os cristais de muscovita desenvolvem-se ao longo dos planos de clivagem e fraturas da biotita.

Muscovita

Os cristais são subédricos a euédricos e medem em torno de 0,3 mm. Limitam-se a ocorrer ao longo dos planos de clivagem dos cristais da biotita. Exibem contato reto a irregular com a biotita.

Epídoto

Os cristais de epídoto apresentam cor verde-limão, exibem forma subédrica a anédrica. Observa-se um fraco pleocroísmo em tons de verde nesses cristais. O hábito dos cristais é tipicamente granular. O tamanho do menor cristal identificado foi de 0,081 mm e do maior foi 0,52 mm, contudo aqueles com 0,23 mm predomina na rocha.

Allanita

Os cristais de allanita são bem escassos na lâmina, quando ocorrem são euédricos, apresentam cor alaranjada e pleocroísmo discreto em tons de rosa. É comum observar cristais de allanita sendo bordejados por cristais subédricos de epídoto. O tamanho do maior cristal identificado foi de 0,03 mm.

Zircão

É euédrico, por vezes ocorre metamitizado, os tamanhos variam de 0,05 a 0,44 mm, predominando aqueles de 0,15 mm. Em alguns cristais observou-se a existência de um centro opaco e zonações composicionais.

Apatita

Os cristais são euédricos, onde o tamanho varia de 0,04 mm a 0,15 mm. Aparecem como inclusões diminutas nos feldspatos, quartzo e biotita.

Minerais Opacos (ilmenita)

Apresenta forma anédrica e subédrica, os tamanhos variam de 0,19 mm a 1,0 mm, predominando os de 0,27 mm. Na maioria das vezes ocorrem associados aos cristais de biotita e clorita. Os contatos são irregulares com os demais cristais da rocha.

Titanita

A titanita é anédrica a subédrica e ocorre coroando parcialmente os cristais de minerais opacos.

Minerais identificados no MEV

Torianita (ThO_2) é um mineral raro, composto por óxido de tório, contendo hélio e os óxidos de urânio, lantânio, cério e didímio.

Torita (ThSiO4) é um nesossilicato raro de tório que cristaliza no sistema tetragonal e é isomorfo com zircão e hafnon. É o mineral mais comum do tório e quase sempre é fortemente radioativo.

Monazita [(Ce,La,Nd,Th)PO4]

Calcita

Bastnasita [(Ce, La)CO3F]

6 - NOME DA ROCHA

Biotita Álcali-feldspato Granito

7 - CONSIDERAÇÕES PETROGRÁFICAS

A rocha apresenta textura hipidiomórfica, sendo equigranular a inequigranular. A estrutura observada é isotrópica. Os cristais de plagioclásio ocorrem frequentemente saussuritizados, apresentando também a textura mirmequítica. O feldspato alcalino identificado foi a microclina e o ortoclásio. Isso pode indicar a transformação polimórfica de um feldspato de alta temperatura para um de mais baixa temperatura. A biotita é o máfico predominante, perfazendo quase 10% do volume da lâmina. As fases acessórias

identificadas foram: zircão, apatita, epídoto, allanita, minerais opacos, clorita e sericita. Os cristais de biotita e feldspato ocorrem alterados para clorita e sericita, respectivamente.

8 - HISTÓRICO DA ANÁLISE				
Local	Data de elaboração	Data da última revisão	Analista	
São Cristóvão-SE	01/12/2017	26/02/2019	Douglas Barreto de Oliveira	

Nº da Amostra

SOS-804

1 - DADOS SO	DBRE O AFLORAMENTO				
Nº de Campo	Latitude	Longitude		Nome da Folha Geográfica (IBGE)	
SOS-804	621733	8922991		Piranhas (Folha SC.24-X-C-VI)	
Nº do Ponto	Referências do Ponto	Referências do Ponto			
804	O ponto está localizad estrada de chão, próxin			nto 803. O afloramento está localizado ao lado da o.	
Tipo Litológico	Nome do Corpo/Unidade				
Granito	Stock Serra da Vaca				

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra

BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb x | x | x | x | x | x | x | x | x |

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

Rocha de coloração acinzentada a levemente esbranquiçada, com granulação fina a média, equigranular e isotrópica. Os minerais identificados à vista desarmada foram: plagioclásio, feldspato alcalino, quartzo e biotita. A biotita ocorre como mineral máfico predominante. Os minerais acessórios são zircão, apatita, epídoto, allanita, minerais opacos.

4 - ANÁLISE MODAL

MINERAIS	%
Oligoclásio (An _{17,31-29,48%})	49
Feldspato Alcalino	22,5
Quartzo	19
Biotita	8,5
Muscovita	0,3
Epídoto	0,2
Allanita	0,1
Minerais Opacos	0,2
Zircão	0,1
Apatita	0,1

PARÂMETROS				
QAP Q (A+P) M				
Q	21	Q	19	
Α	24,86	A+P	71,5	
Р	54,14	М	9,5	
TOTAL	100 %	TOTAL	100 %	

5 - DESCRIÇÃO DOS MINERAIS

Oligoclásio (An_{17,31-29,48%})

Os cristais são subédricos a anédricos, com granulação variando de 0,3 mm a 1,9 mm, predominando cristais com 1,25 mm. Apresentam-se geminados segundo as leis da Albita e Albita-Carlsbad. Exibem contatos irregulares a curvos com a microclina, quartzo e biotita. As inclusões comuns são biotita (<0,41 mm), zircão, quartzo anédrico, agregados de apatita (0.07 mm a 0.22 mm), epídoto granular e minerais opacos. Salienta-se que grande parte dos cristais estão alterados para argilo-minerais, sericita, muscovita e carbonatos.

Microclina

Os cristais de microclina são subédricos a anédricos. Apresentam-se geminados segundo a lei da Albita-Periclina. Os tamanhos variam de 0,25 mm a 1,45 mm, predominando os de 1,30 mm. Alguns cristais apresentam extinção ondulante em barra bem marcada. Os contatos são irregulares a curvos com os outros cristais que compõe a rocha. Inclui cristais diminutos de biotita, quartzo anédricos (<0,29 mm), epídoto anédricos (<0.01 mm), apatita (<0.03 mm) e zircão (<0.03 mm), sendo que os últimos quatro minerais ocorrem com mais frequência. É comum apresentar um aspecto "sujo", pois se encontram muito alterados devido aos processos de sericitização e saussuritização.

É anédrico, a granulação varia entre 0,3 mm e 1,66 mm, predominando os de 0,5 mm. Frequentemente apresenta inclusões fluídas nos centros dos cristais e fraturas na periferia. Alguns indivíduos exibem extinção ondulante moderada. Os contatos são curvilíneos com os cristais de oligoclásio, microclina e biotita, e retos com algumas palhetas de biotita. Inclui zircão euédrico (<0,02 mm) e apatita (<0,04 mm).

Biotita

Os cristais de biotita marrom ocorrem na forma de lamelas subédricas, com pleocroísmo variando em tons de marrom, amarelo e marrom esverdeado. Os tamanhos variam de 0,35 mm a 1,65 mm, predominando cristais com 0,73 mm. Os contatos são retos entre os cristais de biotita e são irregulares com os outros cristais da rocha. Inclui apatita, zircão, epídoto euédrico, minerais opacos (<0,04 mm). Por vezes, a biotita altera para muscovita, e essa alteração é bem marcada ao longo do plano de clivagem dos cristais.

Muscovita

Os cristais são subédricos e medem em torno de 0,25 mm. Limita-se a ocorrer ao longo dos planos de clivagem dos cristais da biotita. Exibem contato reto a irregular com a biotita.

Epídoto

Apresenta cor verde-clara, com fraco pleocroísmo em tons de verde. Em geral, percebe-se que os cristais de epídoto se dividem basicamente em dois tipos: cristais euédricos e subédricos. Os cristais euédricos geralmente ocorrem associados à biotita e/ou ocorrem coroando cristais de allanita. O tamanho desses cristais varia de 0,05 a 0,12 mm, predominando os de 0,10 mm. Os contatos com os outros minerais são retos a irregulares. Já os cristais subédricos (apresentam hábito granular) ocorrem, frequentemente, inclusos em cristais de oligoclásio, onde seus tamanhos não atingem 0,1 mm. Os contatos dos cristais subédricos são irregulares a reentrantes com os feldspatos.

Allanita

A allanita apresenta cor alaranjada com pleocroísmo incipiente em tons amarelados. Os cristais são subédricos, cujos tamanhos variam de 0,02 mm a 0,07 mm, com o predomínio daqueles com 0,05 mm. Essa fase mineral ocorre, na maioria das vezes, coroados por epídoto. Os contatos são retos a irregulares com os cristais de compõem a rocha.

Minerais Opacos

Os minerais opacos são anédricos e ocorrem associados com os cristais de biotita e clorita. A granulação varia de 0,04 mm a 1,04 mm, predominando aqueles com 0,3 mm de tamanho. Inclui, frequentemente, cristais de apatita (<0,02 mm). Os contatos são curvos a irregulares com os outros cristais da lâmina.

Zircão

O zircão apresenta forma euédrica a subédrica, predominando os cristais euédricos. Os cristais medem entre 0,02 e 0,05 mm, predominando os indivíduos com 0,03.

Apatita

Os cristais de apatita são euédricos. Apresentam-se sob a forma prismática (seção basal hexagonal). O cristal menor mede 0,02 mm e o maior 0,07, predominando aqueles com 0,04 mm. Os contatos são, na maioria das vezes, retos com outros cristais da rocha.

6 - NOME DA ROCHA

Biotita Granodiorito

7 - CONSIDERAÇÕES PETROGRÁFICAS

A rocha apresenta textura hipidiomórfica, equigranular a inequigranular, ainda exibindo estrutura isotrópica. Os cristais plagioclásio e feldspato atingem até 1,9 mm, sendo que a maioria apresenta textura poiquilítica. Esses cristais mostram-se alterados, principalmente para sericita. Salienta-se que existem duas gerações de epídoto: uma eudédrica que geralmente ocorre coroando cristais de allanita, e outra subédrica, a qual ocorre associada a processos de desestabilização do plagioclásio. As relações texturais da primeira geração de epídoto, sugerem uma origem magmática.

8 - HISTÓRICO DA ANÁLISE Local Data de elaboração Data da última revisão Analista São Cristóvão-SE 03/12/2017 22/02/2019 Douglas Barreto de Oliveira

Nº da Amostra

SOS-806

1 - DADOS SOBRE O AFLORAMENTO					
N o de Campo	Latitude	Longitude	Nome da Folha Geográfica (IBGE)		
SOS-806	620721	8923607	Piranhas (Folha SC.24-X-C-VI)		
Nº do Ponto	Referências do Ponto	Referências do Ponto			
806	Seguindo em diante na	Seguindo em diante na estrada de chão, distante cerca de 1 km do ponto 805.			
Tipo Litológico	Nome do Corpo/Unidade				
Granito	Stock Serra da Vaca				

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb

x | x | x | x | x | x | x | x | x |

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

A rocha de coloração cinza clara, inequigranular (presença de fenocristais e uma matriz de granulação fina a média), levemente anisotrópica, devido à presença da biotita. Os fenocristais consistem em plagioclásio (apresenta hábito tabular e forma subédrica), feldspato alcalino (ortoclásio e microclina). A matriz apresenta textura equigranular, com granulação fina a média, sendo composta por quartzo, plagioclásio, feldspato alcalino e biotita.

4 - ANÁLISE MODAL

MINERAIS	%
Andesina/Oligoclásio (An 17,24-48,91%)	45
Feldspato Alcalino	23
Quartzo	20
Biotita	11
Muscovita	0,4
Epídoto	0,1
Allanita	0,1
Titanita	0,1
Zircão	0,1
Apatita	0,1
Minerais Opacos	0,1

PARÂMETROS			
G	QAP	Q (A+P) M	
Q	22,72	Q	20,12
Α	26,13	A+P	68,41
Р	51,15	M 11,47	
TOTAL	100%	TOTAL	100%

5 - DESCRIÇÃO DOS MINERAIS

Andesina-Oligoclásio (An _{17,24-48,91%})

A andesina-oligoclásio apresenta-se sob forma de cristais subédricos, frequentemente anti-pertítico. Apresenta geminação segundo as leis da Albita e Albita-carlsbad. O tamanho dos cristais varia de 0,4 mm até 2,55 mm, predominando cristais com aproximadamente 1,1 mm. Alguns indivíduos apresentam uma zonação oscilatória bem marcada, que foi realçada pela extinção concêntrica. Os contatos são essencialmente irregulares com os outros cristais da rocha. Inclui apatita euédrica, zircão euédrico, biotita subédrica e epídoto subédrico. Nota-se que alguns cristais estão fortemente saussuritizados, com presença de sericita, epídoto e muscovita secundária. Essa alteração é mais bem evidenciada no centro do que na periferia dos cristais.

Feldspato Alcalino

Na lâmina foram identificados dois tipos de feldspato alcalino: microclina e ortoclásio. A microclina apresenta forma subédrica, sendo frequentemente pertítica. Apresenta sua geminação clássica, segundo as leis da Albita-periclina. Os cristais medem de 0,3 mm a 0,8 mm, predominando indivíduos com 0,4 mm. Os contatos são irregulares a curvos com outros cristais que compõe a rocha. Inclui cristais euédricos de apatita euédrica e zircão euédrico.

O ortoclásio apresenta forma subédrica, ocorrendo como fenocristais medindo de 0,8 a 1,7 mm, com predomínios daqueles com 1,4 mm de tamanho. Apresentam geminação Carlsbad, sendo também comum encontrar exsoluções de albita. Os cristais de ortoclásio fazem contatos curvos a irregulares com os outros cristais da rocha, podendo ser reto com palhetas de biotita. É comum encontrar inclusões de apatita euédrica, zircão euédrico e biotita subédrica.

Quartzo

Os cristais de quartzo ocorrem sob a forma anédrica, a granulação varia de 0,2 mm a 1,20 mm, com predomínio dos cristais de 0,54 mm. A extinção ondulante em barra é comum nesses cristais. Em alguns locais na lâmina, existem agregados monominerálicos, com granulação inferior a 0,4 mm. Os contatos são curvos a reentrantes com os outros cristais que compõe a rocha. Inclusões observadas foram de cristais euédricos de zircão e apatita, ambos com tamanho menor que 0,03 mm.

Biotita

A biotita apresenta forma euédrica a subédrica, cor marrom e pleocroísmo em tons de castanho claro e escuro. Por vezes, a biotita forma aglomerados com outros cristais de biotita e/ou pode ocorrer bordejando cristais maiores de andesina e microclina. A granulação varia de 0,22 mm a 1,35 mm, predominando cristais com 0,7 mm. Os contatos são retos com outros cristais de biotita e com o epídoto; e irregulares a reentrantes com os feldspatos e o quartzo. Nota-se que alguns cristais estão alterando para clorita e muscovita. Isso é bem evidenciado ao longo do plano de clivagem da biotita. Inclui cristais de apatita (<0,03 mm), zircão (<0,03 mm), epídoto (0,1 mm) e minerais opacos (<0.08 mm). Halos pleocróicos são comuns (ocorrendo preferencialmente no centro da biotita) devido às inclusões de zircão.

Muscovita

Os cristais são subédricos e medem até 0,35 mm. Limita-se a ocorrer ao longo dos planos de clivagem dos cristais da biotita. Exibem contato reto a irregular com a biotita.

Epídoto

Os cristais de epídoto são de cor verde claro e apresenta pleocroísmo fraco em tons de verde. Duas famílias de epídoto foram identificadas. A primeira é composta por cristais subédricos com tamanho médio em torno de 0,19 mm, onde sua característica principal é ocorrer coroando cristais menores e allanita. Os contatos desses cristais são irregulares com a maioria dos cristais da rocha, podendo ser retos com a biotita. A segunda família é composta por cristais subdiomóficos, cuja granulação é inferior a 0,1 mm. Estão intimamente relacionados à alteração do plagioclásio.

Allanita

A allanita apresenta cor avermelhada. Os cristais são subédricos, ocorrendo, na maioria das vezes, associados a cristais de epídoto. O tamanho do menor cristal identificado foi de 0,03 mm, já o maior mede 0,06 mm. Os contatos são irregulares com os cristais de epídoto.

Titanita

A titanita apresenta-se como cristais anédricos (hábito granular), exibem cor marrom e pleocroísmo fraco em tons de castanho escuro e claro. O tamanho dos cristais varia 0,24 mm a 0,5 mm, prevalecendo os cristais com 0,16 mm. Os cristais de titanita ocorrem ligeiramente associados aos cristais de biotita, clorita e muscovita, onde os contatos com esses minerais são bastante irregulares.

Zircão

O zircão é euédrico, cuja granulação varia de 0,02 mm a 0,05 mm, predominando os cristais com 0,03 mm de tamanho.

Apatita

A apatita é euédrica, ocorre sob a forma de finas agulhas, geralmente inclusas nos feldspatos e nas micas. O tamanho dos cristais varia de 0,02 mm a 0,12 mm, com leve predomínio dos cristais com 0,03 mm.

Minerais Opacos

Os minerais opacos são anédricos, geralmente ocorrendo associados à biotita, muscovita secundária, clorita e ao epídoto. A granulação varia de 0,08 mm a 0,5 mm, predominando espécimes com 0,2 mm. Os contatos são retos com as palhetas de micas e irregulares com os outros cristais da rocha.

6 - NOME DA ROCHA

Biotita Granodiorito

7 - CONSIDERAÇÕES PETROGRÁFICAS

A rocha tem textura hipidiomórfica, inequigranular e estrutura anisotrópica. Os fenocristais de plagioclásio e feldspato alcalino são poiquilíticos. A matriz é equigranular, sendo composta por quartzo, feldspatos e biotita. A microclina, às vezes, apresenta resquícios da geminação Carlsbad. Isso pode sugerir um indício de transformação polimórfica do feldspato potássico. Os cristais de quartzo ocorrem na forma anédrica, foram identificadas duas famílias de quartzo, uma composta por cristais maiores, que atingem até 1,2 mm, e outra por cristais que são intersticiais, por vezes formando agregados monominerálico. A biotita é máfico que ocorre em maior volume, é ela que marca o anisotropismo da rocha. Os minerais acessórios identificados foram: zircão, apatita, epídoto, allanita e minerais opacos. A clorita, muscovita e serecita são tipicamente minerais secundários, onde os dois primeiros resultam da alteração da biotita e o último da desestabilização dos feldspatos.

8 - HISTORICO DA ANALISE				
Local	Data de elaboração	Data da última revisão	Analista	
São Cristóvão-SE	13/12/2017	06/02/2019	Douglas Barreto de Oliveira	

Nº da Amostra

SOS-809

1 - DADOS SOI	BRE O AFLORAMENTO		
N° de Campo	Latitude	Longitude	Nome da Folha Geográfica (IBGE)
SOS-809	617904	8922546	Piranhas (Folha SC.24-X-C-VI)
Nº do Ponto	Referências do Ponto		
809	Percorrendo-se a estrada não pavimentada que deu acesso aos pontos anteriores chega-se a esse afloramento de migmatito. Ele ocorre na forma de lajedo com dimensão aproximada de 100 m ²		
Tipo Litológico	Nome do Corpo/Unidade		
Migmatito	Complexo Migmatítico F	Poço Redondo	

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra

BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb SP x | x | x | x | x | x | x | x | x |

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

Amostra que corresponde a parte do leucossoma do migmatito. A rocha apresenta coloração rósea a levemente acinzentada. Exibe textura granolepdoblástica inequigranular e estrutura anisotrópica. Observase foliação metamórfica evidenciada pelo alinhamento dos cristais de biotita. É composta por fenoblastos de plagioclásio, feldspato alcalino e quartzo que podem alcançar até 3 cm. A matriz apresenta granulação fia a média, sendo constituída por quartzo, feldspatos e biotita. As fases acessórias identificadas foram: epídoto, zircão, apatita, rutilo e minerais opacos.

4 - ANÁLISE MODAL

MINERAIS	%
Oligoclásio	52,0
Feldspato Alcalino	15,0
Quartzo	20,0
Biotita	11,1
Muscovita	1
Minerais Opacos	0,5
Rutilo	0,1
Zircão	0,1
Apatita	0,1
Epídoto	0,1

	PARAMETROS				
	QAP			+P) M	
Q		23,0	Q	20	
Α		17,2	A+P	77	
Р		59,8	М	13	
TOT	AL	100%	TOTAL	100%	

5 - DESCRIÇÃO DOS MINERAIS

Oligoclásio

Os cristais de plagioclásio apresentam-se duas gerações. Uma é formada por fenoblastos e a outra por cristais menores que ocorre na matriz. Os fenoblastos são subdioblásticos a xenoblásticos, com granulação que varia de 1,5 mm até 5,5 mm, predominando os cristais com 2,0 mm. Exibem geminação segundo as leis da Albita e Albita-carlsbad. Em alguns fenoblastos percebe-se a deformação da geminação polissintética e a presença de exsolução de feldspato alcalino na forma de bastão. A extinção em barra e concêntrica são características comuns a alguns desses cristais. Os contatos são lobados entre si e irregulares com os outros cristais da rocha. Inclui cristais de biotita, quartzo, muscovita, epídoto, clorita, minerais opacos e zircão. Outra feição importante é que alguns indivíduos ocorrem saussuritizados.

Os cristais da matriz são subdioblásticos, apresentam geminação Albita bem marcada e têm tamanhos variando de 0,5 mm a 1,0 mm, predominando os de 0,8 mm. Os contatos são irregulares com fenoblastos de plagioclásio, feldspato alcalino e quartzo, podendo ter contato reto com palhetas de biotita. Inclui cristais de zircão e apatita.

Feldspato Alcalino

Os cristais são xenoblásticos a subdiobláticos, exibem geminação segundo as leis da Albita-Periclina e Carlsbad. Os tamanhos dos cristais variam de 0,6 mm a 2,8 mm, predominando aqueles com 1,2 mm Frequentemente exibem lamelas de exsolução, com pertita na forma de bastões e flâmula. A exsolução tende a se concentrar na periferia dos cristais. Alguns cristais exibem extinção ondulante em barra bem marcada. Os contatos são irregulares a interdigitados com os outros cristais da rocha. Inclui cristais de biotita, epídoto, quartzo, zircão e apatita. É comum observar cristais de feldspato alcalino alterados à sericita e argilo-minerais, apresentando um aspecto sujo.

Quartzo

É xenoblásticos, quase sempre micro-fraturados. É comum ocorrer reunidos aglomerados entre os fenoblastos de feldspatos A granulação varia de 0,15 mm a 3,4 mm, predominando os indivíduos com 0,5 mm. Os contatos são lobados com outros cristais de quartzo e feldspatos, e algumas vezes são retos com palhetas de biotita. Os cristais apresentam extinção ondulante moderada a forte. Inclui cristais de zircão e apatita, ambos menores que 0,07 mm.

Biotita

Os cristais são idioblástico a subdioblástico, apresentam cor marrom com pleocroísmo variando de marrom escuro a verde. A granulação varia de 0,25 mm a 2,1 mm, predominando os de 0,65 mm. A biotita está orientada segundo a foliação principal da rocha. Os contatos podem ser retos ou irregulares com o quartzo, feldspatos, muscovita e com outros cristais de biotita. Inclui zircão (<0,07 mm), apatita (<0,02 mm), rutilo (<0,06 mm). Notou-se cristais que alteram para clorita e muscovita.

Muscovita

Os cristais são subédricos a euédricos e têm tamanhos variando de 0,05 a 0,2 mm, predominando os de 0,18 mm. Mostram intima associação com os cristais de biotita e conjuntamente demarcam a estrutura gnáissica.

Minerais Opacos

Apresentam-se xenomórficos e com granulação varia de 0,08 mm até 0,4 mm, predominando os de 0,16 mm. Na maioria das vezes estão associados aos cristais de biotita e muscovita secundária.

Rutilo

O rutilo apresenta hábito granular e cor amarelo-marrom. Exibe-se sob a forma de pequenos agregados xenomórficos, cujo tamanho não passa de 0,06 mm. Está associado à biotita.

7ircão

Os cristais de zircão é idioblástico, sendo frequentemente metamítico. A granulação varia de 0,02 mm a 0,07 mm.

Apatita

Apatita é idioblástica. O tamanho dos cristais varia de 0,02 a 0,07 mm, predominando os de 0,04 mm.

Epídoto

É subdiomórfico apresenta cor ver pálida e pleocroísmo em tons de verde cana. Os cristais medem no máximo 0,2 mm. Faz contato irregular com a biotita.

6 - NOME DA ROCHA

Biotita granodiorito gnaisse

7 - CONSIDERAÇÕES PETROGRÁFICAS

A rocha apresenta textura inequigranular, hipidioblástica. Os fenoblastos (oligoclásio, feldspato alcalino e quartzo) medem de 1,5 mm até 5,5 mm. Os cristais de oligoclásio apresentam-se saussuritizados. Os cristais de feldspato alcalino identificados foram a microclina e o ortoclásio. É comum também observar pertitas na periferia desse mineral. A biotita é o máfico predominante e corre associada aos cristais de muscovita e clorita. Os cristais de biotita orientam-se segundo foliação da rocha. As fases acessórias identificadas foram: zircão, apatita, opacos, rutilo, epídoto e clorita.

8 - HISTÓRICO DA ANÁLISE

Local	Data de elaboração	Data da última revisão	Analista
São Cristóvão-SE	15/12/2017	19/11/2018	Douglas Barreto de Oliveira

Nº da Amostra

SOS-1005

1 - DADOS SC	DBRE O AFLORAMENTO				
N o de Campo	Latitude	Longitude	Nome da Folha Geográfica (IBGE)		
SOS-1005	0623123	8921699	Piranhas (Folha SC.24-X-C-VI)		
Nº do Ponto	Referências do Ponto	Referências do Ponto			
1005	Ponto localizado ao la	do direito da Rodovia SE	E-403 sul (sentido Canindé-Capim Grosso)		
Tipo Litológico	Nome do Corpo/Unidade				
Granito	Stock Serra da Vaca				

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra

BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb x | x | x | x | x | x | x х х

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

O granito apresenta coloração acinzentada, textura inequigranular e estrutura isotrópica. A granulação varia de média a grossa. Os fenocristais de plagioclásio e feldspato alcalino podem alcançar até 12 mm. A mineralogia principal é constituída por: plagioclásio, feldspato alcalino e quartzo. A biotita ocorre como máfico principal. Os minerais acessórios identificados foram: epídoto, allanita, zircão, apatita e minerais opacos.

4 - ANÁLISE MODAL

MINERAIS	%
Oligoclásio	53,5
Quartzo	22,5
Microclina	16,5
Biotita	5,5
Muscovita	0,3
Minerais Opacos	0,8
Epídoto	0,3
Allanita	0,2
Titanita	0,2
Apatita	0,1
Zircão	0,1

PARÂMETROS			
G	QAP	Q (A+P) M	
Q	24,32	Q	22,53
Α	17,85	A+P	70,07
Р	57,83	M	7,4
TOTAL	100%	TOTAL	100%

5 - DESCRIÇÃO DOS MINERAIS

Plagioclásio (oligoclásio)

O plagioclásio é subédrico a anédrico. Alguns cristais apresentam textura antipertítica. Os tamanhos dos cristais variam de 0,4 m a 3,6 mm, com o predomínio daqueles com 1,2 mm. Exibe geminação segundo as leis Albita e da Albita-Carlsbad. Os cristais com tamanho em torno de 3 mm são poiguilíticos e só exibem geminação Albita. Ocasionalmente, é possível observar o plagioclásio exibindo extincão concêntrica bem marcada. Em outros cristais, observa-se moderada extinção ondulante. Os contatos são irregulares a curvos com a microclina e o quartzo, e são retos com a biotita e esporadicamente com o quartzo. Inclui cristais de: apatita e zircão com até 0,03 mm; biotita subédrica com até 0,15 mm; quartzo anédrico com até 0,37 mm. O centro dos cristais estão saussuritizados e a borda límpida de alteração. Observou-se a substituição do plagioclásio por muscovita secundária, sericita, epídoto secundário e carbonato.

Quartzo

Ocorre anédrico, sua granulação varia de 0,15 mm a 1,6 mm, com predomínio dos cristais com 0,54 mm. Alguns cristais exibem forte extinção ondulante em barra. Os contatos são curvos a reentrantes com os feldspatos. Contatos serrilhados são comuns entre os cristais de guartzo. Contatos retos podem ser observado com a biotita. Já os contatos com o plagioclásio e com a microclina são essencialmente irregulares. Inclusões observadas foram de cristais euédricos de zircão e apatita, ambos com tamanho menor que 0,03 mm.

Microclina

É subédrica, apresenta tamanho que varia de 0,4 mm a 8,0 mm, predominando aqueles cristais com 1,35 mm. Exibe geminação segundo as leis Albita-Periclina, contudo alguns cristais exibem resquícios da geminação Carlsbad. Pertitas ocorrem com geometria de flâmula, aparecendo, preferencialmente, na periferia dos cristais. Observa-se que alguns cristais exibem moderada extinção ondulante. Os contatos são irregulares com o plagioclásio e o quartzo. Às vezes, exibe contatos retos com a biotita e com o epídoto euédrico. Inclui cristais de: apatita e zircão com tamanhos menores que 0,04 mm; quartzo anédrico com até 0,22 mm; epídoto subédrico com tamanho menor que 0,1 mm; e biotita com até 0,52 mm de tamanho.

Biotita

Apresenta-se euédrica e subédrica, exibe cor marrom e pleocroísmo em tons de castanho claro e escuro. Ocasionalmente forma aglomerados com outros cristais de biotita e/ou pode ocorrer bordejando cristais maiores de plagioclásio e microclina. A granulação varia de 0,14 mm a 1,72 mm, predominando cristais com 0,49 mm. Exibe contatos retos com os feldspatos, com o epídoto, e com o quartzo. Inclui cristais de apatita euédrica (<0,03 mm), zircão euédrico (<0,03 mm), epídoto euédrico com núcleo de allanita (<0,2 mm). Halos pleocróicos são raros e podem ser associados às inclusões de zircão. Nota-se que alguns cristais estão alterando para clorita e muscovita.

Minerais Opacos

Ocorrem anédricos, geralmente ocorrem associados à biotita, muscovita secundária, clorita e ao epídoto. A granulação varia de 0,08 mm a 0,5 mm, predominando espécimes com 0,2 mm. Os contatos são retos com as micas e irregulares com os outros cristais da rocha.

Muscovita

Os cristais são subédricos a euédricos e medem em torno de 0,3 mm. Limitam-se a ocorrer ao longo dos planos de clivagem dos cristais da biotita. Exibem contato reto a irregular com a biotita. Por vezes, exibe contato irregular com o epídoto.

Epídoto

O epídoto exibe forma euédrica a subédrica, tem cor verde claro e pleocroísmo incipiente em tons de verde. A granulação varia de 0,07 mm a 0,23 mm, predominando os cristais com 0,12 mm. Alguns cristais subédricos apresentam núcleo alaranjado correspondendo à allanita. Os contatos dos cristais euédricos são retos com a biotita e com a microclina, já os contatos dos cristais subédricos são irregulares com os demais cristais da rocha.

Allanita

Apresenta cor laranja e exibe cristais subédricos com até 0,11 mm de tamanho. Em todas as ocorrências de allanita é sempre coroada por epídoto. Os contatos são retos a irregulares com o epídoto.

Titanita

A titanita é anédrica e com tamanhos inferiores a 0,3 mm. A sua ocorrência está intimamente associada aos cristais de biotita marrom e minerais opacos.

Zircão

É euédrico e com tamanhos variando de 0,02 mm a 0,05 mm, predominando os cristais com 0,03 mm.

Apatita

É euédrica e com hábito acicular. Os tamanhos dos cristais variam de 0,02 mm a 0,14 mm, com leve predomínio dos cristais com 0,03 mm.

6 - NOME DA ROCHA

Biotita Granodiorito

7 - CONSIDERAÇÕES PETROGRÁFICAS

A rocha tem textura hipidiomórfica, inequigranular e estrutura anisotrópica. Foram identificados alguns cristais de microclina apresentando resquícios da geminação Carslbad, o que pode ser um indício de cristalização precoce de ortoclásio e a microclina representaria a transformação polimórfica para o tipo de baixa temperatura. A presença dos fenocristais de plagioclásio e microclina. A presença de extinção concêntrica em cristais de plagioclásio e a alteração, que ocorre bem mais proeminente no centro do que nas bordas, podem ser indicativos de zoneamento composicional. Em relação a ordem de cristalização, o zircão, apatita, titanita e opacos se cristalizam precocemente, em seguida ocorre a cristalização da allanita e do epídoto. A biotita é a próxima fase mineral a se formar. Em seguida forma-se o plagioclásio, ortoclásio e por fim o quartzo.

8 - HISTÓRICO DA ANÁLISE Local Data de elaboração Data da última revisão Analista São Cristóvão-SE 13/08/2018 22/02/2019 Douglas Barreto de Oliveira

Nº da Amostra

SOS-1006

1 - DADOS SO	BRE O AFLORAMENTO			
Nº de Campo	Latitude	Longitude		Nome da Folha Geográfica (IBGE)
SOS-1006	0620332	8919415		Piranhas (Folha SC.24-X-C-VI)
Nº do Ponto	Referências do Ponto			
1006	Depois do Povoado Capim grosso (sentido sul) entra à direita numa estrada secundária sentido a			
1006	Fazenda Nova Esperan	ıça.		
Tipo Litológico	Nome do Corpo/Unidade	•		
Migmatito	Complexo Migmatítico	de Poço Redondo		

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra

BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb SP x | x | x | x | x | x | x | x |

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb) e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

A rocha apresenta coloração rósea a levemente acinzentada (Trata-se da parte do leucossoma de um migmatito). O leucossoma exibe textura granoblástica, equigranular, com granulação média e estrutura isotrópica. A rocha é composta basicamente por plagioclásio, feldspato alcalino e quartzo. Os minerais acessórios são minerais opacos, titanita, epídoto, allanita e zircão

4 - ANÁLISE MODAL

MINERAIS	%
Plagioclásio	36
Quartzo	31
Microclina	30
Minerais Opacos	1,6
Titanita	0,9
Epídoto	0,3
Zircão	0,1
Allanita	0,1

	PARÂMETROS			
	QAP	Q (A	+P) M	
Q	31,97	Q	31	
Α	30,92	A+P	66	
Р	37,11	М	3	
TOTAL	100%	TOTAL	100%	

5 - DESCRIÇÃO DOS MINERAIS

Plagioclásio

Os cristais de plagioclásio apresentam hábito tabular. Eles ocorrem geminados segundo as leis da Albita e Albita-Carlsbad. São cristais sub a xenoblásticos, cuja granulação varia de 0,45 mm até 1,4 mm, predominando os cristais com 0,6 mm. Alguns cristais exibem-se zonados. Os contatos são lobados entre si e irregulares com os outros cristais da rocha. Inclui com frequência cristais xenomórficos de quartzo com até 0,2 mm, minerais opacos com até 0,3 mm e zircão idioblástico com até 0,3 mm. Com frequência, ocorrem saussuritizados, sobretudo, nas porções centrais.

Quartzo

O quartzo é xenoblástico. Exibe extinção ondulante bem marcada e às vezes podem ocorrer fraturas localizadas preferencialmente no centro dos cristais. A granulação varia de 0,15 mm a 2,0 mm, predominando os indivíduos com 1,04 mm. Por vezes, ocorre formação de subgrãos bordejando cristais maiores de plagioclásio e microclina. Os contatos entre si são lobados. Por outro lado, os contatos com a microclina e plagioclásio são irregulares a curvilíneos, podendo, por vezes ser reentrantes.

São xeno a subdiobláticos, exibem geminação segundo as leis da Albita-Periclina. O tamanho dos cristais varia de 0,3 mm a 2,8 mm, predominando aqueles com 1,2 mm. Frequentemente, exibem pertitas com geometrias em flâmula. Essas pertitas tendem a se concentrar nas bordas dos cristais. Os contatos são irregulares a interdigitados com os outros cristais da rocha. Inclui cristais de plagioclásio zonados com até 0,8 mm, cristais de quartzo xenoblásticos com até 0,14 mm e epídoto xenomórfico com 0,13 mm. Alguns cristais encontram-se alterados para sericita e argilo-minerais.

Minerais Opacos

Os minerais opacos apresentam forma xenomórfica. Por vezes ocorrem na forma de agregados bordejando cristais de plagioclásio. A granulação varia de 0,08 mm até 0,9 mm, predominando os de 0,5 mm. Os contatos com os demais minerais são irregulares, por vezes curvilíneos.

Titanita

A titanita é sub a xenomórfica e tem cor amarelo-marrom. Os cristais subdioblásticos medem por volta de

0,2 mm e são encontrados associados aos cristais de minerais opacos. Às vezes, a titanita exibe-se sob a forma de pequenos agregados xenomórficos, com até 0,3 mm. Na maioria das ocorrências ocorre alterada para minerais opacos.

Epídoto

É xenomórfico, a maioria dos cristais são incolores a levemente esverdeados. A granulação varia de 0,07 a 0,15 mm, predominando os cristais com 0,13 mm. Os contatos são irregulares com os demais cristais da rocha.

Allanita

Apresenta cor laranja e forma subdioblástica. O único cristal identificado mede 0,2 mm. Os contatos são irregulares com o quartzo e o plagioclásio. As bordas apresentam feições de metamitização

Zircão

Os cristais de zircão ocorrem sob forma idioblástica, cuja granulação não passa de 0,03 mm.

6 - NOME DA ROCHA

Biotita monzogranito gnaisse

7 - CONSIDERAÇÕES PETROGRÁFICAS

Em seção delgada a rocha apresenta textura equigranular e hipidiomórfica. A mineralogia é composta basicamente por plagioclásio, quartzo e microclina. Essa mineralogia principal caracteriza a textura granoblástica. As fases acessórias identificadas foram: titanita, minerais opacos, epídoto, allanita e zircão. O leucossoma apresenta textura típica de granitos e a presença da alteração em que se faz presente principalmente no plagioclásio e na microclina pode ser indício de percolação de fluídos durante a fase final de cristalização da rocha.

8 - HISTÓRICO DA ANÁLISE Local Data de elaboração Data da última revisão Analista São Cristóvão-SE 15/08/2018 22/02/2019 Douglas Barreto de Oliveira

Nº da Amostra

SOS-1011C

1 - DADOS SO	BRE O AFLORAMENTO			
Nº de Campo	Latitude	Longitude		Nome da Folha Geográfica (IBGE)
SOS-1011C	0616912	8922145		Piranhas (Folha SC.24-X-C-VI)
Nº do Ponto	Referências do Ponto			
1011C	Seguindo pela estrada que foi marcado o ponto anterior, distando cerca 800 metros do ponto SOS-1010			
Fipo Litológico Nome do Corpo/Unidade				
Paleossoma	Complexo migmatítico de Poço Redondo			

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra

BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb SP x | x | x | x | x | x | x | x |

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb). SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

A rocha apresenta cor acinzentada e em campo foi classificada como pertencente ao paleossoma do migmatito. O paleossoma exibe textura granolepdoblástica, inequigranular, com granulação média. O anisotropismo é marcado pela orientação dos cristais de biotita marrom. A mineralogia principal compreende plagioclásio, quartzo, biotita e microclina. A mineralogia acessória consiste em fases opacas, epídoto, titanita, allanita e zircão.

4 - ANÁLISE MODAL

MINERAIS	%
Plagioclásio	45
Quartzo	25
Biotita	23
Microclina	5,2
Minerais Opacos	0,9
Epídoto	0,3
Titanita	0,2
Allanita	0,1
Zircão	0,1
Apatita	0,1
Pirita	0,1

PARÂMETROS				
QAP Q (A+P) M				
Q	33,15	Q 25		
Α	7,17	A+P 50,4		
Р	59,68	М	24,6	
TOTAL	100%	TOTAL	100%	

5 - DESCRIÇÃO DOS MINERAIS

Plagioclásio (Andesina-Bitownita

O Plagioclásio é subdiomórfico, exibe geminação segundo as leis da Albita (mais comum) e Albita-Carslbad. Os cristais medem de 0,3 mm a 5,1 mm, predominando aqueles com 1,1 mm. Os contatos com as palhetas de biotita são retos a irregulares; já com o quartzo os contatos são irregulares a curvilíneos. Inclui quartzo xenomórfico com tamanho médio de 0,15 mm, epídoto subdioblástico com 0,15 mm de tamanho e ripas de biotita com até 0,7 mm de tamanho. Por vezes, alguns cristais exibem extinção em barra. Em alguns cristais percebe-se que a geminação albita deformada formando estruturas tipo Kinkbands. Em outros casos, observam-se cristais com bordas parcialmente recristalizadas. Normalmente, as bordas estão mais preservadas quando comparadas com os centros, que se encontram mais alterados.

Quartzo

Apresenta forma xenoblástica. A granulação varia de 0,1 mm a 2,06 mm, predominando aqueles cristais com 0,85 mm. Frequentemente, exibem fraturas com alguma inclusão fluída. Alguns cristais com tamanho maior que 0,7 mm frequentemente apresentam extinção ondulante bem marcada. A formação de subgrãos é comum, principalmente bordejando o plagioclásio e as ripas de biotita marrom. Os contatos são lobados a interdigitados em si. Contatos irregulares a interdigitados são observados com o plagioclásio. Contatos retos são raros e quando ocorrem são vistos com as ripas de biotita.

Tem hábito, na maioria das ocorrências, ripiforme. As ripas de biotita são idioblástica a subdioblásticas, e têm cor marrom, com pleocroísmo em tons de castanho-claro e castanho-escuro. Os cristais medem de 0,1 mm a 2,8 mm, com o predomínio daqueles com 0,6 mm. Na maioria das ocorrências, a biotita forma aglomerados de ripas que, às vezes, coroam o quartzo e o plagioclásio. Os contatos das ripas idioblásticas são retos entre si e com os demais minerais da rocha. Os cristais subdioblásticos fazem contatos retos a irregulares com os demais minerais da rocha. Raramente, apresentam feições de alteração, a exceção de algumas palhetas que apresentam substituição para clorita em pontos localizados. Inclui raros cristais de quarto xenomórfico com até 0,2 mm; epídoto subdioblástico com no máximo 0,35 mm; zircão idioblástico com até 0,1 mm. Halo pleocroicos são comuns e estão associados às inclusões de zircão.

Microclina

A microclina ocorre de maneira limitada na rocha. Ela exibe forma subdioblástica, apresenta-se ainda geminada segundo a lei da Albita-Periclina. Os cristais medem entre alcançam até 2,2 mm. Pertitas são raras e quando aparecem se limitam a ocorrer na periferia do mineral. Ocasionalmente, as bordas de alguns cristais ocorrem recristalizadas. Os contatos com os outros minerais são irregulares a reentrantes. Inclusões de quartzo xenomórfico com até 0,2 mm são comuns.

Minerais Opacos

Os minerais opacos apresentam forma xenomórfica, ocorrendo, na maioria das vezes, associados aos cristais de biotita. A granulação varia de 0,08 mm até 0,35 mm, predominando os de 0,16 mm. Fazem contatos curvilíneos com a maioria dos cristais da rocha.

Epídoto

O epídoto é subdiomórfico a xenomórfico, apresenta-se incolor ou com tonalidade verde pálida. Os cristais medem de 0,15 mm a 0,4 mm. Os cristais subdiomórficos frequentemente ocorrem coroando a allanita. Faz contato irregulares a reentrantes com plagioclásio. Contatos retos ocorrem com as palhetas de biotita.

Titanita

Ocorre sob a forma subdioblástica a xenomórfica e apresenta cor marrom-escuro. A granulação varia de 0,3 a 0,9 mm, com o predomínio dos cristais com 0,5 mm. Geralmente, ocorre associada a presença da biotita. Faz contato irregular a reto com as ripas de biotita.

Apatita

Ocorre sob a forma de pequenos cristais com seções hexagonais. O tamanho dos cristais não passa de 0,06 mm.

Pirita

Tem forma subdioblástica e tamanho de até 0,1 mm. Exibe contatos irregulares com a biotita e com o plagioclásio.

Allanita

Tem cor laranja e forma subdioblástica. O tamanho dos cristais varia de 0,1 mm a 0,34 mm. Em todas as ocorrências exibe coroa de epídoto.

Zircão

Os cristais de zircão ocorrem sob forma idioblástica, sendo frequentemente metamítico. A granulação varia de 0,04 mm a 0,1 mm.

6 - NOME DA ROCHA

Biotita Granodiorito Gnaisse

7 - CONSIDERAÇÕES PETROGRÁFICAS

Em seção delgada o paleossoma apresenta textura hipidiomórfica e inequigranular. Os fenoblastos de plagioclásio e quartzo são comuns e alcançam até 5,1 mm. A microclina chama atenção por ocorrer de forma muito limitada na rocha, tendo menos de 6% em volume. A biotita é o máfico predominante e marca o anisotropismo da rocha. A formação de subgrãos e a deformação nos cristais de plagioclásio são indícios de episódios deformacionais de estado sólido.

8 - HISTÓRICO DA ANÁLISE

Local	Data de elaboração	Data da última revisão	Analista Douglas Barreto de Oliveira
São Cristóvão-SE	15/08/2018	22/02/2019	

Nº da Amostra

SOS-1013

1 - DADOS SOBRE O AFLORAMENTO				
Nº de Campo	Latitude	Longitude	Nome da Folha Geográfica (IBGE)	
SOS-1013	0621566	8923009	Piranhas (Folha SC.24-X-C-VI)	
Nº do Ponto	Referências do Ponto			
1013	Ponto localizado ao lado de uma estrada secundária à direita da Rodovia SE-403 SUL (sentido			
1013	Capim Grosso)			
Tipo Litológico	Nome do Corpo/Unidade			
Granito	Stock Serra da Vaca			

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra

BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb SP x | x | x | x | x | x | x | x | x |

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análise sisotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

Rocha de cor cinza, com textura equigranular e estrutura isotrópica. A granulação é fina a média. A mineralogia é composta predominantemente por plagioclásio, feldspato alcalino e quartzo. A biotita marrom apresenta-se como máfico principal. A mineralogia acessória compreende os seguintes minerais: epídoto, allanita, apatita, zircão, titanita e minerais opacos.

4 - ANÁLISE MODAL

MINERAIS	%
Oligoclásio	45,5
Microclina	20,5
Quartzo	24,0
Biotita	6,5
Minerais Opacos	0,7
Muscovita	0,2
Epídoto	0,9
Allanita	0,2
Titanita	0,3
Apatita	0,1
Zircão	0,1

	PARÂMETROS			
	O	QAP	Q (A	+P) M
	Q 26,65 A 22,8 P 50,55		Q	24,09
			A+P	66,26
			М	9,65
	TOTAL	100%	TOTAL	100%

5 - DESCRIÇÃO DOS MINERAIS

Plagioclásio (oligoclásio)

O plagioclásio é subédrico. Os cristais medem entre 0.4 mm a 2.18 mm, predominando aqueles com 1.4 mm. Nota-se a existência das geminações segundo as leis da Albita e Albita-Carslbad. Por vezes, alguns cristais exibem extinção concêntrica, que é facilmente notada pela alteração diferencial que se dá do centro para borda. Os contatos são irregulares a curvos com a maioria dos cristais da rocha. Ocasionalmente, pode exibir contato reto com as palhetas de biotita. Inclui normalmente cristais de quartzo com até 0,2 mm, palhetas de biotita com até 0,3 m, zircão e apatita euédricos com até 0,04 mm e allanita com até 0,1 mm. Salienta-se que grande parte dos cristais da rocha estão alterados (saussuritizados), sobretudo, em suas porções centrais. Os minerais secundários observados foram: muscovita secundária, sericita e carbonato.

Microclina

A microclina tem forma subédrica. Os seus cristais são na maioria das vezes tabulares e exibem a geminação clássica em xadrez (geminação albita-periclina). Os tamanhos dos cristais variam de 0,5 até 8,0 mm, com o predomínio daqueles com 1,04 mm. Os cristais maiores que 2,0 mm são pertíticos. Os contatos são, a grosso modo, curvos a irregulares com os cristais da rocha. Por vezes, exibe contatos retos com a biotita e com cristais tabulares de plagioclásio. Inclui quartzo anédrico com tamanho inferior a 0,1 mmm; cristais euédricos de apatita e zircão com até 0,04 mm, biotita euédrica com tamanho inferior a 0,15 mm e allanita com tamanho máximo de 0,1 mm. Alguns exemplares apresentam um aspecto "sujo" devido à alteração.

Quartzo

O quartzo é anédrico. A granulação varia de 0.1 mm a 1,45 mm, com predomínio dos cristais de 1,04 mm. A extinção ondulante em barra é uma feição típica para a maioria dos cristais. Eventualmente, os cristais com tamanho em torno de 1,0 mm exibem intenso faturamento. Por vezes, o quartzo forma agregados monominerálicos, com granulação inferior a 0,3 mm e fazendo contatos reentrantes entre si. No geral, os contatos são curvos a reentrantes com os outros cristais que compõe a rocha. Inclusões observadas foram de cristais euédricos de zircão e apatita, ambos com tamanho menor que 0,03 mm.

Biotita

A biotita marrom tem forma euédrica a subédrica, e pleocroísmo em tons de castanho claro e escuro. Ocasionalmente, a biotita forma aglomerados com outros cristais de biotita e/ou pode ocorrer bordejando fenocristais de andesina e microclina. A granulação varia de 0,13 mm a 1,35 mm, predominando cristais com 0,54 mm. Os contatos são retos com outros cristais de biotita. Por vezes, pode ocorrer contatos retos com o plagioclásio e com a microclina. Os contatos com o quartzo são irregulares a arredondados. Em alguns cristais, percebe-se que a biotita está parcialmente ou totalmente substituída para clorita e/ou muscovita secundária. Geralmente, inclui cristais de apatita (<0,03), zircão (<0,03), epídoto subédrico com 0,15 mm e minerais opacos com até 0,2 mm. Halos pleocróicos são comuns devido às inclusões de zircão.

Minerais Opacos

Os minerais opacos são anédricos, e ocorrem de maneira muito restrita na lâmina. Os cristais apresentam tamanho de até 0,20 mm. Sua ocorrência est geralmente associada à biotita. Os contatos são curvos a irregulares, por vezes são retos com as palhetas de biotita.

Muscovita

Os cristais são subédricos. Os tamanhos variam de 0,1 a 0,35 mm. Limitam-se a ocorrer ao longo dos planos de clivagem dos cristais da biotita. Exibem contato reto a irregular com a biotita.

Epídoto

O epídoto é subédrico, exibe cor verde-claro, com o pleocroísmo fraco em tons de verde. O tamanho médio dos cristais é de 0,144 mm. Por vezes, ocorre corando cristais de allanita.

Allanita

A allanita é subédrica e tem cor laranja. O tamanho dos cristais não passa de 0,1 mm. Às vezes, as bordas apresentam feições típicas de metamictização.

Titanita

A titanita tem cor acinzentada e é sempre anédrica. Ocorre sob a forma de pequenos agrupamentos de grãos (*clusters*) com até 0,5 mm de tamanho. Sua ocorrência está intimamente associada aos cristais de biotita marrom e minerais opacos,

MEV: coroa cristais de ilmenita.

Zircão

O zircão apresenta forma euédrica. O tamanho dos cristais varia de 0,02 mm a 0,05 mm, predominando os cristais com 0,03 mm de tamanho.

Apatita

A apatita é euédrica, ocorre sob a forma de finas agulhas, geralmente inclusas nos feldspatos e na biotita. O tamanho dos cristais varia de 0,02 mm a 0,10 mm, com predomínio dos cristais com 0,03 mm.

6 - NOME DA ROCHA

Biotita Granodiorito

7 - CONSIDERAÇÕES PETROGRÁFICAS

Em seção delgada, a rocha exibe textura hipidiomórfica, granulação fina a média e estrutura anisotrópica. Os cristais de microclina podem apresentar, por vezes, resquícios da geminação Carlsbad. Os cristais de plagioclásio apresentam evidências de zoneamentos, tais como: extinção concêntrica e alteração diferencial do centro para bordas. Nessa rocha, notou-se que o plagioclásio ocorre em maior abundância que os cristais de microclina. Cristais de carbonato ocorrendo associados a desestabilização do plagioclásio pode ser indicativo da presença de fluídos tardios durante o final da cristalização desse corpo.

8 - HISTÓRICO DA ANÁLISE Local Data de elaboração Data da última revisão Analista São Cristóvão-SE 04/08/2018 22/02/2019 Douglas Barreto de Oliveira

Nº da Amostra

SOS-1022

1 - DADOS SOBRE O AFLORAMENTO					
Nº de Campo	Latitude	Longitude	Nome da Folha Geográfica (IBGE)		
SOS-1022	0622582	8920929	Piranhas (Folha SC.24-X-C-VI)		
Nº do Ponto	Referências do Ponto				
1022	Ponto localizado ao lado direito da Rodovia SE-403 (sentido sul) a cerca de 1,5 km da entrada de				
1022	Capim Grosso				
Tipo Litológico	Nome do Corpo/Unidade				
Granito	Stock Serra da Vaca				

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra

BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb x | x | x | x | x | x | x | x | x |

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

Rocha de cor acinzentada, com textura equigranular e estrutura isotrópica. A granulação é fina a média. A sua mineralogia é composta predominantemente por plagioclásio, microclina e quartzo. A biotita marrom apresenta-se como máfico principal. A mineralogia acessória compreende os seguintes minerais: epídoto, allanita, apatita, zircão, titanita e minerais opacos.

4 - ANÁLISE MODAL

MINERAIS	%
Oligolcásio	46,3
Microclina	21,2
Quartzo	26,0
Biotita	5,1
Minerais Opacos	0,4
Epídoto	0,4
Titanita	0,2
Allanita	0,2
Zircão	0,1
Apatita	0,1

PARÂMETROS				
QAP Q (A+P) M				
Q	27,80	Q 26,02		
Α	22,69	A+P	67,56	
Р	49,51	М	6,42	
TOTAL	100%	TOTAL	100%	

5 - DESCRIÇÃO DOS MINERAIS

Plagioclásio (oligoclásio)

É subédrico a anédrico. Exibe geminação segundo a lei da Albita e Albita-Carlsbad. A granulação varia de 0,45 mm a 2,64 mm, predominando cristais com 0,8 mm. Alguns cristais exibem extinção concêntrica bem marcada. Faz contatos irregulares com a maioria dos cristais da rocha. Inclui quartzo anédrico com até 0,16 mm, biotita marrom com tamanho de até 0,25 mm, minerais opacos menores que 0,125 mm), Allanita subédrica com tamanho menor que 0,2 mm e zircão euédrico e apatita euédrica. A maioria das inclusões localizam-se no centro dos cristais. Salienta-se que alguns cristais estão alterados para sericita e carbonatos. Essa alteração é bem mais nítida no centro do que nas bordas dos cristais.

Microclina

Os cristais de microclina apresentam forma subédrica a anédrica. Exibem ainda geminação segundo a lei de Albita-Periclina. Os tamanhos dos cristais variam de 0,35 mm a 2,8 mm, predominando aqueles com 1,0 mm. Pertitas são comuns nos cristais maiores que 2,0 mm. Elas exibem forma de finas lamelas e se localizam preferencialmente nas bordas dos cristais. Os contatos são irregulares a curvilíneos com grande parte dos minerais que formam a rocha. Por vezes, faz contato reto com a biotita. Inclui biotita com tamanhos de até 0,29 mm, quartzo anédrico com até 0,16 mm e zircão euédrico com até 0,05 mm. Exibem um aspecto sujo devido a alteração para fases secundárias, tais como sericita e argilominerais.

O quartzo ocorre sob a forma anédrica, a granulação varia de 0,1 mm a 1,04 mm, com predomínio dos cristais de 0,54 mm. Alguns indivíduos exibem extinção ondulante bem marcada. Observa-se, também, agregados monominerálico que formam textura em mosaico, onde são observados contatos suturados a reentrantes. Os contatos de maneira geral, são curvos a reentrantes com os outros cristais que compõe a rocha. Inclui cristais de biotita marrom menores que 0,13 mm e zircão euédrico com cerca de 0,03 mm.

Biotita

A biotita apresenta cor marrom e forma euédrica a subédrica. O pleocroísmo aparece em tons de castanho claro e escuro. A granulação varia de 0,13 mm a 1,35 mm, predominando cristais com 0,41 mm. Os contatos são retos entre cristais de biotita, e pode ser reto ou irregular com os feldspatos e com o quartzo. Nota-se domínios dos cristais de biotita alterando para clorita e muscovita secundária, principalmente ao longo do plano de clivagem. Inclui cristais de apatita (<0,03 mm), zircão (<0,07 mm) e minerais opacos com até 0,2 mm. Halos pleocroicos são comuns devido às inclusões de zircão.

Minerais Opacos

Os minerais opacos são subédricos a anédricos. A granulação varia de 0,125 mm a 1,35 mm, predominando espécimes com 0,2 mm. Nota-se que esses cristais estão intimamente associados à biotita. Os contatos são retos com as palhetas de micas e irregulares com os outros cristais da rocha.

Epídoto

Os cristais de epídoto ocorrem na cor verde claro e são subédricos. O tamanho dos cristais varia de 0,12 mm a 0,24 mm. Observa-se que os cristais com tamanho superior a 0,24 mm tende a coroar pequenos núcleos de allanita subédrica (<0,07mm). Os contatos desses cristais são irregulares com a maioria dos cristais da rocha.

Titanita

A titanita apresenta-se como cristais anédricos (hábito granular), exibem cor marrom e pleocroísmo fraco em tons de castanho escuro e claro. O tamanho dos cristais varia 0,24 mm a 0,5 mm, prevalecendo os cristais com 0,16 mm. A titanita ocorre ligeiramente associada aos cristais de biotita, clorita e minerais opacos, onde os contatos com esses minerais são bastante irregulares.

Allanita

A allanita apresenta cor alaranjada e forma subédrica. O tamanho do menor cristal identificado foi de 0,03 mm, já o maior mede 0,06 mm. Os contatos são irregulares com os cristais de epídoto subédricos.

Zircão

O zircão apresenta forma euédrica. O tamanho dos cristais varia de 0,02 mm a 0,05 mm, predominando os cristais com 0,03 mm de tamanho.

Apatita

A apatita é euédrica, ocorre sob a forma de finas agulhas, geralmente inclusas nos feldspatos e nas micas. O tamanho dos cristais varia de 0,02 mm a 0,12 mm, com leve predomínio dos cristais com 0,03 mm.

6 - NOME DA ROCHA

Biotita Granodiorito

7 - CONSIDERAÇÕES PETROGRÁFICAS

Em seção delgada, a rocha exibe textura hipidiomórfica, granulação fina a média e estrutura isotrópica. Os cristais de microclina podem apresentar, por vezes, resquícios da geminação Carlsbad. Os cristais de oligoclásio apresentam evidências de zoneamentos, tais como: extinção concêntrica e alteração diferencial do centro para bordas. A presença de epídoto com núcleo de allanita sugere uma origem magmática para esse mineral, além de condições de alta fugacidade de oxigênio. Cristais de carbonato ocorrendo associados a desestabilização do plagioclásio pode ser indicativo da presença de fluídos tardios durante o final da cristalização desse corpo.

8 - HISTÓRICO DA ANÁLISE Local Data de elaboração Data da última revisão Analista São Cristóvão-SE 13/12/2017 24/02/2019 Douglas Barreto de Oliveira

Nº da Amostra

SOS-1023

1 - DADOS SOE	BRE O AFLORAMENTO		
Nº de Campo	Latitude	Longitude	Nome da Folha Geográfica (IBGE)
SOS-1023	0619377	8919690	Piranhas (Folha SC.24-X-C-VI)
Nº do Ponto	Referências do Ponto		
1023			se na direção sul, sentido Capim grosso, no final do reção à Fazenda Nova Esperança.
Tipo Litológico	Nome do Corpo/Unidade		
Granito	Stock Serra da Vaca		

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra

BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb x | x | x | x | x | x | x | x | x |

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

Granito róseo que exibe textura equigranular e estrutura isotrópica. A granulação é fina a média. A sua mineralogia é composta predominantemente por plagioclásio, feldspato alcalino e quartzo. A biotita apresenta-se como máfico principal. A mineralogia acessória compreende os seguintes minerais: apatita, zircão, titanita e minerais opacos.

4 - ANÁLISE MODAL

MINERAIS	%
Microclina	43
Quartzo	33
Plagioclásio	22
Biotita	1,0
Minerais Opacos	0,3
Muscovita	0,25
Clorita	0,25
Zircão	0,1
Apatita	0,1

	PARÂMI	ETROS	
G	QAP	Q (A	+P) M
Q	33,67	Q	22
Α	43,87	A+P	76
Р	22,36	М	2
TOTAL	100%	TOTAL	100%

5 - DESCRIÇÃO DOS MINERAIS

Microclina

A microclina exibe forma subédrica a anédrica. O tamanho dos cristais varia de 0,3 mm a 2,08 mm, com o predomínio daqueles com 0,9 mm. A maioria deles exibe a geminação em xadrez clássica (lei Albita-Periclina). Frequentemente, alguns cristais exibem extinção ondulante incipiente. Alguns indivíduos exibem pertitas com geometria tipo flâmula, sobretudo, na posição central. Os contatos com os minerais da rocha são irregulares a curvos. Inclui biotita com até 0,2 mm, plagioclásio com até 0,2 mm, quartzo anédrico com tamanho de até 0,15 mm e minerais opacos anédricos com tamanho médio de 0,2 mm. Poucos cristais encontram-se alterados para sericita e argilominerais.

Quartzo

O quartzo ocorre sob a forma anédrica, em que sua granulação varia de 0,1 mm a 1,9 mm, com predomínio dos cristais com 0,4 mm. A extinção ondulante por setor é bem característica em alguns cristais. Os contatos são curvos a arredondados em si. Contatos irregulares são observados com os outros cristais que compõe a rocha. Inclusões observadas foram de palhetas de biotita com até 0,25 mm e cristais euédricos de zircão e apatita, ambos com tamanho menor que 0,03 mm.

O plagioclásio ocorre na forma subédrica a anédrica e com granulação que varia 0,2 mm a 2,02 mm, com o predomínio daqueles com 0,8 mm. A maioria dos cristais mostram-se geminados segundo a lei da Albita. Os contatos são irregulares com a maioria dos cristais da rocha, contudo, ocasionalmente, o contato com os cristais de quartzo pode ser arredondado. Inclui palhetas de biotita com até 0,2 mm e cristais anédricos de quartzo, que são menores que 0,2 mm O plagioclásio quase sempre ocorre alterado, principalmente na porção central dos cristais. Os minerais secundários formados às custas do plagioclásio são sericita, muscovita secundária e carbonato.

Biotita

A biotita marrom, que ocorre de maneira restrita na rocha, apresenta forma euédrica a subédrica e pleocroísmo em tons de castanho-claro e castanho-escuro. A granulação varia de 0,2 mm a 0,6 mm, predominando cristais com 0,5 mm. Os contatos são retos com outros cristais de biotita; e irregulares a reentrantes com os feldspatos e o quartzo. Nota-se que a maioria dos cristais estão substituídos por clorita, muscovita secundária, e, às vezes, minerais opacos. Inclui cristais com frequência cristais euédricos de zircão com até 0,03 mm.

Minerais Opacos

Os minerais opacos são anédricos, cuja granulação varia de 0,08 mm a 0,5 mm, predominando espécimes com 0,2 mm. Os contatos são retos com as palhetas de biotita e irregulares com os outros cristais da rocha.

Muscovita

Os cristais de muscovita exibem características secundárias. Sua ocorrência se limita aos domínios alterados da biotita.

Clorita

Exibe cor verde-escuro e seus cristais são subédrico. Limita-se a ocorrer ao longo do plano de clivagem da biotita. Por vezes, substitui por completo os cristais de biotita.

Zircão

O zircão apresenta forma euédrica. O tamanho dos cristais varia de 0,02 mm a 0,05 mm, predominando os cristais com 0,03 mm de tamanho.

Apatita

A apatita é euédrica, ocorre sob a forma de finas agulhas, geralmente inclusas nos feldspatos e nas micas. O tamanho dos cristais varia de 0,04 mm a 0,12 mm, com leve predomínio dos cristais com 0,05 mm.

6 - NOME DA ROCHA

Sienogranito

7 - CONSIDERAÇÕES PETROGRÁFICAS

Em seção delgada, a rocha exibe textura hipidiomórfica, granulação fina a média e estrutura isotrópica. Os cristais de microclina ocorrem em maior abundância e pode apresentar, por vezes, resquícios da geminação Carlsbad. Os cristais de plagioclásio apresentam evidências de zoneamentos, tais como: extinção concêntrica e alteração diferencial do centro para bordas. Os zoneamentos, bem como a alteração diferencial que se dá do centro para borda nos cristais plagioclásio sugerem que o núcleo desse mineral seja mais cálcico que a periferia. Esse fato pode indicar que a cristalização fracionada talvez tenha sido um processo petrogenético atuante durante a evolução desse magma

8 - HISTÓRICO DA ANÁLISE Local Data de elaboração Data da última revisão Analista São Cristóvão-SE 03/08/2018 13/02/2019 Douglas Barreto de Oliveira

Nº da Amostra

SOS-1024

1 - DADOS SOE	BRE O AFLORAMENTO		
N o de Campo	Latitude	Longitude	Nome da Folha Geográfica (IBGE)
SOS-1024	0618862	8920041	Piranhas (Folha SC.24-X-C-VI)
Nº do Ponto	Referências do Ponto		
1024	Ponto localizado distante estrada de chão que co		ros do pontos SOS-1023, seguindo ainda na mesma ck
Tipo Litológico	Nome do Corpo/Unidade		
Granito	Stock Serra da Vaca		

2 - DADOS SOBRE A AMOSTRA

Assinale com um X os diferentes procedimentos de preparação e analíticos efetuados nesta amostra

BRA LD LP Brita Pó AM AQM AQMe ETR Rb/Sr Sm/Nd Pb/Pb U/Pb SP x | x | x | x | x | x | x | x | x |

BRA= Bloco reserva da Amostra, LD= Lamina Delgada, LP= Lâmina Polida, AM= Análise de Minerais, AQM= Análise Química de Maiores, AQMe= Análise Química de Menores, Análises isotópicas (Rb/Sr, Sm/Nd, Pb/Pb e U/Pb), SP= Separação de Minerais

3 - CARACTERÍSTICAS MACROSCÓPICAS E MICROSCÓPICAS

Granito de cor rosada, com textura equigranular e estrutura isotrópica. A granulação é fina a média. A sua mineralogia é composta predominantemente por plagioclásio, feldspato alcalino e quartzo. A biotita apresenta-se como máfico principal. A mineralogia acessória compreende os seguintes minerais: apatita, zircão, titanita e minerais opacos.

4 - ANÁLISE MODAL

MINERAIS	%
Microclina	47
Quartzo	29
Plagioclásio	21,5
Biotita	1,1
Minerais Opacos	0,5
Muscovita	0,2
Clorita	0,2
Epídoto	0,2
Allanita	0,1
Apatita	0,1
Zircão	0,1

	PARÂMI	ETROS	
G	QAP	Q (A	+P) M
Q	29,74	Q	29
Α	48,20	A+P	68,5
Р	22,06	M	2,5
TOTAL	100%	TOTAL	100%

5 - DESCRIÇÃO DOS MINERAIS

Microclina

A microclina apresenta forma predominantemente anédrica e exibe geminação segundo as leis Albita-Periclina. Alguns indivíduos exibem resquícios da geminação Carslbad. O maior cristal identificado mede 2,98 mm, enquanto que o menor apresenta 0,18 mm. Há o predomínio daqueles cristais com 1,15 mm. Pertitas são comuns nas bordas dos cristais maiores que 1.5 mm. Os contatos com o plagioclásio e a biotita podem ser retos, já o contato com os demais minerais são essencialmente irregulares a curvo. Os cristais maiores (>2,0 mm) de microclina geralmente apresentam textura poiquilítica, exibindo inclusões de plagioclásio anédrico com até 0,30 mm de tamanho, biotita subédrica com até 0,3 mm de tamanho, quartzo anédrico com tamanhos de até 0,15 mm e fases opacas com até 0,25 mm. Alguns cristais ocorrem alterados para argilo-minerais e sericita, sobretudo, nas porções centrais.

Quartzo

O quartzo é anédrico, a granulação varia de 0,10 mm a 1,40 mm, com predomínio dos cristais de 0,36 mm. A extinção ondulante por setor é uma feição típica nos cristais maiores que 1,0 mm. Os contatos entre os cristais de quartzo são poligonais a serrilhados. Os contatos são curvos a reentrantes com os outros cristais que compõe a rocha. Em alguns cristais é comum observar um intenso faturamento, principalmente nas porções centrais. Inclusões observadas foram de cristais euédricos de zirção e apatita, ambos com tamanho inferior a 0,03 mm e de microclina anédrica com 0,15 mm.

Plagioclásio (Oligoclásio)

O plagioclásio ocorre sob a forma subédrica a anédrica. Os cristais apresentam geminação segundo a lei da Albita. Os tamanhos dos cristais variam de 0,2 mm a 1,45 mm, predominando aqueles com 0,9 mm. Exibe contatos irregulares a curvos com os demais cristais da rocha. Inclui cristais anédricos de quartzo com até 0,10 mm e palhetas de biotita marrom com até 0,2 mm. Normalmente, apresenta-se alterado, exibindo um aspecto "sujo". Nota-se que essa alteração é mais presente nas porções centrais dos cristais.

Biotita

A biotita, que ocorre de maneira limitada na rocha, tem cor marrom com pleocroísmo variando entre o castanho-claro e o castanho avermelhado. Os cristais ocorrem como palhetas euédricas a subédricas. A granulação varia de 0,15 a 0,7 mm, predominando aqueles com 0,31 mm. Os contatos são retos com outros cristais de biotita e com a microclina, e são irregulares com os demais minerais. Nota-se que a maioria dos cristais estão sendo substituídos para clorita, muscovita e fases opacas. Inclui epídoto subédrico com até 0,1 mm e raramente zircão euédrico com tamanhos que variam de 0,03 mm a 0,07 mm.

Minerais Opacos

Os minerais opacos são anédricos, geralmente ocorrendo associados à biotita. O tamanho dos cristais varia de 0,08 mm a 0,6 mm, predominando espécimes com 0,15 mm. Os contatos são retos com as palhetas de mica marrom e irregulares com os outros cristais da rocha.

Muscovita

Tem forma subédrica e mede em torno de 0,3 mm. Limita-se a ocorrer ao longo dos planos de clivagem dos cristais da biotita. Exibe contato reto a irregular com a biotita e com a clorita

Clorita

Exibe cor verde-escuro e seus cristais são subédrico. Limita-se a ocorrer ao longo do plano de clivagem da biotita. Por vezes, substitui por completo os cristais de biotita.

Epídoto

Tem forma subédrica a anédrica. Os tamanhos variam de 0,04 a 0,1 mm, com o predomínio dos cristais com 0,08 mm. Os contatos são irregulares, sobretudo, com a biotita marrom. Com frequência ocorre coroando cristais de allanita

Allanita

Exibe forma euédrica a subédrica. Seus cristais apresentam tamanhos em torno de 0,1 mm. O epídoto com frequência ocorre coroando os cristais de allanita.

Zircão

O zircão apresenta forma euédrica. O tamanho dos cristais varia de 0,02 mm a 0,07 mm, predominando os cristais com 0,03 mm de tamanho.

Apatita

A apatita é euédrica, geralmente inclusas nos feldspatos e nas micas. O tamanho dos cristais varia de 0,02 mm a 0,12 mm, com leve predomínio dos cristais com 0,05 mm.

6 - NOME DA ROCHA

Sienogranito

7 - CONSIDERAÇÕES PETROGRÁFICAS

Em seção delgada, a rocha exibe textura hipidiomórfica, granulação fina a média e estrutura isotrópica. Os cristais de microclina ocorrem em maior abundância e pode apresentar, por vezes, resquícios da geminação Carlsbad. Os cristais de plagioclásio apresentam evidências de zoneamentos, tais como: extinção concêntrica e alteração diferencial do centro para bordas. Os fenocristais de microclina e a textura poiquílita apresentada sugerem que o magma progenitor do SSV tenha pelo menos dois momentos distintos de cristalização.

8 - HISTÓRICO DA ANÁLISE Local Data de elaboração Data da última revisão Analista São Cristóvão-SE 13/08/2018 22/02/2019 Douglas Barreto de Oliveira

<i>APÊNDICE</i>	III – ANÁLIS	SES QUÍMIC	CAS DE MINI	ERAIS

Tabela 3.1.1 Análises químicas pontuais nos feldspatos do SSV.

Lâmina	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234	234
Análise	_	7	က	4	2	9	7	œ	6	10	7	12	13	4	15	16	17	18	19	20
SiO ₂	09'09	09'09	61,00	61,10	61,00	61,90	61,50	63,90	62,90	64,20	64,40	64,00	64,60	63,90	64,90	61,60	61,10	63,30	64,30	63,50
AI_2O_3	25,4	25,8	25,1	24,8	24,7	24,1	24,6	23,0	23,4	19,5	19,0	19,7	19,3	19,2	19,7	24,4	24,5	23,5	19,4	19,2
CaO	4,7	4,8	5,5	5,2		4,4	5,2	3,0	3,1							4,7	4,9	2,8		
Na_2O	6,3	8,3	8,4	8,9	8,9	9,6	8,6	10,0	10,6	0,7	0,5	9,0	0,5	9,0	9,0	6,9	6,9	10,1	0,4	0,5
K ₂ 0		0,4								15,0	15,5	15,1	15,5	15,5	14,9	0,0	0,2	0,2	15,8	15,4
ВаО										9,0	0,7	9,0		0,8						1,4
Total	100,0		100,0	100,0	99,9 100,0 100,0 100,0 100,0 99,90	100,0	99,90	6'66	100,0	100,0	100,1	100,0	666	100,0	100,1	100,0	100,0	666	99,90	100,0
Fórmula Estrutural com base em 5 cátions e	1 Estrutu	ıral con	η base (em 5 cá	itions e	8 oxigênios	nios													
Si	2,691		2,705	2,712	2,689 2,705 2,712 2,710 2,745 2,727	2,745	2,727	2,818	2,784	2,963	2,977	2,955	2,975	2,963	2,972	2,732	2,717	2,797	2,967	2,957
¥	1,329	1,350	1,312	1,297	1,329 1,350 1,312 1,297 1,293	1,259 1,286	1,286	1,196	1,221	1,061	1,035	1,072	1,048	1,049	1,063	1,275	1,284	1,224	1,055	1,054
Ca	0,224	0,228	0,261	0,247	0,257	0,209	0,247	0,142	0,147							0,223	0,233	0,133		
Na	0,801	0,714	0,722	0,766	0,767	0,825	0,739	0,855	0,910	0,063	0,045	0,054	0,045	0,054	0,053	0,800	0,802	0,865	0,036	0,045
¥		0,023								0,883	0,914	0,889	0,911	0,917	0,870		0,011	0,011	0,930	0,915
Ва										0,011	0,013	0,011		0,015						0,026
Total	5,045	5,045 5,004	5,000		5,022 5,027	5,038	5,000	5,011	5,061	4,980	4,984	4,981	4,978	4,998	4,958	5,030	5,048	5,030	4,988	4,996
Membros Finais	s Finais	44																		
ŏ		2,3								92,3	94,1	93,2	95,3	93,0	94,2		1,1	1,1	96,3	92,8
Ab	78,2	74,0	73,4	75,6	74,9	79,8	75,0	82,8	86,1	6,5	4,6	5,6	4,7	5,5	5,8	78,2	9'92	85,7	3,7	4,6
An	21,8	23,7	26,6	24,4	25,1	20,2	25,0	14,2	13,9							21,8	22,3	13,1		
ü										1,1	1,3	1,1		1,5						2,6

Tabela 3.1.2. Análises químicas pontuais nos feldspatos do SSV

Lâmina	234	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235	235
Análise	77	22	23	24	25	56	27	28	53	30	31	32	33	34	35	36	37	38	39	40
SiO ₂	64,20	63,80	64,60	64,20	63,60	63,50	64,50	08'09	61,10	09'09	62,10	60,80	61,20	60,80	64,10	63,90	64,00	63,10	61,10	61,10
AI_2O_3	18,9	18,7	18,8	18,8	19,1	19,1	19,2	24,9	24,6	25,3	24,3	24,7	24,8	24,8	19,2	19,1	19,3	20,6	24,6	24,5
CaO								5,2	4,8	6,3	4,7	4,7	5,3	5,8					5,4	5,2
Na ₂ O	9,0	0,8	6,0	0,8	0,4	9,0	6'0	9,1	9,5	2,6	8,9	9,8	8,7	8,7		9'0	0,7	0,8	8,7	8,9
K ₂ 0	15,8	15,7	15,8	15,4	15,6	16,1	15,3								15,9	15,4	15,3	14,4	0,2	0,3
BaO	0,5	1,0		0,8	1,2	0,8									6,0	1,0	0,7	1,2		
Total	100,0	100,0 100,0 100,1 100,0	100,1	100,0	6,66	100,1	6'66	100,0	00,0 100,0	8,66	99,8 100,0 100,0	100,0	100,0	100,1	100,1	100,0	100,0	100,1	100,0	100,0
romina Estatutai com base em 3 cations e o oxigemos	Esti dic	ומו כסו	Dase	3 6 113	ations e	o OVIBE	2011													
<u>S</u>	2,974	2,970	2,981	2,977	2,962	2,955	2,973	2,702	2,715	2,693	2,747	2,705	2,715	2,701	2,970	2,966	2,962	2,917	2,715	2,717
¥	1,032	1,026	1,022	1,027	1,048	1,032 1,026 1,022 1,027 1,048 1,048 1,043	1,043	1,304	1,288	1,325	1,267	1,295	1,297	1,298	1,049	1,045	1,053	1,122	1,288	1,284
Ca								0,248	0,229	0,300	0,223	0,224	0,252	0,276					0,257	0,248
Na	0,054	0,072	0,081	0,072	0,036	0,054	0,080	0,784	0,818	0,655	0,763	0,845	0,748	0,749		0,054	0,063	0,072	0,750	0,767
¥	0,934	0,932	0,930	0,911	0,927	0,956	0,899								0,940	0,912	0,903	0,849	0,011	0,017
Ва	0,009	0,018		0,015	0,022	0,015									0,016	0,018	0,013	0,022		
Total	5,003	5,019	5,013	5,001	4,995	5,026	4,996	5,038	5,050	4,972	5,001	5,070	5,011	5,025	4,975	4,995	4,994	4,982	5,021	5,033
Membros Finais	s Finais																			
ō	93,7	91,2	92,0	91,3	94,1	93,3	91,8								98,3	92,7	92,3	90,1	1,1	1,6
Ab	5,4	7,1	8,0	7,2	3,7	5,3	8,2	76,0	78,2	9'89	77,4	79,0	74,8	73,1		5,5	6,4	7,6	73,6	74,3
An								24,0	21,8	31,4	22,6	21,0	25,2	26,9					25,3	24,0
c	6,0	1,8		1,5	2,2	1 , 4 ,									1,7	1,8	1,3	2,3		

Tabela 3.1.3. Análises químicas pontuais nos feldspatos do SSV.

				1																
Lâmina	235	235	235	235	235	235	803	803	803	803	803	803	803	803	803	803	803	803	803	803
Análise	4	42	43	4	45	46	47	48	49	20	21	25	53	24	22	26	22	28	29	09
SiO ₂	6'09	64,5	2'09	63,5	63,9	57,8	65,50	65,50	66,20	09'59	65,80	69,10	06'99	08'99	67,00	09'99	65,80	65,90	00'99	64,80
AI_2O_3	24,8	22,8	20,4	19,2	19,4	27,6	19,00	19,10	18,90	19,10	18,90	19,00	20,60	20,50	20,50	20,70	21,10	21,40	18,90	18,80
CaO	5,5	2,6				6,9						0,4	0,5	2,0	0,5	8,0	1,4	9,0		
Na_2O	8,6	9,6	0,5	0,5	0,7	7,8	0,3	9,0	0,7	6,0	0,4	11,6	11,8	12,0	12,0	11,9	11,7	11,4	9,0	0,5
K ₂ 0	0,2	0,4	17,6	16,1	14,9		15,2	14,8	14,2	14,3	14,9							9,0	14,6	14,1
BaO			0,8	0,7	1,1															
Total	100,0	99,9	100,0	100,0	100,0	100,1 100,0	100,0	100,0	100,0	06'66	100,0	100,1	99,80	100,0	100,0	100,0	100,0	99,90	100,1	98,20
Fórmula Estrutural com base em 5 cátions e 8 oxigênios	Estrutu	ral con	ı base (em 5 cá	tions e	8 oxigé)nios													
Si	2,707	2,840	2,840 2,865	2,954	2,960	2,578	3,002	2,998	3,017	3,000	3,010	3,013	2,937	2,933	2,938	2,924	2,896	2,901	3,012	3,008
¥	1,299	1,183		1,135 1,053	1,059	1,451	1,026	1,030	1,015	1,029	1,019	0,977	1,066	1,061	1,060	1,071	1,095	1,110	1,017	1,029
Ca	0,262	0,123				0,330						0,019	0,024	0,033	0,023	0,038	990'0	0,028		
Na	0,741	0,820	0,046	0,045	0,063	0,675	0,027	0,053	0,062	0,080	0,035	0,981	1,005	1,021	1,020	1,013	0,999	0,973	0,053	0,045
¥	0,011	0,022	1,060	0,955	0,880		0,888	0,864	0,825	0,834	0,869							0,034	0,850	0,835
Ва			0,015	0,013	0,020															
Total	5,020	4,989	5,120	5,020	4,982	5,034	4,943	4,946 4,919		4,943	4,933	4,989	5,032	5,048	5,042	5,047	5,056	5,047	4,931	4,917
Membros Finais	s Finais																			
ō	1,	2,3	94,6	94,3	91,4		1,76	94,2	93,0	91,3	96,1							3,3	94,1	94,9
Ab	73,1	85,0	4,1	4,5	6,5	67,2	2,9	5,8	7,0	8,7	3,9	98,1	7,76	6'96	2,76	96,4	93,8	94,0	5,9	5,1
An	25,8	12,7				32,8						1,9	2,3	3,1	2,3	3,6	6,2	2,7		
ü			1,3	1,3	2,1															

Tabela 3.1.4. Análises químicas pontuais nos feldspatos do SSV.

Lâmina	803	803	803	803	803	803	803	803	803	803	803	803	803	803	803	803	803	803	803	803
Análise	61	62	63	49	65	99	29	89	69	20	11	72	73	74	75	92	1	78	79	80
SiO ₂	65,60	65,90	67,70	00'99	67,20	65,90	09,79	00'99	67,60	65,90	65,30	67,30	66,10	49,20	66,10	48,90	00'99	66,10	65,40	65,90
AI ₂ O ₃	19,20	19,30	19,80	19,10	19,90	19,10	19,70	19,20	19,80	19,10	22,10	20,10	20,90	40,10	20,70	40,30	21,10	21,20	19,40	21,10
CaO											1,9	0,4	1,1		0,5		2,0	0,4		1,0
Na_2O	0,5	0,7	12,5	0,7	12,8	9,0	12,7	0,5	12,6	0,3	10,8	11,9	11,9	0,3	12,5	0,5	12,0	12,0	0,5	12,1
K ₂0	14,6	14,0		14,2		14,4		14,4		14,7		0,3		10,5	0,1	10,3	0,1	0,4	14,7	
BaO																				
Total	99,90	99,90	100,0	100,0	99,90	99,90 100,0 100,0 99,90 100,0 100,0	100,0	100,1	100,0	100,0	100,1	100,0	100,0	100,1	6'66	100,0	6,66	100,1	100,0	100,1
Fórmula Estrutural com base em 5 cátions e 8 oxigênios	Estrutu	ıral con	η base (∍m 5 cá	tions e	8 oxigé	soins.													
Si	3,000	3,003	2,967	3,008	2,954	3,007 2,966		3,007	2,965	3,009	2,867	2,953	2,908	2,233	2,913	2,221	2,905	2,905	2,990	2,898
₹	1,035	1,037	1,023	1,026	1,031	1,035 1,037 1,023 1,026 1,031 1,027 1,019	1,019	1,031	1,023	1,028	1,144	1,040	1,084	2,145	1,075	2,158	1,095	1,098	1,046	1,094
Ca											0,089	0,019	0,052		0,024		0,033	0,019		0,047
Na	0,044	0,062	1,062 0,062 1,091	0,062	1,091	0,053 1,080		0,044	1,071	0,027	0,920	1,013	1,015	0,026	1,068	0,044	1,024	1,023	0,044	1,032
¥	0,852	0,814		0,826		0,838		0,837		0,856		0,017		0,608	900'0	0,597	900'0	0,022	0,857	
Ва																				
Total	4,931	4,931 4,916	5,052	4,922	5,076	5,052 4,922 5,076 4,925 5,065		4,918	5,059	4,919	5,020	5,041	5,058	5,012	5,086	5,020	5,063	5,068	4,938	5,071
Membros Finais	Finais	ء.																		
ō	95,1	92,9		93,0		94,0		92,0		97,0		1,6		92,8	0,5	93,1	0,5	2,1	95,1	
Ab	4,9	7,1	100,0	7,0	7,0 100,0	0,9	6,0 100,0	2,0	100,0	3,0	91,1	96,6	95,1	4,2	97,3	6,9	96,4	96,1	6,4	92'6
An											8,9	1,8	4,9		2,2		3,1	1,8		4,4
C																				

Tabela 3.1.5. Análises químicas pontuais nos feldspatos do SSV

Lâmina	804	804	804	804	804	804	804	804	804	804	804	804	804	804	804	804	804	804	804	804
Análise	8	82	83	84	82	98	87	88	89	06	91	95	93	94	92	96	26	86	66	100
SiO ₂	65,20	64,80	61,50	62,40	06'09	09'09	9'09	2'09	61,1	61,3	61,2	61,7	61,7	61,6	67,1	65,4	0,79	65,1	61,6	65,5
AI_2O_3	18,70	18,90	24,80	24,10 25,10	25,10	25,40	25,4	25,0	24,8	24,9	24,7	24,5	24,4	24,6	20,0	19,3	20,3	19,4	24,5	19,4
CaO			5,9	4,2	5,2	5,4	5,8	5,3	5,9	4,8	4,7	4,6	4,5	4,3	0,3				4,4	
Na_2O	0,5	0,5	7,8	9,2	8,8	8,8	8,3	8,7	8,9	9,0	6,3	9,2	9,4	9,5	12,5	0,8	12,7	9,0	9,5	0,8
K ₂ 0	15,1	15,0						0,3	0,3						0,1	13,9		14,1		13,9
BaO	9,0	0,7														0,5		2,0		0,5
Total	100,1	666	100,0	6,66	100,0	99,9 100,0 100,1 100,1	100,1	100,0	101,0	100,0	6,66	100,0	100,0	100,0	100,0	6,66	100,0	6,66	100,0	100,1
Fórmula Estrutural com base em 5 cátions e 8 oxigênios	Estrutu	ıral con	n base (∍m 5 cá	tions e	8 oxigê	, nios													
Si	3,001	2,991	2,722	2,761	2,761 2,702	2,686	2,688	2,699	2,698	2,717	2,718	2,734	2,735	2,730	2,948	2,994	2,942	2,987	2,731	2,992
¥	1,014	1,028	1,014 1,028 1,294	1,257	1,313	1,329	1,328	1,310	1,291	1,301	1,293	1,279	1,275	1,285	1,036		1,051	1,049	1,280	1,045
Ca			0,280	0,199	0,247	0,257	0,276	0,253	0,279	0,228	0,224	0,218	0,214	0,204	0,014				0,209	
Na	0,045	0,045	0,669	0,789	0,757	0,757	0,714	0,750	0,762	0,773	0,801	0,790	0,808	0,816	1,065	0,071	1,081	0,053	0,817	0,071
¥	0,886	0,883						0,017	0,017						900'0	0,812		0,825		0,810
Ва	0,011	0,013														600'0		0,013		600'0
Total	4,957	4,959	4,966	5,006 5,020	5,020	5,029	5,005	5,029	5,046	5,019	5,036	5,022	5,032	5,036	5,069	4,927	5,074	4,928	5,037	4,926
Membros Finais	s Finais	,																		
ŏ		93,9						1,7	1,6						0,5	91,0		95,6		91,0
Ab	4,7	4,8	70,5	79,9	75,4	74,7	72,1	73,6	72,0	77,2	78,2	78,4	79,1	80,0	98,2	8,0	100,0	0,9	9,67	8,0
An			29,5	20,1	24,6	25,3	27,9	24,8	26,4	22,8	21,8	21,6	20,9	20,0	1,3				20,4	
Cn	1,1	1,3														1,0		1,4		1,0

Tabela 3.1.6. Análises químicas pontuais nos feldspatos do SSV.

Lâmina	804	804	804	804	804	804	804	804	804	804	804	804	804	804	804	804	804	804	804	804
Análise	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
SiO ₂	65,4	65,8	61,1	61,4	61,6	62,0	62,7	66,4	66,1	9'59	61,4	61,2	61,6	61,5	61,6	61,3	61,5	61,0	61,3	61,1
AI_2O_3	19,5	19,3	24,9	24,7	24,6	24,4	23,8	21,3	20,1	20,0	24,7	24,8	24,4	24,6	24,2	24,6	24,6	24,7	24,8	24,6
CaO			4,9	4,7	4,5	4,2	4,3	1,3			3,9	1,4	4,1	4,1	3,9	3,8	4,3	3,9	4,5	3,9
Na_2O	1,0	0,5	8,8	9,0	6,3	9,4	8,7	11,0	4,1	0,7	10,1	2,6	9,6	8,6	6,6	10,0	9,4	10,1	9,1	10,3
K ₂ 0	13,5	13,9	0,4	0,2			0,5		12,3	12,9		0,3	0,3		0,3	0,3	0,2	0,3	0,2	
BaO	0,5	9,0								0,8										
Total	666	100,1	100,1	100,0	100,1 100,1 100,0 100,0 100,0 100,0	100,0	100,0	100,0	666	100,0	100,1	100,1	100,0	100,0	6,66	100,0	100,0	100,0	6,66	6,66
Fórmula Estrutural com base em 5 cátions e 8 oxigênios	Estrutu	ıral con	n base (∍m 5 cá	tions e	8 oxigê	soins.													
Si	2,989	3,003	2,712		2,723 2,730	2,744	2,774	2,910	2,989	2,986	2,722	2,716	2,734	2,727	2,738	2,724	2,728	2,714	2,721	2,718
¥	1,050	1,050 1,038	1,303		1,291 1,285	1,273	1,241	1,100	1,071	1,073	1,291	1,297	1,277	1,286	1,268	1,288	1,286	1,295	1,298	1,290
Ca			0,233	0,223	0,214	0,199	0,204	0,061			0,185	0,195	0,195	0,195	0,186	0,181	0,204	0,186	0,214	0,186
Na	0,089	0,044	0,757	0,774	0,799	0,807	0,746	0,935	0,123	0,062	0,868	0,835	0,826	0,843	0,853	0,862	608'0	0,871	0,783	0,888
¥	0,787	608'0	0,023	0,011			0,028		0,709	0,749		0,017	0,017		0,017	0,017	0,011	0,017	0,011	
Ва	0,009	0,011								0,014										
Total	4,924	4,905	5,027	5,024 5,027		5,023	4,993	5,007	4,892	4,883	2,067	5,061	5,049	5,051	5,063	5,071	5,039	5,083	5,027	5,082
Membros Finais	s Finais																			
ō	89,0	93,6	2,2	1,1			2,9		85,2	8,06		1,6	1,6		1,6	1,6	1,1	1,6	1,1	
Ab	10,0	5,1	74,8	76,7	78,9	80,2	76,3	93,9	14,8	7,5	82,4	79,7	9,62	81,2	80,8	81,3	78,9	81,1	7,77	82,7
An			23,0	22,1	21,1	19,8	20,8	6,1			17,6	18,6	18,8	18,8	17,6	17,1	20,0	17,3	21,2	17,3
Cn	1,0	1,2								1,7										

_	
7000	200
U	ַסָּ
U	ס
•	`
7	5
C	n
9	כ
7	₹
Š	š
ō	n
7	3
7	1)
4	_
9	יַ
٠,	2
•	_
	<u>n</u>
(₹
-	3
,	=
7	₹
7	ร
,	_
,	"
ò	š
•	Ė
	=
`:	3
;	₹
ì	n
Č	ΰ
(n
=	Ξ
Ì	<u> </u>
٤	7
1	•
١	
_	_
`	
Š	,
Tobol	ĭ
5	۲
7	≓
ì	_
•	

Lâmina	908	908	908	908	908	908	908	908	908	806	908	908	908	908	908	908	908	908	908	908
Análise	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139
SiO ₂	58,9	59,0	59,4	58,0	57,2	57,3	57,7	51,5	6,73	59,5	61,4	61,6	61,3	61,6	64,1	64,3	64,1	63,6	9'99	57,1
AI_2O_3	26,3	26,2	26,0	26,4	27,7	27,2	27,2	27,3	26,8	25,9	24,5	24,5	24,8	24,3	19,0	18,8	19,0	19,1	27,9	27,6
CaO	7,4	7,2	8,9	7,9	8,2	8,8	8,0	8,1	8,4	7,1	5,5	5,2	5,3	5,4					6,3	9,1
Na_2O	7,3	7,4	7,7	7,2	6,7	9,9	6,9	6,9	9'9	7,1	8,4	8,5	8,5	8,4	9,0	8,0	9,0	1,0	6,1	6,3
K ₂ 0	0,2	0,2			0,3	0,2	0,1	0,2	0,3	0,4	0,2	0,2		0,3	15,6	15,3	15,6	15,0	0,1	0,0
BaO															9,0	8,0	9,0	1,3		
Total	100,1	100,1 100,0	6,66		99,5 100,1 100,1		99,90	100,0	100,0	100,0	100,0	100,0	6,66	100,0	666	100,0	6,66	100,0	100,0	100,1
Fórmula Estrutural com base em 5 cátions e 8 oxigênios	ı Estrutı	ıral con	ı base (em 5 cá	itions e	8 oxigé	§nios													
Si	2,626	2,632	2,647	2,605	2,559	2,566	2,581	2,573	2,591	2,651	2,725	2,731	2,719	2,733	2,972	2,979	2,972	2,958	2,537	2,554
¥	1,382	1,378	1,366		1,398 1,460	1,436	1,434	1,440	1,414	1,360	1,281	1,280	1,297	1,271	1,038	1,027	1,038	1,047	1,474	1,455
Ca	0,354	0,344	0,325	0,380	0,393	0,422	0,384	0,388	0,403		0,262	0,247		0,257					0,447	0,436
Na	0,631	0,640		0,627	0,581	0,573	0,599	0,599	0,573	0,613	0,723	0,731	0,731	0,723	0,054	0,072	0,054	060'0	0,530	0,546
×	0,011	0,011			0,017	0,011	900'0	0,011	0,017	0,023	0,011	0,011		0,017	0,923	0,904	0,923	0,890	900'0	
Ва															0,011	0,015	0,011	0,024		
Total	5,004	5,004 5,005	5,003	5,010	5,010	5,008	5,004	5,012	4,997	4,987	5,002	5,000	4,998	5,001	4,997	4,996	4,997	5,009	4,994	4,992
Membros Finais	s Finais																			
ō	1,1	1,1			1,7	1,1	9,0	1,1	1,7	2,3	1,1	1,1		1,7	93,4	91,3	93,4	88,7	9,0	
Ab	63,4	64,3	67,2	62,3	58,6	6'99	9'09	0,09	2,73	65,9	72,6	73,9	74,4	72,5	2,5	7,3	2,5	0,6	54,0	55,6
An	32,5	34,6	32,8	37,7	39,6	41,9	38,8	38,9	40,6	34,8	26,3	25,0	25,6	25,8					45,5	44,4
ر د															1,	1,5	1,	2,4		

Tabela 3.1.8. Análises químicas pontuais nos feldspatos do SSV.

Lâmina	908	908	908	908	908	908	908	908	908	908	908	908	908	908	908	908	908	908	908	908
Análise	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
SiO ₂	57,2	58,5	6'09	61,1	8,73	61,2	61,2	61,5	8,73	57,4	26,8	58,7	61,5	61,0	2'09	59,1	26,8	29,0	27,0	63,7
AI_2O_3	27,5	26,5	25,1	24,8	28,9	24,9	24,8	24,4	30,5	27,4	27,9	26,5	24,8	25,0	25,3	25,7	27,7	26,5	27,8	23,3
CaO	8,5	6,7	5,8	5,4	5,2	5,4	5,2	5,4	2,8	8,3	2,6	7,3	5,3	5,9	5,8	7,7	8,7	7,2	8,5	2,9
Na_2O	6,7	7,0	8,1	8,4	7,8	8,5	8,8	8,7	4,6	7,0	2,6	7,5	8,4	8,0	8,1	7,4	6,7	7,3	8,9	8,6
K ₂ 0	0,2	0,2		0,2	0,3				4,3											0,4
ВаО																				
Total	100,1	100,1	6,66	6,66	100,0 100,0		100,0	100,0	100,0	100,1	100,0	100,0	100,0	6,66	6,66	6,66	6,66	100,0	100,1	100,1
Fórmula Estrutural com base em 5 cátions e 8 oxigênios	Estrutu	ral com	base e	ım 5 cát	tions e	8 oxigê	nios													
Si	2,560	2,611	2,703	2,714	2,569	2,713	2,715	2,728	2,573	2,566	2,542	2,618	2,723	2,707	2,695	2,640	2,547	2,627	2,550	2,808
¥	1,451	1,394		1,298	1,514	1,301	1,297	1,276	1,600		1,472	1,393	1,294	1,308		1,353	1,464	1,391	1,466	1,211
Ca	0,408		0,276				0,247						0,251							0,137
Na	0,581	909'0	0,697	0,723	0,672	0,731	0,757	0,748		0,607	0,486		0,721			0,641	0,583		0,590	0,838
¥	0,011	0,011		0,011	0,017															0,022
Ва																				
Total	5,011	5,000	4,989	5,004	5,019	5,002	5,015	5,008	4,948	5,015	4,965	5,009	4,990	4,983	4,992	5,003	5,012	4,992	5,012	5,016
Membros Finais	s Finais																			
ŏ	1,	1,1		1,1	1,8				31,5											2,3
Ab	58,1	6'09	71,6	72,9	71,8	74,0	75,4	74,5	51,2	60,4	51,1	65,0	74,1	71,0	71,6	63,5	58,2	64,7	59,1	84,0
An	40,7	38,0	28,4	25,9	26,4	26,0	24,6	25,5	17,2	39,6	48,9	35,0	25,9	29,0	28,4	36,5	41,8	35,3	40,9	13,7
Cn																				

Tabela 3.1.9. Análises químicas pontuais nos feldspatos do SSV.

Lâmina	908	908	908	908	908	908	908	908	908	908	908	908	908	908	908	908	908	908	908	908
Análise	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
SiO ₂	57,2	26,8	2'09	60,2	59,5	6'09	61,6	63,1	64,1	63,7	64,3	64,2	62,1	67,5	64,3	02'0	64,4	61,2	64,5	61,7
AI_2O_3	27,6	27,9	25,3	25,7	25,7	24,9	24,3	23,4	19,0	19,1	19,1	19,1	24,1	20,1	19,1	20,3	18,9	24,8	19,2	24,5
CaO	8,5	8,8	5,9	6,1	8,9	2,6	5,4	1,4					4,7	0,3		1,0		5,4		5,0
Na_2O	6,7	6,5	8,1	8,0	8,0	9,8	8,7	9,4	0,4	0,4	0,3	0,7	9,0	11,6	0,5	8,4	0,5	8,6	9,0	8,9
K ₂ 0									15,4	15,6	15,5	15,0		0,5	15,4	5,2	15,5		15,1	
BaO									1,1	1,2	0,8	1,0			8,0		0,8		0,7	
Total	100,0	100,0	100,0	100,0	100,0 100,0 100,0 100,0 100,0 100,0 100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	6,66	100,0	100,1	66'66	100,1	100,0	100,1	100,1
Fórmula Estrutural com base em 5 cátions e 8 oxigênios	Estrutu	ıral con	n base e	ım 5 cáti	ions e 8	oxigên	ios													
Si	2,559	2,543	2,693	2,674	2,652	2,704 2,732	2,732	2,788	2,974	2,963	2,976	2,972	2,751	2,960	2,974	2,914	2,980	2,714	2,975	2,732
¥	1,456	1,473	1,456 1,473 1,323	1,345	1,350	1,303	1,270	1,219	1,039	1,047	1,042	1,042	1,259	1,039	1,041	1,073	1,031	1,297	1,044	1,278
Ca	0,408	0,422	0,280	0,290	0,325	0,266	0,257	0,194					0,223	0,014		0,048		0,257		0,237
Na	0,581	0,564	0,697	0,689	0,691	0,740	0,748	0,805	0,036	0,036	0,027	0,063	0,773	986'0	0,045	0,730	0,045	0,740	0,054	0,764
¥									0,911	0,926	0,915	0,886		0,028	0,908	0,297	0,915		0,888	
Ва									0,020	0,022	0,015	0,018			0,014		0,015		0,013	
Total	5,004	5,003	5,004 5,003 4,994	4,998	5,019	5,014	5,007	5,006	4,980	4,994	4,974	4,981	5,006	5,028	4,982	5,063	4,985	5,007	4,974	5,011
Membros Finais	s Finais	,-																		
ŏ									94,2	94,1	95,7	91,6		2,7	93,9	27,6	93,9		93,1	
Ab	58,8	57,2	71,3	70,4	0'89	73,5	74,5	9'08	3,7	3,7	2,8	6,5	9,77	6,36	4,6	6,79	4,6	74,2	2,6	76,3
An	41,2	42,8	28,7	29,6	32,0	26,5	25,5	19,4					22,4	1,4		4,5		25,8		23,7
ဌ									2,1	2,2	1,5	1,9			1,5		1,5		1,3	

Tabela 3.1.10. Análises químicas pontuais nos feldspatos do SSV.

	806 806	909	808	908	808	808	909	808	800	1005	1005	1005	1005	1005	1005	1005	COOL	3	1005
Análise 1	180 181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199
SiO ₂	64,4 59,7	7 59,1	57,1	67,0	9,63	58,50	55,50	56,80	29,60	60,1	29,8	9'09	6'69	59,3	59,3	59,4	61,2	62,8	63,2
Al ₂ O ₃	18,9 25,8	8 26,2	27,5	27,1	25,8	26,80	28,60	27,80	25,70	25,5	25,7	24,9	25,4	25,9	25,9	25,7	19,1	18,9	19,7
CaO	9,9	6 7,0	9,9	6,3	2'9	7,60	9,70	8,50	6,50	6,0	6,1	6,1	6,5	7,0	8,9	9,9			
Na ₂ O	0,5 7,8	8 7,6	8,7	9,9	7,9	7,20	6,20	6,90	8,10	8,1	8,0	8,0	7,8	7,5	7,8	8,2	0,4	0,4	2,0
K ₂ O	15,3									0,3	0,3	0,4	0,4	0,4	0,2	0,1	18,2	17,2	14,8
ВаО	1,0																1,2	0,7	1,6
Total 10	100,1 99,9	99,9	6,66		100,0 100,0 100,1	100,1	100,0	100,0	6,66	100,0	6,66	100,0	100,0	100,1	100,0	100,0	100,1	100,0	100,0
Fórmula Estrutural com base em 5 cátions e 8 oxigênios	trutural c	om base	em 5 cá	itions e	8 oxigê	nios													
Si 2,	2,981 2,659	9 2,636	2,562	2,558	2,654	2,607	2,495	2,545	2,657	2,675	2,665	2,697	2,670	2,644	2,645	2,650	2,903	2,944	2,940
A 1,	1,031 1,354	4 1,377	1,454	1,433	1,354	1,408	1,515	1,468	1,350	1,338	1,350	1,306	1,334	1,361	1,362	1,351	1,068	1,044	1,080
Ca	0,315	5 0,334	0,317	0,447	0,320	0,363	0,467	0,408	0,310	0,286	0,291	0,291	0,310	0,334	0,325	0,315			
Na 0,	0,045 0,674	4 0,657	0,757	0,574	0,682	0,622	0,540	0,599	0,700	0,699	0,691	0,690	0,674	0,648	0,675	0,709	0,037	0,036	0,063
Y	0,903									0,017	0,017	0,023	0,023	0,023	0,011	900'0	1,101	1,029	0,878
Ba 0,	0,018																0,022	0,013	0,029
Total 4,	4,978 5,001	1 5,004	5,090	5,013 5,010	5,010	5,000	5,018	5,021	5,018	5,014	5,014	5,007	5,011	5,011	5,017	5,032	5,132	5,066	4,991
Membros Finais	inais																		
o io	93,5									1,7	1,7	2,3	2,3	2,3	1,1	9,0	94,9	95,4	90,5
Ab	4,6 68,1	1 66,3	70,5	56,2	68,1	63,2	53,6	59,5	69,3	2'69	69,2	8,89	6,99	64,5	2'99	68,8	3,2	3,4	6,5
An	31,9	9 33,7	29,5	43,8	31,9	36,8	46,4	40,5	30,7	28,6	29,1	29,0	30,8	33,3	32,1	30,6			
Cu	1,9																1,9	1,2	3,0

Tabela 3.1.11. Análises químicas pontuais nos feldspatos do SSV.

Lâmina	1005	1005	1005	1005	1005	1005	1005	1005	1005	1005	1005	1005	1005	1005	1005	1005	1005	1005	1013	1013
Análise	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219
SiO ₂	64,5	62,2	59,8	6,69	60,2	60,1	60,1	60,5	61,0	60,2	59,8	60,4	0'09	64,0	63,3	63,9	63,8	63,9	65,0	64,8
AI_2O_3	18,6	20,4	25,5	26,0	25,5	25,5	25,2	25,3	25,2	25,4	25,6	24,9	25,4	19,0	18,9	19,2	19,0	18,9	19,3	19,1
CaO			6,4	7,2	6,5	6,5	5,6	6,1	5,3	6,7	7,0	5,9	0,9							
Na_2O	0,7	6,0	8,1	6,9	7,8	7,5	8,9	7,8	8,2	7,4	7,3	8,5	8,3	0,8	1,1	6'0	6'0	9,0	1,0	6,0
K ₂ 0	15,7	15,0	0,3			0,3	0,3	0,2	0,3	0,3	0,4	0,3	0,3	14,8	15,0	14,5	15,2	15,4	14,7	15,2
BaO	0,5	1,5												1,4	1,7	1,5	1,1	1,2		
Total	100,0	100,0	100,0 100,0 100,1 100,0 100,0	100,0	100,0	6,66	99,9 100,1	666	100,0	100,0	100,1	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0
Fórmula Estrutural com base em 5 cátions e 8 oxigênios	Estrutu	ral con	n base ε	₃m 5 cá	tions e	8 oxigê	inios													
Si	2,987	2,902	2,664	2,660	2,675	2,675	2,677	2,690	2,705	2,678	2,662	2,691	2,673	2,971	2,956	2,964	2,964	2,971	2,980	2,980
₹	1,015	1,015 1,122	1,339	1,361	1,336	1,338 1,323	1,323	1,326	1,317	1,332	1,343	1,307	1,334	1,039	1,040	1,050	1,040	1,036	1,043	1,035
Ca			0,305	0,343	0,310	0,310	0,267	0,291	0,252	0,319	0,334	0,282	0,286							
Na	0,063	0,081	0,700	0,594	0,672	0,647	0,769	0,672	0,705	0,638	0,630	0,734	0,717	0,072	0,100	0,081	0,081	0,054	0,089	0,080
¥	0,927	0,893	0,017			0,017	0,017	0,011	0,017	0,017	0,023	0,017	0,017	0,876	0,893	0,858	0,901	0,913	0,860	0,892
Ва	600'0	0,027												0,025	0,031	0,027	0,020	0,022		
Total	5,001	5,025	5,025	4,957	5,025 4,957 4,993 4,988		5,054	4,989	4,997	4,984	4,992	5,031	5,027	4,984	5,020	4,980	5,007	4,995	4,972	4,988
Membros Finais	Finais																			
ō	92,8	89,1	1,7			1,7	1,6	1,2	1,7	1,7	2,3	1,7	1,7	0,06	87,2	88'8	89,9	92,3	90'6	91,7
Ab	6,3	8,1	68,4	63,4	68,5	66,4	73,0	0,69	72,4	65,5	63,9	71,1	70,3	7,4	2,6	8,4	8,1	2,5	9,4	8,3
An			29,9	36,6	31,5	31,8	25,4	29,8	25,9	32,8	33,8	27,3	28,1							
C	6,0	2,7												2,6	3,0	2,8	2,0	2,2		

Tabela 3.1.12. Análises químicas pontuais nos feldspatos do SSV.

Lâmina	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013
Análise	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
SiO ₂	64,6	63,3	64,5	64,1	62,6	62,5	62,4	62,4	62,5	62,0	61,3	6,19	61,4	61,8	62,4	64,2	63,9	63,0	62,3	61,2
AI_2O_3	19,0	19,3	19,2	19,0	23,5	23,6	24,0	23,6	23,4	23,9	24,6	24,5	24,4	24,1	23,8	20,0	19,3	23,6	24,0	24,5
CaO					4,3	4,5	4,5	4,3	4,4	4,6	4,8	4,9	5,3	4,9	4,6			5,0	4,6	5,1
Na_2O	0,5	0,7	0,8	0,8	9,5	9,2	9,5	9,4	6,3	9,5	9,3	8,7	8,6	9,0	9,2	0,7	0,8	8,2	8,9	9,1
K ₂ 0	15,7	16,1	15,5	15,7	0,2	0,2		0,3	0,2				0,2	0,2		15,0	15,5	0,2	0,2	
BaO		9,0		0,4													0,5			
Total	8,66	100,0	100,0	100,0	100,0 100,1 100,0 100,1	100,0	100,1	100,0	8'66	2,66	100,0	100,0	6'66	100,0	100,0	6,66	100,0	100,0	100,0	66'66
Fórmula Estrutural com base em 5 cátions e	Estrutu	ral con) pase (∍m 5 cá	tions e	8 oxigênios	nios													
Si	2,982	2,946	2,972	2,969	2,772	2,769	2,758	2,767	2,774	2,754	2,721	2,739	2,728	2,742	2,762	2,952	2,959	2,782	2,758	2,720
¥	1,034	1,059	1,043	1,037	1,226	1,232	1,250	1,233	1,224	1,251	1,287	1,278	1,278	1,260	1,242	1,084	1,053	1,228	1,252	1,283
Ca					0,204	0,214	0,213	0,204	0,209	0,219	0,228	0,232	0,252	0,233	0,218			0,237	0,218	0,243
Na	0,045	0,063	0,071	0,072	0,816	0,790	0,789	0,808	0,800	0,792	0,800	0,746	0,741	0,774	0,790	0,062	0,072	0,702	0,764	0,784
¥	0,924	0,956	0,911	0,927	0,011	0,011		0,017	0,011				0,011	0,011		0,880	0,915	0,011	0,011	
Ва		0,011		0,007													600'0			
Total	4,985	5,034	4,998	5,012	5,029	5,016	5,011	5,029	5,020	5,017	5,036	4,995	5,010	5,021	5,012	4,977	5,008	4,960	5,004	5,030
Membros Finais	Finais																			
ō	95,4	92,8	92,7	92,1	1,1	1,1		1,6	1,1				1,1	1,1		93,4	91,9	1,2	1,1	
Ab	4,6	6,1	7,3	7,1	79,1	77,8	78,7	78,5	78,4	78,4	77,8	76,3	73,8	0,97	78,4	9,9	7,2	73,9	6'92	76,4
An					19,8	21,0	21,3	19,8	20,5	21,6	22,2	23,7	25,1	22,9	21,6			24,9	22,0	23,6
Cn		1,1		0,7													6,0			

Tabela 3.1.13. Análises químicas pontuais nos feldspatos do SSV.

Lâmina	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013	1013
Análise	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259
SiO ₂	62,1	62,1	62,3	64,5	64,6	8,79	64,7	67,2	64,6	6'99	64,3	64,6	66,3	64,7	68,1	64,6	61,7	0,59	62,2	59,5
AI_2O_3	23,9	24,2	24,0	19,0	19,3	19,9	19,2	20,4	19,2	20,4	19,0	19,4	22,1	19,3	19,9	19,3	24,5	20,8	24,0	26,6
CaO	4,5	4,8	4,3			9,0		0,7		9,0			0,4				5,0		5,0	5,6
Na_2O	9,4	8,9	9,4	9,0	0,8	11,4	0,8	11,7	6,0	12,1	1,1	1,0	11,3	1,1	12,0	6,0	8,7	5,1	8,8	8,1
K ₂ 0				15,4	15,3	0,2	15,3		15,3		15,5	14,9		14,9		15,2		9,1		0,2
BaO				9,0																
Total	6,66		100,0 100,0	100,1 100,0	100,0	6,66	100,0	100,0	100,0	100,0	6'66	6,66	100,1	100,0	100,0	100,0	6,66	100,0	100,0	100,0
Fórmula Estrutural com base em 5 cátions e 8 oxigênios	Estrutu	ıral con	n base	em 5 cá	tions e	8 oxigê	soin §													
Si	2,754	2,748	2,757	2,979	2,973	2,970	2,977	2,945	2,974	2,937	2,971	2,971	2,897	2,973	2,977	2,972	2,734	2,929	2,753	2,644
₹	1,249	1,262	1,252	1,034	1,047	1,028	1,041	1,054	1,042	1,056	1,035	1,052	1,138	1,045	1,025	1,047	1,280	1,105	1,252	1,393
Ca	0,214	0,228	0,204			0,028		0,033		0,028			0,019				0,237		0,237	0,267
Na	0,808	0,764	0,807	0,054	0,071	0,968	0,071	0,994	0,080	1,030	0,099	0,089	0,958	0,098	1,017	0,080	0,748	0,446	0,755	0,698
¥				0,907	0,898	0,011	0,898		0,898		0,913	0,874		0,873		0,892		0,523		0,011
Ва				0,011																
Total	5,025	5,002	5,020	4,985	4,989	5,006	4,987	5,025	4,995	5,050	5,018	4,985	5,012	4,990	5,019	4,991	4,999	5,003	4,998	5,014
Membros Finais	s Finais	40																		
ō				93,4	92,6	1,1	92,6		91,8		90,3	2,06		89,9		91,7		54,0		1,2
Ab	79,1	77,0	79,8	5,5	7,4	96,1	7,4	8,96	8,2	97,3	2,6	6,3	98,1	10,1	100,0	8,3	75,9	46,0	76,1	71,5
An	20,9	23,0	20,2			2,8		3,2		2,7			1,9				24,1		23,9	27,3
Cn				1,1																

Tabela 3.1.14. Análises químicas pontuais nos feldspatos do SSV.

Lâmina	1013	1013	1013	1013	1013	1013	1013	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022
Análise	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279
SiO ₂	6'09	8'09	61,5	61,5	61,5	62,0	62,4	61,7	61,8	62,4	62,2	62,7	62,9	63,8	64,0	64,6	64,3	0,99	64,1	66,4
AI_2O_3	25,0	25,1	24,6	24,3	24,6	24,0	23,8	24,2	24,1	24,0	23,8	23,4	23,3	22,8	18,7	19,0	19,0	21,7	18,8	21,9
CaO	5,8	5,9	5,6	5,5	5,2	4,8	4,6	4,9	4,7	4,7	4,2	4,0	4,2	2,7				3,3		2,1
Na_2O	8,3	8,2	8,3	8,9	8,8	9,1	0,6	8,9	9,1	8,9	9,5	9,7	9,4	10,7	0,4	9,0	0,9	9,0	0,7	9,4
K ₂ 0								0,3	0,3		0,3	0,3	0,2		16,3	15,7	15,9		16,4	0,2
Ba0															9,0					
Total	100,0	100,0 100,0 100,0	100,0	6,66	100,1	6,66	99,8	100,0	100,0	100,0	100,0	100,1	100,0	100,0	100,0	6,66	100,1	100,0	100,0	100,0
Fórmula Estrutural com base em 5 cátions e 8 oxigênios	Estrutu	ral con	ι base (∍m 5 cá	tions e	8 oxigê	inios													
Si	2,703	2,698	2,725	2,731	2,724	2,749	2,765	2,738	2,743	2,760	2,759	2,777	2,784	2,817	2,975	2,981	2,970	2,891	2,971	2,903
₹	1,308	1,313	1,285	1,272	1,284	1,254	1,243	1,266	1,261	1,251	1,244	1,221	1,216	1,187	1,025	1,033	1,034	1,120	1,027	1,128
Ca	0,276	0,281	0,266	0,247	0,247	0,228	0,218	0,233	0,224	0,223	0,200	0,190	0,199	0,128				0,155		0,098
N	0,714	0,706	0,713	0,766	0,756	0,782	0,773	0,766	0,783	0,763	0,817	0,833	0,807	0,916	0,036	0,054	0,081	0,764	0,063	0,797
¥								0,017	0,017		0,017	0,017	0,011		0,967	0,924	0,937		0,970	0,011
Ва															0,011					
Total	5,001	4,998	4,989	5,016	5,011	5,015	5,000	5,020	5,027	4,997	5,036	5,038	5,017	5,048	5,014	4,992	5,022	4,931	5,031	4,937
Membros Finais	s Finais																			
ŏ								1,7	1,7		1,6	1,6	1,1		95,4	94,5	92,1		93,9	1,2
Ab	72,1	71,6	72,8	75,6	75,4	77,4	78,0	75,4	2'92	77,4	0,67	80,1	79,3	81,8	3,6	2,5	7,9	83,2	6,1	87,9
An	27,9	28,4	27,2	24,4	24,6	22,6	22,0	22,9	21,8	22,6	19,3	18,3	19,6	12,2				16,8		10,9
Cu															1,1					

Tabela 3.1.15. Análises químicas pontuais nos feldspatos do SSV.

Lâmina	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022	1024	1024	1024	1024	1024	1024	1024	1024	1024
Análise	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299
SiO ₂	0'89	63,8	64,6	64,90	62,50	64,70	61,30	63,80	63,40	63,7	64,0	64,6	64,6	64,7	63,7	63,3	65,1	63,5	64,8	64,6
AI_2O_3	20,2	19,3	18,8	22,40	23,70	19,00	25,00	22,90	23,20	23,0	22,7	19,0	19,3	18,9	19,0	23,4	22,1	23,2	22,0	22,5
CaO	0,5			9,0	4,6		4,7	3,5	3,6	3,7	3,3					3,9	2,1	3,9	1,6	2,8
Na_2O	11,3	0,7	0,8	10,80	9,20	0,80	9,00	9,80	9,80	9,6	10,0	0,5	6'0	9,0	0,5	6,3	10,7	9,4	11,3	10,0
K ² 0		16,2	15,2	1,30		15,50						15,8	15,2	15,7	16,1				0,3	0,2
BaO			0,5												2,0					
Total	100,0 100,0	100,0	666	100,0	100,0 100,0	100,0 100,0	100,0	100,0	100,0	100,0	100,0	6666	100,0	99,9	100,0	666	100,0	100,0	100,0	100,1
Fórmula Estrutural com base em 5 cátions e 8 oxigênios	Estrutu	ıral con	n base	em 5 cá	itions e	8 oxigé	soins.													
Si	2,969	2,955	2,985	2,863	2,766	2,981	2,716	2,815	2,799	2,810	2,823	2,981	2,972	2,985	2,962	2,795	2,863	2,802	2,858	2,843
¥	1,040	1,054	1,024	1,165	1,236	1,032	1,306	1,191	1,207	1,196	1,180	1,033	1,047	1,028	1,042	1,218	1,146	1,207	1,144	1,167
Ca	0,023			0,028	0,218		0,223	0,165	0,170	0,175	0,156					0,185	0,099	0,184	0,076	0,132
Na	0,957	0,063	0,072	0,924	0,790	0,071	0,773	0,838	0,839	0,821	0,855	0,045	0,080	0,054	0,045	962'0	0,912	0,804	0,967	0,853
¥		0,957	0,896	0,073		0,911						0,930	0,892	0,924	0,955				0,017	0,011
Ва			0,009												0,013					
Total	4,989	5,028	4,986	5,053	5,010	4,995	5,018	5,009	5,016	5,002	5,015	4,989	4,991	4,990	5,017	4,994	5,020	4,997	5,061	5,006
Membros Finais	s Finais																			
ŏ		93,8	91,7	7,1		92,7						95,4	91,7	94,5	94,3				1,6	1,1
Ab	9,76	6,2	7,3	90,1	78,4	7,3	9,77	83,5	83,1	82,4	84,6	4,6	8,3	5,5	4,5	81,2	90,2	81,3	91,3	92'9
An	2,4			2,8	21,6		22,4	16,5	16,9	17,6	15,4					18,8	9,8	18,7	7,1	13,2
C			6,0												1,3					

Tabela 3.1.16. Análises químicas pontuais nos feldspatos do Migmatito de Poço Redondo.

301 302 65,90 64,3 19,70 22,3 2,1 1,10 11,2 13,30 0,1 100,0 100,0 1,054 1,160 0,099 0,097 0,959 0,770 0,006 4,914 5,063		600	808	608	808	808	808	809	808	809	809	809	808	808	809	803	809
SiO ₂ 65,90 65,90 64,3 70,8 Al ₂ O ₃ 19,60 19,70 22,3 18,3 CaO 2,1 2,1 2,1 Na ₂ O 0,90 1,10 11,2 8,5 K ₂ O 13,50 13,30 0,1 0,1 Total 99,9 100,0 100,0 99,8 Fórmula Estrutural com base em 5 cáti S 2,992 2,839 3,070 2,01 Al 1,050 1,054 1,160 0,935 2 0,098 0		304 30	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319
Al₂O₃ 19,60 19,70 22,3 18,3 CaO 2,1 2,1 2,1 Na₂O 0,90 1,10 11,2 8,5 K₂O 13,50 13,30 0,1 0,1 Total 99,9 100,0 100,0 99,8 Fórmula Estrutural com base em 5 cáti Si 2,997 2,992 2,839 3,070 3 Al 1,050 1,054 1,160 0,935 4 Ca Na 0,079 0,099 0,099 0,098 0 K 0,783 0,770 0,006 0,006 0 0 Total 4,909 4,914 5,063 4,823 4 Membros Finais O 0,07 0,07 0,07 0,07		63,4 6	64,8	61,5	61,7	62,0	61,3	61,6	61,7	62,2	62,3	62,7	62,1	61,9	62,3	61,9	61,9
CaO Na ₂ O 0,90 1,10 11,2 8,5 K ₂ O 13,50 13,30 0,1 0,1 Total 99,9 100,0 100,0 99,8 Fórmula Estrutural com base em 5 cáti Si 2,997 2,992 2,839 3,070 2,41 Al 1,050 1,054 1,160 0,935 2,098 0,098 0,098 Na 0,078 0,097 0,095 0,096 0,715 0 Membros Finais Or 90,8 88,8 0,5 0,7 Or 90,8 88,8 0,5 0,7		22,8 2	21,9	24,8	24,4	24,2	24,6	24,2	24,1	24,1	24,2	23,6	24,1	24,3	24,1	24,4	24,3
K2O 0,90 1,10 11,2 8,5 K2O 13,50 13,30 0,1 0,1 Total 99,9 100,0 100,0 99,8 Fórmula Estrutural com base em 5 cáti Si 2,997 2,992 2,839 3,070 3 Al 1,050 1,054 1,160 0,935 7 Ca 0,079 0,097 0,099 0,098 0,715 0 K 0,783 0,770 0,006 0,006 0 0 Total 4,909 4,914 5,063 4,823 4 Membros Finais 0,0 0,0 0,0 0,0 0,0 0,0	2,1	2,8	2,1	3,9	4,2	0,4	4,0	4,0	4,0	4,1	4,2	3,4	4,0	4,2	3,9	4,2	4,2
K₂O 13,50 13,30 0,1 0,1 Total 99,9 100,0 100,0 99,8 Fórmula Estrutural com base em 5 cáti Si 2,997 2,992 2,839 3,070 2,41 Al 1,050 1,054 1,160 0,935 2,098 0,098		10,7	11,2	8,6	2,6	8,6	8,6	8,6	9,5	2,6	9,3	10,3	8,6	9,5	2,6	9,5	9,6
Total 99,9 100,0 100,0 99,8 Fórmula Estrutural com base em 5 cáti Si 2,997 2,992 2,839 3,070 3 Al 1,050 1,054 1,160 0,935 0,098 0 Ca 0,079 0,097 0,099 0,715 0 K 0,783 0,770 0,006 0,006 0 Total 4,909 4,914 5,063 4,823 4 Membros Finais 0 0 0 0 0 0	0,1	0,2					0,3	0,2									
Fórmula Estrutural com base em 5 cáti Si 2,997 2,992 2,839 3,070 3 Al 1,050 1,054 1,160 0,935 3 0 Ca 0,099 0,099 0,098 0		99,9 10	100,0 100,0		100,0	100,0	100,0	8'66	6'66	100,1	100,0	100,0	100,0	666	100,0	100,0	100,0
2,997 2,992 2,839 1,050 1,054 1,160 0,079 0,097 0,959 0,783 0,770 0,006 Mal 4,909 4,914 5,063 mbros Finais 90,8 88,8 0,5	n 5 cátio	ns e 8 c	8 oxigênios	so													
1,050 1,054 1,160 0,935 0,098 0,098 0,078 0,770 0,006 0,006 tal 4,909 4,914 5,063 4,823 mbros Finais	3,070 2,808		2,857 2	2,725 2	2,735	2,747	2,723	2,739	2,742	2,752	2,755	2,775	2,751	2,744	2,757	2,741	2,742
0,099 0,098 0,098 0,098 0,078 0,770 0,006 0,006 tal 4,909 4,914 5,063 4,823 mbros Finais	,935 1,	1,190 1,	1,138 1	1,295 1	1,275	1,264	1,288	1,268	1,262	1,257	1,261	1,231	1,258	1,270	1,257	1,274	1,269
0,079 0,097 0,959 0,715 0,783 0,770 0,006 0,006 tal 4,909 4,914 5,063 4,823 mbros Finais 90,8 88,8 0,5 0,7	,098 0,	0,133 0,0	0,099	0,185	0,200	0,190	0,190	0,191	0,190	0,194	0,199	0,161	0,190	0,199	0,185	0,199	0,199
0,783 0,770 0,006 0,006 tal 4,909 4,914 5,063 4,823 mbros Finais 90,8 88,8 0,5 0,7		0,919 0,9	0,958 0	0,842	0,834	0,842	0,844	0,845	0,819	0,832	0,797	0,884	0,842	0,817	0,832	0,816	0,825
tal 4,909 4,914 5,063 4,823 mbros Finais 90,8 88,8 0,5 0,7		0,011					0,017	0,011									
mbros Finais 90,8 88,8 0,5		5,062 5,0	5,052 5	5,048 5	5,044	5,042	5,063	5,055	5,036	5,036	5,013	5,051	5,041	5,030	5,031	5,030	5,035
90,8 88,8 0,5																	
700		1,1					1,6	1,1									
9,2 11,2 90,1	87,4 8	86,4 9	9,06	82,0	80,7	81,6	80,3	7,08	81,1	81,1	80,0	84,6	81,6	80,4	81,8	80,4	80,5
An 9,3 11,9		12,5	9,4	18,0	19,3	18,4	18,1	18,2	18,9	18,9	20,0	15,4	18,4	19,6	18,2	19,6	19,5

Tabela 3.1.17. Análises químicas pontuais nos feldspatos do Migmatito de Poço Redondo.

álise 320 321 323 323 32 62,2 62,0 62,3 62,4 O3 24,2 24,2 23,9 23,8 O 4,1 4,1 3,9 3,6 SO 9,5 9,7 9,9 10,2 O 9,5 9,7 9,9 10,2 Sal 100,0 100,0 100,0 100,0 rmula Estrutural com base em 5 cát 2,752 2,747 2,759 2,764 1,262 1,264 1,248 1,242 0,194 0,195 0,185 0,171 0,815 0,833 0,850 0,876 mbros Finais	2-1101 600	1011-C	1011-C	1011-C	1011-C	1011-C	1011-C	1011-C	1011-C	1011-C	1011-C	1011-C	1011-C	1011-C	1011-C	1011-C
ula E	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339
ula E	,4 53,7	52,9	55,10	51,90	50,90	51,20	55,30	53,00	54,70	52,50	51,80	53,00	62,30	51,90	51,30	49,80
ula E	,8 29,9	35,3	29,00	30,80	31,80	31,40	28,90	31,50	29,30	30,10	31,20	31,60	25,20	31,40	31,40	31,50
ula E	,6 11,3		10,0	13,1	13,7	13,3	10,1	8,6	10,5	12,9	12,9	11,0	3,2	12,3	13,0	15,6
mula E	,2 5,2	1,3	5,9	4,2	3,7	4,1	2,8	5,7	5,2	4,5	4,1	4,3	9,4	4,4	4,2	3,0
Total 100,0 100,0 100,0 100,0 100,0 100,0 100,0 1 Fórmula Estrutural com base em 5 cáti Si 2,752 2,747 2,759 2,764 2 Al 1,262 1,264 1,248 1,242 1 Ca 0,194 0,195 0,185 0,171 0 Na 0,815 0,833 0,850 0,876 0 K K Total 5,024 5,038 5,042 5,053 € Membros Finais Or		10,5														
Fórmula Estrutural com base em 5 cáti Si 2,752 2,747 2,759 2,764 2 Al 1,262 1,264 1,248 1,242 1 Ca 0,194 0,195 0,185 0,171 0 Na 0,815 0,833 0,850 0,876 0 K Total 5,024 5,038 5,042 5,053 \$ Membros Finais	,0 100,1	100,0	100,0	100,0	100,1	100,0	100,1	100,0	100,0	100,0 100,0 100,0 100,0	100,0	6,66	100,1	100,0	666	6'66
2,752 2,747 1,262 1,264 0,194 0,195 0,815 0,833 tal 5,024 5,038 mbros Finais	cátions e	ê 8 oxigê	soius													
1,262 1,264 1,248 1,242 0,194 0,195 0,185 0,171 0,815 0,833 0,850 0,876 tal 5,024 5,038 5,042 5,053	34 2,421	2,402 2,478		2,354	2,310	2,325	2,483	2,386	2,461	2,381	2,347	2,384	2,743	2,349	2,330	2,278
0,194 0,195 0,185 0,171 0,815 0,833 0,850 0,876 tal 5,024 5,038 5,042 5,053 mbros Finais	1,589	1,889	1,537	1,647	1,701	1,681	1,530	1,671	1,554	1,609	1,666	1,676	1,308	1,675	1,681	1,698
tal 5,024 5,038 5,042 5,053 mbros Finais	71 0,546		0,482	0,637	999'0	0,647	0,486	0,473	0,506	0,627	0,626	0,530	0,151	0,596	0,633	0,764
tal 5,024 5,038 5,042 5,053 5	6 0,455	0,114	0,514	0,369	0,326	0,361	0,505	0,498	0,480	0,396	0,360	0,375	0,803	0,386	0,370	0,266
tal 5,024 5,038 5,042 5,053 5 mbros Finais		0,608														
embros Finais	53 5,011	5,014	5,011	5,007	5,002	5,015	5,004	5,027	5,002	5,012	5,000	4,965	5,004	5,007	5,014	5,006
		84,2														
AD 80,7 81,1 82,1 83,7	,7 45,4		15,8 51,64	36,72	86,72 32,83	35,81	96'09	51,28	48,66	38,70	36,51	51,28 48,66 38,70 36,51 41,43 84,17	84,17	39,30 36,89	36,89	25,82
An 19,3 18,9 17,9 16,3	,3 54,6		48,36	63,28	67,17	64,19	49,04	48,72	51,34	61,30	63,49	58,57	58,57 15,83	60,70	63,11	74,18

Tabela 3.1.18. Análises químicas pontuais nos feldspatos do Migmatito de Poço Redondo.

•	
•	1011-C
	1011-C
	Lâmina

Análise

200	00,10	54,80
AI ₂ O ₃	31,20	29,10
CaO	13,1	10,4
Na_2O	4,1	5,8
K ₂ 0		
Total	6'66	100,1
mula	a Estrutura	Fórmula Estrutural com base em 5 cátions e 8 oxigênios
	2,339	2,465
	1,670	1,543
	0,637	0,501
	0,361	0,506
Total	5,007	5,016
mbrc	Membros Finais	
	36,16	50,23
	63,84	49,77

	1	7 34	234	234	234	234	234	234	234	234	234	235	235	235	232	232	235	235	235
Posição	centro	borda	centro	inter	borda	centro	centro	centro	borda	centro	borda	centro	borda	centro	borda	centro	centro	inter	borda
SiO ₂	36,67	36,67	36,67	36,58	36,58	36,86	36,67	36,67	36,86	36,29	36,77	35,81	35,90	35,62	36,48	37,63	35,42	34,94	35,90
TiO ₂	1,63	1,63	2,78	2,50	2,59	2,69	2,30	2,78	3,07	2,88	3,26	3,65	3,17	3,17	2,50	2,98	2,88	2,69	2,02
Al ₂ O ₃	17,95	17,18		16,61	17,18	17,18	17,38	17,09	17,57	17,66	18,14	16,80	16,22	17,28	17,28	18,24	16,90	17,09	18,05
FeO	20,93	21,31	21,31	21,89	21,31	21,31	21,50	21,79	21,22	20,93	19,87	23,33	23,42	23,81	22,66	20,26	24,10	24,48	23,04
MnO	0,38	0,48			0,38	0,38	0,48	0,48	0,29	0,29	0,48		0,29	0,29	0,19	0,29	0,29	0,10	0,19
MgO	9,02	9,22	8,64	8,64	8,83	8,26	8,06	7,87	8,54	7,97	8,26	6,91	7,39	7,20	8,16	7,68	6,91	6,91	7,39
K ₂0	9,50	9,60		9,50	9,02	9,31	9,02	9,41	8,54	9,50	9,31	9,50	9,60	8,64	8,74	8,93	9,50	9,79	9,41
ш	0,40	0,10		0,20	0,20	0,50	0,20	0,40		0,70					0,20		0,30	0,40	
ច				0,10				0,10		0,10					0,10	0,10			0,10
		3,88	3,94	3,79	3,84	3,70	3,82		3,97	3,56	3,97	3,89	3,83	3,90	3,81	3,96	3,72	3,66	3,88
_	100,26	100,08	99,94	99,80	99,95	100,20	99,45		100,06	99,88	100,001	68,66	99,93	99,90	100,11	100,06	100,02	100,06	96,66
O=F,CI	-0,17	-0,04		-0,10	-0,08	-0,21	-0,08			-0,32			-0,04		-0,11	-0,02	-0,13	-0,17	-0,02
Total 1	100,00	100,04	99,94	99,70	98,86	66,66		100,12	100,06	99,57	100,07	99,89	99,89	99,90	100,00	100,04	99,90	99,89	96,66
Fórmula Estrutural com base em 20 oxigênios	utural c	om base	em 20 c	xigênio	(S														
	5,569	5,592	5,575	2,607	5,569	5,611	5,614	5,598	5,571	5,551	5,548	5,521	5,553	5,481	5,569	5,658	5,495	5,443	5,516
ĭ	2,431	2,408	2,425	2,393	2,431	2,389	2,386	2,402	2,429	2,449	2,452	2,479	2,447	2,519	2,431	2,342	2,505	2,557	2,484
	0,782	0,681	0,671	0,608	0,652	0,693	0,750	0,673	0,700	0,736	0,775	0,575	0,511	0,616	0,678	0,891	0,585	0,580	0,784
	0,186	0,187	0,318	0,288	0,297	0,308	0,265	0,320	0,349	0,331	0,370	0,423	0,369	0,367	0,287	0,337	0,336	0,315	0,233
	2,658	2,718	2,709	2,806	2,714	2,713	2,753	2,782	2,681	2,677	2,508	3,008	3,030	3,064	2,893	2,547	3,126	3,189	2,960
	0,049	0,062			0,050	0,050	0,062	0,062	0,037	0,037	0,061		0,038	0,038	0,025	0,037	0,038	0,013	0,025
Mg	2,043	2,095	1,958	1,974	2,004	1,873	1,840	1,791	1,925	1,817	1,857	1,589	1,704	1,652	1,857	1,721	1,598	1,605	1,693
	1,841	1,867	1,806	1,858	1,752	1,808	1,762	1,832	1,647	1,854	1,792	1,869	1,894	1,696	1,701	1,712	1,881	1,945	1,844
*H0	3,808	3,952	4,000	3,877	3,904	3,759	3,903	3,781	4,000	3,635	4,000	4,000	3,951	4,000	3,878	3,975	3,853	3,803	3,974
ட	0,192	0,048		0,097	0,096	0,241	0,097	0,193		0,339			0,049		0,097		0,147	0,197	
ច				0,026				0,026		0,026					0,026	0,025			0,026
Total 1	19,559	•	19,462	19,534	19,469	19,444	19,434	19,461	19,339	19,453	19,364	19,464	19,546	19,433	19,440	19,245	19,564	19,647	19,539
	3,213	3,089	3,096	3,001	3,084	3,083	3,136	3,075	3,129	3,185	3,227	3,053	2,958	3,135	3,109	3,233	3,090	3,137	3,268
Fe/(Fe+Mg)	0,565	0,565	0,581	0,587	0,575	0,592	0,599	0,608	0,582	0,596	0,575	0,654	0,640	0,650	609'0	0,597	0,662	0,665	0,636

235 235 235 803 804 803 804 <th>l abela 3.2.2. Alianses quimicas pontuais em cristais de biotita</th> <th>4. Alidiist</th> <th>as dallin</th> <th>cas polit</th> <th>Hais Cill</th> <th>Clistais</th> <th>ביים</th> <th>מ מס</th> <th>071</th> <th>שטויטט</th> <th>ווברפור</th> <th>optida por recalculo estequiometrico.</th> <th>daioille</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	l abela 3.2.2. Alianses quimicas pontuais em cristais de biotita	4. Alidiist	as dallin	cas polit	Hais Cill	Clistais	ביים	מ מס	071	שטויטט	ווברפור	optida por recalculo estequiometrico.	daioille							
Çâb Centro borda centro centro centro borda centro centro centro borda centro centro </th <th>Lâmina</th> <th>235</th> <th>235</th> <th>235</th> <th>235</th> <th>235</th> <th>235</th> <th>235</th> <th></th> <th>803</th>	Lâmina	235	235	235	235	235	235	235		803	803	803	803	803	803	803	803	803	803	803
3.6.1 3.6.0 3.6.1 3.4.9 3.5.1 3.6.7 3.6.5 3.6.2 3.2.5 3.2.	Posição	centro	borda	borda	centro	borda	centro	borda	centro	centro	borda	centro	borda	centro	inter	borda	centro	inter	borda	centro
250 250 288 365 346 326 328 136 184 182 256 250 250 271 192 271 192 270 271 192 271 271 271 271 271 271 271 271 271 27	SiO ₂	36,19	36,00	36,19	34,94	35,71	36,67	36,86	35,33	33,41	36,58	36,29	37,73	36,77	34,46	36,67	36,19	36,58	36,86	36,86
17.38 17.76 16.90 16.22 17.09 17.76 18.14 16.61 18.43 19.30 19.20 19.68 21.41 19.58 20.00 19.87 23.33 23.23 23.42 24.48 22.2 24.48 22.2 24.48 23.52 23.75 23.	TiO ₂	2,50	2,50	2,88	3,65	3,46	3,26	3,26	2,88	1,92	2,50	2,50	2,50	2,02	2,11	1,92	2,02	2,11	2,11	2,21
23.33 23.23 23.24 24.48 22.75 21.50 21.02 23.52 32.74 26.40 26.59 26.11 26.78 26.11 27.26 26.30 0.29 0.10 0.29 0.12 0.19 0.29 0.19 0.29 0.19 0.29 0.19 0.29 0.19 0.29 0.19 0.29 0.19 0.29 0.19 0.29 0.19 0.29 0.19 0.29 0.19 0.29 0.19 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Al ₂ O ₃	17,38	17,76	16,90	16,22	17,09	17,76	18,14	16,61	18,43	19,30	19,20	19,68	19,68	21,41	19,58	20,06	19,87	19,58	19,49
0.29 0.29 0.29 0.29 0.19 0.29 0.19 0.29 0.19 0.30 0.38 0.38 0.38 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39	FeO	23,33	23,23		24,48	22,75	21,50	21,02	23,52	32,74	26,40	26,59	25,15	26,11	26,78	26,11	27,26	26,30	25,92	26,02
7,20 7,30 7,49 6,53 7,30 7,39 7,68 7,30 3,44 5,66 8,83 9,02 2,11 2,30 2,02 2,40 2,30 2,50 2,10 0,10	MnO	0,29			0,29	0,19	0,29	0,19	0,19	0,38	0,38	0,19	0,29	0,38	0,38	0,38	0,38	0,29	0,38	0,19
9,12 9,02 9,12 9,02 9,12 9,89 9,50 9,12 8,83 9,41 5,66 8,83 9,02 8,45 8,54 8,93 8,83 7,68 8,26 9,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10	MgO	7,20			6,53	7,30	7,39	7,68	7,30	3,46	2,02	2,11	2,30	2,30	2,02	2,40	2,30	2,50	2,40	2,40
0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10	K ₂ 0	9,12			9,89	9,50	9,12	8,83	9,41	5,66	8,83	9,05	8,45	8,54	8,93	8,83	7,68	8,26	8,74	8,83
0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10	L	0,10					0,10	0,10												
3,83 3,88 3,90 3,81 3,90 3,87 3,89 3,67 3,76 3,87 3,88 3,88 3,88 3,88 3,88 3,88 3,89 3,99 3,90	ច	0,10			0,10		0,10	0,10	0,70	0,10						0,10				
CCI 0.006 0.008 99,90 99,90 99,80 99,80 99,76 100,002 99,80 99,80 99,76 100,002 99,80 99,80 99,76 100,002 99,80 99,80 99,76 100,002 99,80 99,90 99,76 100,002 99,80 99,90 99,80 99,90 99,80 99,76 99,80 99,80 99,80 99,80 99,80 99,80 99,80 99,80 99,80 99,80 99,80 99,80 99,80 99,80 99,80 99,80 99,70 99,80 99,80 99,70 99,70 99,80 99,70 99,70 99,80 99,70 99,70 99,80 99,80 99,70 99,70 99,80 99,80 99,70 99,70 99,70 99,70 99,70	H ₂ O*	3,83			3,81	3,90	3,87	3,89	3,67	3,76	3,87		3,93	3,88	3,85	3,85	3,88	3,89	3,86	3,89
CI -0,06 -0,02 -0,02 -0,00	Subtotal	100,03	Ŧ		99,91	99,90	100,07	100,09	99,60	98,66	28,66		100,02	69,66	99,95	98,66	99,78	99,79	96,66	68,66
Julia Estrutural com base em 20 oxigênios 1 99,96 100,06 99,90 99,89 99,90 100,01 100,03 99,44 99,83 99,87 100,02 99,66 99,69 99,95 99,89 99,78 104 99,84 99,83 99,76 100,02 99,69 99,95 99,99 99,99 99,99 99,99 99,78 99,99 99,99 99,99 99,99 99,78 99,78 99,78 99,77 99,80 98,78 99,78 99,78 99,78 99,78 99,79 99,79 99,79 99,78 99,89 99,99 99,	O=F,CI	-0,06			-0,02		-0,06	-0,06	-0,16	-0,02						-0,02			-0,02	
10.12 Estrutural com base em 20 oxigênios 5.562 5,521 5,562 5,459 5,496 5,575 5,572 5,510 5,297 5,664 5,639 5,760 5,680 5,363 5,672 5,593 5,639 5,632 5,649 5,632 5,449 2,438 2,449 2,44	Total	96,66	100,06	99,90	99,89	99,90	100,01	100,03	99,44	99,83	99,87	93,76	100,02	69,66	99,95	99,83	99,78	99,79	99,94	99,89
5,562 5,521 5,562 5,489 5,496 5,575 5,510 5,297 5,664 5,639 5,760 5,680 5,383 5,770 5,893 5,893 5,893 2,348 2,479 2,438 2,449 2,425 2,428 2,490 2,703 2,336 2,341 1,186 1,155 1,301 1,264 1,289 1,243 1,243 1,248 1,251 2,998 2,980 3,011 3,199 2,928 2,734 2,658 3,068 0,625 0,025 0,025 0,025 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,035 0,040 0,037 0,038 0,025 0,025 0,025 0,025 0,025 0,037 0,037 0,037 0,038 0,025 0,037 0,049 0,037 0,038 0,025 0,037 0,037 0,038 0,025 0,037 0,037 0,037 0,038 0,025 0,037 0,037 0,037 0,038 0,025 0,037 0,037 0,037 0,038 0,025 0,037 0,037 0,049 0,040 0,037 0,049 0,040	Fórmula Es	strutural c	om base	em 20 c	oxigênio	S														
2,438 2,479 2,438 2,541 2,504 2,425 2,428 2,490 2,703 2,336 2,361 2,240 2,320 2,637 2,328 2,407 2,361 0,709 0,731 0,622 0,447 0,595 0,757 0,805 0,563 0,741 1,186 1,156 1,301 1,264 1,289 1,243 1,248 1,251 0,288 0,288 0,288 0,333 0,429 0,400 0,373 0,371 0,338 0,229 0,291 0,292 0,287 0,287 0,234 0,247 0,223 0,234 0,245 2,998 2,980 3,011 3,199 2,928 2,734 2,668 3,068 4,341 3,419 3,456 3,211 3,374 3,486 3,378 3,524 3,392 0,037 0,037 0,037 0,035 0,037 0,035 0,035 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,037 0,038 0,025 0,037 0,049 0,400 3,974 4,000 3,974 3,978	Si	5,562	5,521	5,562	5,459	5,496	5,575	5,572	5,510	5,297	5,664	5,639	5,760	5,680	5,363	5,672	5,593	5,639	5,684	5,686
0,709 0,731 0,622 0,447 0,595 0,757 0,805 0,563 0,741 1,186 1,155 1,301 1,264 1,289 1,243 1,248 1,251 0,288 0,333 0,429 0,400 0,373 0,371 0,338 0,229 0,291 0,292 0,287 0,234 0,247 0,223 0,234 0,245 0,245 0,303 0,391 3,199 2,928 2,382 2,998 2,980 3,011 3,199 2,928 2,734 2,658 3,068 4,341 3,419 3,456 3,211 3,374 3,486 3,378 3,524 3,392 0,037 0,037 0,037 0,037 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,035 0,038 0,025 0,035 0,035 0,048 0,044 0,040	ĕ	2,438	2,479	2,438	2,541	2,504	2,425	2,428	2,490	2,703	2,336	2,361	2,240	2,320	2,637	2,328	2,407	2,361	2,316	2,314
0,288 0,288 0,333 0,429 0,400 0,373 0,371 0,338 0,229 0,291 0,292 0,287 0,234 0,247 0,223 0,234 0,245 3,392 2,998 2,980 3,011 3,199 2,928 2,734 2,658 3,068 4,341 3,419 3,456 3,211 3,374 3,486 3,378 3,524 3,392 0,037 0,037 0,038 0,025 0,035 0,035 0,037 0,037 0,038 0,025 0,035 0,035 0,037 0,050 0,051 0,050 0,051 0,050 0,038 1,768 1,772 1,741 1,696 0,817 0,465 0,489 0,524 0,531 0,468 0,553 0,531 0,574 1,624 1,788 1,970 1,866 1,768 1,703 1,872 1,145 1,745 1,745 1,749 1,649	Ā.	0,709	0,731	0,622	0,447	0,595	0,757	0,805	0,563	0,741	1,186	1,155	1,301	1,264	1,289	1,243	1,248	1,251	1,243	1,229
2,998 2,980 3,011 3,199 2,928 2,734 2,658 3,068 4,341 3,419 3,456 3,211 3,374 3,486 3,378 3,524 3,392 3,992 0,037 0,037 0,037 0,038 0,025 0,025 0,025 0,025 0,025 0,050 0,025 0,050 0,050 0,050 0,050 0,050 0,050 0,050 0,038 1,549 1,550 1,574 1,675 1,781 1,696 0,817 0,465 0,489 0,524 0,531 0,468 0,553 0,531 0,574 1,788 1,788 1,785 1,789 1,970 1,866 1,778 1,703 1,872 1,745 1,745 1,745 1,684 1,772 1,743 1,514 1,624 3,925 3,974 4,000 3,974 4,000 3,926 3,927 3,815 3,973 4,000 4,000 4,000 4,000 4,000 3,974 4,000 0,049 0,026	F	0,288	0,288	0,333	0,429	0,400	0,373	0,371	0,338	0,229	0,291	0,292	0,287	0,234	0,247	0,223	0,234	0,245	0,245	0,256
0,037 0,037 0,038 0,025 0,037 0,025 0,025 0,050 0,025 0,050 0,025 0,050 0,050 0,050 0,050 0,050 0,050 0,038 0,038 1,504 1,675 1,731 1,696 0,817 0,465 0,489 0,524 0,531 0,468 0,553 0,531 0,574 1,624 1,788 1,776 1,788 1,970 1,866 1,768 1,773 1,872 1,145 1,745 1,789 1,645 1,684 1,772 1,743 1,514 1,624 3,925 3,974 4,000 3,974 3,002 0,026	Fe	2,998	2,980	3,011	3,199	2,928	2,734	2,658	3,068	4,341	3,419	3,456	3,211	3,374	3,486	3,378	3,524	3,392	3,342	3,356
1,649 1,668 1,715 1,520 1,674 1,675 1,731 1,696 0,817 0,465 0,489 0,524 0,531 0,468 0,553 0,531 0,574 1,788 1,765 1,788 1,970 1,866 1,768 1,703 1,872 1,145 1,745 1,745 1,745 1,684 1,772 1,772 1,743 1,514 1,624 1,624 3,925 3,974 4,000 3,974 4,000 3,974 4,000 3,974 4,000 3,974 4,000 3,974 4,000 3,974 4,000 3,974 4,000 3,974 4,000 3,974 4,000 3,974 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 3,974 4,000 4,000 4,000 4,000 4,000 4,000 3,974 4,000 4,000 4,000 4,000 4,000 4,000 3,974 4,000 4,000 4,000 4,000 4,000 1,002 1,002 19,487 19,345 19,292 19,562 19,325 19,156 19,206 19,006 19,136 19,131 19,190 19,102 19,122 14al 3,147 3,210 3,061 2,988 3,100 3,182 3,233 3,053 3,445 3,522 3,517 3,584 3,927 3,571 3,655 3,611 3,64Mg) 0,645 0,641 0,637 0,678 0,608 0,644 0,842 0,880 0,876 0,860 0,864 0,882 0,859 0,869 0,855 19,102 1,124 1,	Мп	0,037	0,037		0,038	0,025	0,037	0,025	0,025	0,052	0,050	0,025	0,037	0,050	0,051	0,050	0,050	0,038	0,050	0,025
1,788 1,765 1,788 1,970 1,866 1,768 1,703 1,872 1,145 1,789 1,645 1,645 1,684 1,772 1,743 1,514 1,624 3,925 3,974 4,000 3,926 3,927 3,815 3,973 4,000 4,000 4,000 4,000 4,000 3,974 4,000 4,000 4,000 0 0,048 0,048 0,048 0,026 0,0	Mg	1,649	1,668	1,715	1,520	1,674	1,675	1,731	1,696	0,817	0,465	0,489	0,524	0,531	0,468	0,553	0,531	0,574	0,552	0,552
3,925 3,974 4,000 3,974 4,000 3,926 3,927 3,815 3,973 4,000	¥	1,788	1,765	1,788	1,970	1,866	1,768	1,703	1,872	1,145	1,745	1,789	1,645	1,684	1,772	1,743	1,514	1,624	1,718	1,738
0,049 0,026 0,026 0,026 0,026 0,026 0,026 0,026 0,026 0,026 0,026 0,026 0,026 0,026 0,026 0,026 0,026 0,026 0,026 0,185 0,027 1 19,470 19,469 19,469 19,603 19,487 19,345 19,592 19,562 19,325 19,156 19,206 19,006 19,136 19,313 19,190 19,102 19,122 14 1 19,470 19,469 19,469 19,603 19,487 19,345 19,292 19,562 19,325 19,156 19,206 19,006 19,136 19,313 19,190 19,102 19,122 14 1 19,470 19,469 19,469 19,698 3,100 3,182 3,233 3,053 3,445 3,522 3,517 3,541 3,584 3,927 3,571 3,655 3,611 0,637 0,678 0,636 0,606 0,606 0,644 0,842 0,880 0,876 0,860 0,864 0,882 0,859 0,869 0,855	* O	3,925	3,974	4,000	3,974	4,000	3,926	3,927	3,815	3,973	4,000	4,000	4,000	4,000	4,000	3,974	4,000	4,000	3,974	4,000
0,026 0,026 0,026 0,026 0,026 0,026 0,185 0,027 1 19,470 19,469 19,469 19,603 19,487 19,345 19,292 19,562 19,325 19,156 19,206 19,006 19,136 19,313 19,190 19,102 19,122 1 1al 3,147 3,210 3,061 2,988 3,100 3,182 3,233 3,053 3,445 3,522 3,517 3,541 3,584 3,927 3,571 3,655 3,611 2e+Mg) 0,645 0,641 0,637 0,678 0,636 0,606 0,606 0,644 0,842 0,880 0,876 0,860 0,864 0,882 0,859 0,869 0,855	ட	0,049					0,048	0,048												
19,470 19,469 19,469 19,603 19,487 19,345 19,292 19,562 19,156 19,156 19,206 19,006 19,136 19,313 19,190 19,102 19,122 13,147 3,210 3,061 2,988 3,100 3,182 3,233 3,053 3,445 3,522 3,517 3,541 3,584 3,927 3,571 3,655 3,611 Mg) 0,645 0,641 0,637 0,678 0,636 0,606 0,606 0,644 0,842 0,880 0,876 0,860 0,864 0,882 0,859 0,869 0,855	ច	0,026	0,026		0,026		0,026	0,026	0,185	0,027						0,026			0,026	
3,147 3,210 3,061 2,988 3,100 3,182 3,233 3,053 3,445 3,522 3,517 3,541 3,584 3,927 3,571 3,655 3,611 Mg) 0,645 0,641 0,637 0,678 0,636 0,620 0,606 0,644 0,842 0,880 0,876 0,860 0,864 0,882 0,859 0,855	Total	19,470	19,469		19,603	19,487	19,345	19,292	19,562	19,325	19,156	19,206	19,006	19,136	19,313	19,190	19,102	19,122	19,151	19,155
0 0.645 0.641 0.637 0.678 0.636 0.620 0.606 0.644 0.842 0.880 0.876 0.860 0.864 0.882 0.859 0.859 0.855	Al total	3,147	3,210		2,988	3,100	3,182	3,233	3,053	3,445	3,522	3,517	3,541	3,584	3,927	3,571	3,655	3,611	3,559	3,543
	Fe/(Fe+Mg)	0,645	0,641		0,678	0,636	0,620	909'0	0,644	0,842	0,880	0,876	0,860	0,864	0,882	0,859	0,869	0,855	0,858	0,859

labela 3.2.3. Alianses quimicas pontuais em cristais de biotita	. Analise	36.0																	
Lamina	803	803	803	803	803	803	803	803	804	804	804	804	804	804	804	804	804	804	804
Posição	inter	borda	centro	inter	inter	borda	centro	borda	centro	borda	borda	borda	centro	borda	centro	inter	borda	centro	borda
SiO ₂	36,48	36,48	38,50	38,40	38,21	38,78	39,36	38,50	37,54	37,73	37,34	37,92	37,44	36,96	38,78	39,55	40,13	39,94	40,13
TiO ₂	2,30	2,11	2,40	2,40	2,59	2,40	2,02	2,11	3,07	3,07	2,88	2,69	3,84	3,74	3,26	3,07	2,98	2,88	2,40
AI_2O_3	19,30	20,64	19,97	19,78	20,06	20,06	21,31	21,79	17,47	17,18	17,47	17,28	17,18	17,18	18,14	17,86	19,01	18,91	19,10
FeO	26,11	27,26	22,18	22,37	22,08	22,18	24,38	25,82	19,97	20,35	20,83	21,50	20,06	20,54	17,66	16,90	16,61	16,13	16,42
MnO	0,38	0,19	0,38	0,38	0,38	0,29	0,19	0,38	0,38	0,38	0,38	0,38	0,38	0,29	0,38	0,38	0,29	0,38	0,29
MgO	2,21	2,69	2,40	3,74	3,84	3,65	2,02	1,44	8,16	8,06	8,16	9,12	7,78	7,78	8,83	9,60	9,70	9,31	9,31
K ₂ 0	9,22	6,53	8,83	8,93	8,83	8,64	6,53	5,76	9,31	9,22	8,93	7,01	9,41	9,50	9,02	8,64	6,43	8,26	7,58
ш													0,30					0,10	0,30
ᅙ	0,10					0,10	0,10		0,10			0,30							
H ₂ O*	3,84	3,92	3,92	3,97	3,98	3,96	3,99	3,99	3,95	3,97	3,97	3,93	3,83	3,95		4,08	4,12	4,06	3,96
Subtotal	99,94	99,82	98,58	26,66	99,98	100,06	99,89	99,80	99,95	26,66	26,66	100,13	100,23	99,95	100,15	100,08	99,25	99,97	99,49
O=F,CI	-0,02					-0,02	-0,02		-0,02			-0,07	-0,13					-0,04	-0,13
Total	99,92	99,82	98,58	99,97	99,98	100,04	99,87	99,80	99,93	99,97	26,66	100,06	100,10	99,95	100,15	100,08	99,25	99,92	98,36
Fórmula Estrutural com base	rutural c	om base		em 20 oxigênios	,														
Si	5,657	5,582	5,882	5,799	5,760	5,829	5,884	5,783	2,667	2,697	5,646	5,682	5,652	2,607	5,743	5,818	5,845	5,834	5,872
≥	2,343	2,418	2,118	2,201	2,240	2,171	2,116	2,217	2,333	2,303	2,354	2,318	2,348	2,393	2,257	2,182	2,155	2,166	2,128
≥	1,184	1,305	1,478	1,319	1,325	1,383	1,640	1,642	0,777	0,755	0,759	0,735	0,710	0,680	0,910	0,913	1,109	1,090	1,168
ï	0,269	0,243	0,276	0,273	0,294	0,271	0,227	0,239	0,349	0,349	0,327	0,303	0,436	0,427	0,363	0,340	0,326	0,316	0,264
Fe	3,386	3,489	2,834	2,825	2,784	2,787	3,049	3,245	2,521	2,570	2,634	2,695	2,533	2,607	2,187	2,078	2,023	1,970	2,009
Ma	0,050	0,025	0,050	0,049	0,049	0,037	0,024	0,049	0,049	0,049	0,049	0,049	0,049	0,037	0,048	0,048	0,036	0,048	0,036
Mg	0,510	0,613	0,547	0,843	0,863	0,817	0,449	0,322	1,837	1,815	1,839	2,037	1,750	1,759	1,949	2,105	2,105	2,028	2,031
¥	1,823	1,274	1,721	1,720	1,698	1,656	1,245	1,104	1,793	1,775	1,722	1,340	1,812	1,839	1,704	1,621	1,195	1,538	1,416
* 10	3,974	4,000	4,000	4,000	4,000	3,975	3,975	4,000	3,974	4,000	4,000	3,924	3,857	4,000	4,000	4,000	4,000	3,954	3,861
ட													0,143					0,046	0,139
ច	0,026					0,025	0,025		0,026			0,076							
Total	19,222	18,950	18,905			18,951	18,634	18,601	19,326	19,313	19,331	19,158	19,289	19,349	19,163	19,105	18,794	18,991	18,924
Al total	3,527	3,723	3,596	3,520	3,565	3,554	3,755	3,859	3,109	3,058	3,114	3,052	3,058	3,073	3,167	3,096	3,264	3,256	3,295
Fe/(Fe+Mg)	0,869	0,851	0,838	0,770	0,763	0,773	0,872	0,910	0,579	0,586	0,589	0,569	0,591	0,597	0,529	0,497	0,490	0,493	0,497

SiO₂ 39,36 39 SiO₂ 39,36 39 TiO₂ 2,98 2 Al₂O³ 18,62 18 FeO 16,80 16 MnO 0,29 0 MgO 8,83 9 K₂O 8,93 9 Cl 0,20 0 Total 99,90 99 Al w 2,199 2,7 Al w 1,036 1,0	39,84 2,78 2,78 16,32 0,29 9,12 9,02 0,30 3,93 3,93 99,95 1	39,94 39,94 2,69 18,82 15,74 0,38		centro	borda													2
39,36 2,98 18,62 16,80 0,29 8,83 8,93 0,20 3,97 99,98 -0,08 99,90 5,801 5,801		39,94 2,69 18,82 15,74 0,38 9,60	40,51			centro	borda	centro	borda	centro	inter	borda	centro	inter	borda	centro	borda	centro
2,98 18,62 16,80 0,29 8,93 0,20 0,20 3,97 3,97 99,98 -0,08 99,90 5,801 5,801		2,69 18,82 15,74 0,38 9,60		36,38	37,15	36,10	35,90	35,81	35,33	36,38	35,71	35,52	36,48	36,19	36,67	35,71	36,48	35,23
18,62 16,80 0,29 8,83 8,93 0,20 3,97 3,97 99,98 -0,08 99,90 5,801 5,801		18,82 15,74 0,38 9,60	2,98	2,69	2,69	2,21	2,02	2,40	2,30	2,59	2,592	2,4	2,496	2,784	2,496	2,78	2,50	3,36
16,80 0,29 8,83 8,93 0,20 3,97 3,97 -0,08 99,90 99,90 5,801 2,199 1,036		15,74 0,38 9,60	18,82	16,51	17,66	17,28	16,80	16,90	17,09	17,18	17,47	17,18	16,42	17,09	16,8	17,09	17,66	16,80
0,29 8,83 8,93 0,20 3,97 -0,08 99,98 -0,08 99,90 5,801 2,199		0,38	15,26	22,66	20,74	23,14	24,00	23,81	23,71	22,85	22,85	23,52	23,71	22,46	22,85	22,94	21,41	23,14
8,83 8,93 0,20 3,97 3,97 -0,08 99,90 99,90 5,801 2,199 1,036		9,60	0,29	0,29	0,19	0,29	0,29	0,38	0,38	0,19	0,10	0,58	0,10	0,19	0,10	0,29	0,19	0,38
8,93 0,20 3,97 3,97 -0,08 99,90 5,801 2,199 1,036			9,41	7,39	8,26	7,68	7,10	7,49	8,16	7,68	7,97	7,87	8,26	8,35	8,64	8,06	8,64	7,78
3,97 3,97 3,97 -0,08 99,90 5,801 2,199 1,036		8,83	8,83	9,70	8,93	9,22	9,79	9,31	8,06	9,12	9,22	8,93	8,45	9,02	8,35	9,22	9,02	9,31
3,97 -0,08 -0,08 99,90 5,801 2,199 1,036				0,40	0,30	0,30		0,30			0,10	0,10		0,10				0,50
3,97 -0,08 99,90 99,90 5,801 2,199 1,036					0,10					0,10			0,10		0,10	0,10	0,10	0,10
5,801 2,199 1,036			4,13	3,69	3,79			3,74	3,86	3,89	3,85	3,84	3,88	3,88	3,90	3,88	3,92	3,62
-0,08 99,90 5,801 2,199 1,036		100,11 1	100,22	99,71	99,80	96,66	22,66	100,14	98,90	66'66	98,66	99,94	99,89	100,001	99,91	100,001	99,92	100,22
5,801 2,199 1,036				-0,17	-0,15			-0,13		-0,02	-0,04	-0,04	-0,02	-0,04	-0,02	-0,02	-0,02	-0,23
5,801 2,199 1,036		100,11 1	100,22	99,54	99,65	99,83	99,70	100,001	98,90	26,66	99,82	99,90	98,66	100,03	68,66	100,05	06'66	99,99
5,801 2,199 1,036					Fó	rmula	Estrutural		ase em 2	com base em 20 oxigênios	ios							
2,199 1,036	5,862	5,833	5,885	5,621	5,634	5,554	5,575	5,531	5,481	5,575	5,488	5,479	5,599	5,532	5,595	5,488	5,548	5,442
1,036	2,138	2,167	2,115	2,379	2,366	2,446	2,425	2,469	2,519	2,425	2,512	2,521	2,401	2,468	2,405	2,512	2,452	2,558
	1,041	1,073	1,107	0,628	0,791	0,688	0,649	0,607	909'0	0,678	0,653	0,604	0,568	0,610	0,616	0,584	0,715	0,501
	0,308	0,295	0,325	0,312	0,307	0,255	0,235	0,279	0,269	0,299	0,300	0,278	0,288	0,320	0,286	0,322	0,286	0,390
	,008	1,923	1,855	2,927	2,630	2,977	3,116	3,075	3,077	2,928	2,936	3,034	3,044	2,871	2,915	2,949	2,723	2,989
0,036	,036	0,048	0,035	0,038	0,025	0,038	0,038	0,050	0,050	0,025	0,012	0,075	0,012	0,025	0,012	0,037	0,025	0,050
	,000	2,090	2,037	1,702	1,866	1,762	1,644	1,724	1,887	1,754	1,825	1,810	1,889	1,903	1,965	1,847	1,959	1,791
1,678	693	1,645	1,637	1,911	1,727	1,809	1,939	1,835	1,596	1,782	1,806	1,757	1,654	1,759	1,625	1,807	1,751	1,835
	,860	4,000	4,000	3,805	3,830	3,854	4,000	3,853	4,000	3,974	3,951	3,951	3,974	3,952	3,974	3,974	3,974	3,730
	,140			0,195	0,144	0,146		0,147			0,049	0,049		0,048				0,244
ō					0,026					0,026			0,026		0,026	0,026	0,026	0,026
Total 19,091 19,0	19,087 1	19,074 1	18,997	19,518	19,345	19,528	19,622	19,570	19,485	19,466	19,533	19,558	19,455	19,489	19,421	19,546	19,458	19,555
Al total 3,235 3,	3,180		3,222	3,007	3,157	3,134	3,075	3,076	3,125	3,103	3,165	3,124	2,970	3,078	3,021	3,095	3,167	3,059
Fe/(Fe+Mg) 0,516 0,	0,501	0,479	0,477	0,632	0,585	0,628	0,655	0,641	0,620	0,625	0,617	0,626	0,617	0,601	0,597	0,615	0,582	0,625

	1005	COOL	1005	1005	1005	1005	1005	1005	1002	1005	1005	1013	1013	1013	1013	1013	1013	1013	1013
Posição	borda	centro	borda	borda	centro	borda	centro	centro	borda	centro	borda	centro	inter	inter	inter	borda	centro	inter	centro
SiO ₂	35,81	35,62	36,67	35,71	35,81	36,38	35,52	35,90	36,58	35,62	36,10	36,19	35,90	34,27	35,81	36,19	36,38	35,81	36,00
TiO ₂	3,46	2,88	2,59	2,59	2,50	2,69	3,26	3,46	3,07	3,55	3,55	2,59	2,78	3,07	2,69	2,40	2,78	3,07	2,69
Al ₂ O ₃	17,47	16,61	17,18	17,18	16,99	16,70	16,51	16,80	17,57	17,09	17,09	16,61	16,13	15,36	16,32	16,32	16,90	16,22	16,80
FeO	21,98	23,14	22,27	22,66	22,66	22,27	23,33	22,37	21,70	22,46	22,08	22,85	23,52	25,73	22,75	23,33	22,56	23,42	22,37
MnO	0,38	0,38		0,38	0,29	0,29	0,38	0,29	0,29	0,48	0,29	0,48	0,48	0,67	0,48	0,48	0,48	0,48	0,48
MgO	7,78	7,87	8,35	8,16	8,35	8,35	7,87	7,87	8,35	7,58	7,68	7,78	7,68	6,72	7,78	8,06	7,58	7,39	7,68
K ₂ 0	9,31	9,41	8,93	9,31	9,41	9,22	9,22	9,41	8,45	9,22	9,22	9,50	9,60	10,18	8,93	9,31	9,41	9,60	9,31
L		0,30	0,10		0,20							0,40			09'0	0,30	0,50		0,20
ច	0,10	0,10							0,10	0,10		0,10		0,10	0,10	0,10		0,10	
H ₂ O*	3,90	3,71	3,89	3,90	3,80	3,91	3,89	3,88	3,93	3,88	3,92	3,68	3,87	3,76	3,55		3,67	3,85	3,66
Subtotal	100,2	100	66'66	6,66	100,00	99,82	86,66	100,08	100,03	86,66	99,92	100,18	26,66	98'66	00'66		100,27	99,95	99,48
O=F,CI	-0,02	-0,15	-0,04		-0,08			-0,02	-0,02	-0,02		-0,19		-0,02	-0,28		-0,21	-0,02	-0,21
Total	100,17	99,87	99,95	99,90	99,92	99,82	96,66	100,06	100,01	99,95	99,92	66,66	99,97	99,84	98,72		100,06	99,92	99,27
Fórmula Estrutural com base	rutural c	om base		em 20 oxigênios	(5														
Si	5,473	5,505	5,587	5,491	5,507	5,576	5,480	5,508	5,547	5,473	5,523	5,575	5,556	5,428	2,567	5,579	5,582	5,545	5,546
ĕ	2,527	2,495	2,413	2,509	2,493	2,424	2,520	2,492	2,453	2,527	2,477	2,425	2,444	2,572	2,433	2,421	2,418	2,455	2,454
A vi	0,620	0,531	0,673	0,605	0,587	0,594	0,483	0,547	0,688	0,568	0,605	0,591	0,498	0,295	0,557	0,544	0,637	0,507	0,597
F	0,397	0,335	0,297	0,300	0,289	0,310	0,379	0,399	0,350	0,411	0,409	0,300	0,324	0,366	0,314	0,278	0,321	0,358	0,311
Fe	2,810	2,991	2,838	2,913	2,914	2,855	3,010	2,870	2,752	2,887	2,825	2,944	3,044	3,408	2,958	3,007	2,894	3,034	2,882
M N	0,050	0,050		0,050	0,038	0,037	0,050	0,037	0,037	0,062	0,037	0,063	0,063	060'0	0,063	0,063	0,062	0,063	0,063
Mg	1,772	1,814	1,897	1,870	1,915	1,908	1,811	1,800	1,888	1,737	1,752	1,786	1,772	1,586	1,802	1,853	1,734	1,706	1,764
ᅩ	1,815	1,855	1,735	1,826	1,845	1,802	1,814	1,841	1,634	1,806	1,799	1,867	1,895	2,056	1,770	1,831	1,841	1,896	1,830
* 10	3,974	3,827	3,952	4,000	3,903	4,000	4,000	3,974	3,974	3,974	4,000	3,779	4,000	3,973	3,679	3,828	3,757	3,974	3,756
ш		0,147	0,048		0,097							0,195			0,295	0,146	0,243		0,244
ច	0,026	0,026						0,026	0,026	0,026		0,026		0,027	0,026	0,026		0,026	
Total	19,464	19,575	19,440	19,565	19,587	19,506	19,546	19,494	19,349	19,472	19,427	19,550	19,596	19,801	19,465	19,576	19,490	19,564	19,446
Al total	3,147	3,026	3,086	3,114	3,080	3,018	3,003	3,038	3,140	3,095	3,082	3,016	2,942	2,867	2,991	2,965	3,055	2,961	3,051
Fe/(Fe+Mg)	0,613	0,622	0,599	0,609	0,603	0,599	0,624	0,615	0,593	0,624	0,617	0,622	0,632	0,682	0,621	0,619	0,625	0,640	0,620

Amostra 1013 1013 1013 Posição centro borda centro SiO₂ 36,10 36,77 36,29 TiO₂ 3,17 2,78 2,59 Al₂O³ 17,3 17,5 17,6 FeO 22,6 21,5 21,8 MnO 0,48 0,38 0,38 MgO 7,20 8,26 8,16 K₂O 9,22 9,26 8,54 F 0,20 0,00 Cl 0,20 0,10 H₂O* 3,81 3,95 3,61 Subtotal 100 99,95 99,63 O=F,CI -0,08 -0,28 O=F,CI -0,08 -0,28 O=F,CI 99,93 99,95 99,36	`			1013	1013	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022
ão centro borda c 36,10 36,77 3,17 2,78 17,3 17,5 22,6 21,5 0,48 7,20 8,26 9,22 9,22 9,22 0,20 3,81 3,95 44 100 99,95 3,81 3,95 54 -0,08 99,95 39,95																	1
36,10 36,77 3,17,5 17,5 22,6 21,5 0,48 7,20 8,26 9,22 9,22 0,20 0,20 4,41 100 99,95 4,44 100 99,95 99,93 99,95		inter	borda	borda		centro	centro	inter	inter	borda	centro	inter	inter	borda	centro	borda	centro
3,17 2,78 17,3 17,5 22,6 21,5 0,48 7,20 8,26 9,22 9,22 0,20 0,20 3,81 3,95 4al 100 99,95 1 99,93 99,95		34,94	35,62	35,62		36,10	34,75	34,56	35,52	35,81	35,04	34,56	34,94	35,52	35,81		36,77
17,3 17,5 22,6 21,5 0,48 7,20 8,26 9,22 0,20 0,20 4,44 100 99,95 4,44 100 99,95 1,99,93 99,95					2,11	3,17	3,36	3,46	2,69	2,78	2,69	2,88	2,88	2,69	3,36		2,69
22,6 21,5 0,48 7,20 8,26 9,22 0,22 0,20 4,44 3,95 4,44 100 99,95 4,44 99,93 99,95					16,61	16,70	16,51	16,32	16,80	16,80	16,22	16,03	15,46	16,80	16,51		17,57
0,48 7,20 8,26 9,22 0,20 0,20 3,81 3,95 4al 100 99,95 99,93 99,95					23,62	21,98	24,38	24,10	22,94	22,85	24,67	24,86	25,25	23,42	23,14	23,14	21,60
7,20 8,26 9,22 9,22 0,20 3,81 3,95 tal 100 99,95 1 -0,08					0,38	0,38	0,48	0,38	0,48	0,48	0,38	0,58	0,38	0,48	0,38		0,29
9,22 9,22 0,20 3,81 3,95 tal 100 99,95 1 -0,08					7,78	7,58	6,82	7,20	7,58	8,16	7,10	7,10	7,30	7,87	7,20		7,97
0,20 3,81 3,95 tal 100 99,95 1 -0,08 99,93 99,95					9,41	9,50	9,79	96,6	9,70	9,12	68'6	96'6	9,89	9,22	9,50		9,22
3,81 3,95 tal 100 99,95 1 -0,08 99,93 99,95		0,40		06'0	0,10	0,40	0,20	0,10	0,20		0,10		0,10		0,40		0,30
3,81 3,95 otal 100 99,95 CI -0,08 99,93 99,95						0,10	0,10	0,10		0,10	0,10	0,10	0,10				0,10
otal 100 99,95 CI -0,08 99,93 99,95				3,41	3,83	3,67	3,72	3,76	3,77	3,87	3,76	3,79	3,75	3,88	3,69		3,78
CI -0,08 99,93 99,95		_	_	00,41	99,83	99,59	100,12	96'66	89,66	26,66	96,66	68'66	100,04	88'66	66'66		100,27
99,93 99,95				-0,40	-0,04	-0,19	-0,11	-0,06	-0,08	-0,02	-0,06	-0,02	-0,06		-0,17	-0,21	-0,15
			_	100,001	62,66	99,40	100,001	06'66	99,60	99,95	99,90	28,66	86,66	88'66	99,83	99,94	100,12
rmula Estrutural com base	em 20 oxigênios	genios															
5,538				5,530	5,569	5,570	5,424	5,402	5,508	5,509	5,480	5,429	5,485	5,488	5,535	5,521	5,590
				2,470	2,431	2,430	2,576	2,598	2,492	2,491	2,520	2,571	2,515	2,512	2,465	2,479	2,410
0,663 0,716				0,587	0,598	0,608	0,462	0,409	0,579	0,555	0,471	0,398	0,344	0,547	0,543	0,521	0,738
0,366 0,318				0,168	0,246	0,368	0,394	0,406	0,313	0,322	0,316	0,340	0,340	0,312	0,391	0,356	0,307
Fe 2,895 2,733 2,790		3,082	3,050	3,104	3,055	2,837	3,183	3,150	2,976	2,940	3,227	3,267	3,314	3,027	2,991	2,983	2,746
0,000				9/0'0		0,050	0,063	0,051	0,063	0,063	0,051	0,077	0,051	0,063	0,050	0,038	0,037
1,647 1,870				1,889	1,793	1,745	1,586	1,678	1,753	1,871	1,656	1,664	1,707	1,813	1,659	1,809	1,806
1,804 1,786				1,901	1,856	1,871	1,949	1,991	1,918	1,790	1,973	2,001	1,980	1,816	1,874	1,831	1,787
3,903 4,000				3,532	3,951	3,779	3,875	3,924	3,902	3,974	3,924	3,973	3,924	4,000	3,804	3,756	3,830
				0,442	0,049	0,195	0,099	0,049	0,098		0,049		0,050		0,196	0,244	0,144
				0,026		0,026	0,026	0,026		0,026	0,027	0,027	0,027				0,026
•	•	`	_	19,724 1	9,599	9,479	19,638	19,684	19,602	19,541	19,694	19,746	19,736	19,578	19,507	19,539	19,422
3,125		3,037	2,988	3,057	3,028	3,038	3,038	3,007	3,071	3,046	2,991	2,969	2,859	3,059	3,008	3,001	3,148
0,594				0,622	0,630	0,619	0,667	0,652	0,629	0,611	0,661	0,663	0,660	0,625	0,643	0,622	0,603

ö
<u>ب</u>
흊
Ξ
.≌
믕
ě
S
ō
3
<u></u>
Ĝ,
<u>e</u>
ō
ŏ
g
Ę
엉
*
H20
I
>
ၓၟ
0
ŏ
ta
됹
ğ
ø
ð
æ.
St
Ξ
2
em
Ś
<u>a</u>
Ħ
2
٩
as
<u>.</u>
Œ
Ž
S
Se
≝
'n
۷.
.7.
Ŋ
3
6
ਣੂ
Ë

Lamina	1022	
Posição	Posição borda	
SiO ₂	36,00	
TiO ₂	3,07	
Al ₂ O ₃	16,70	
FeO	22,37	
MnO	0,38	
MgO	7,87	
K ₂ 0	09'6	
L		
<u></u>		
H ₂ O*	3,90	
Subtotal	06'66	
O=F,CI		
Total	06'66	
Fórmula Estru	trutural com base em 20 oxigênios	
Si	5,537	
AI ٰٰ	2,463	
, ≱	0,565	
F	0,355	
Fe	2,877	
Mn	0,050	
Mg	1,805	
×	1,883	
*HO	4,000	
L		
ō		
Total	19,535	
Al total	3,028	
Fe/Fe+Ma	7,00	

809 809 809 809 809 809 809 809 809 809	Tabela 3.2.8. Análises químicas pontuais em cristais de biot	8. Análise	es quími	cas pon	uais em	cristais	de bioti	ta do Mi	gmatito	de Poço	Redon	do. H20	de Poço Redondo. H2O* obtida por recálculo	por rec		stequic	estequiométrico			
Control Inter In	Lâmina	809	808	809	809	809		809	809		809	809	809	809	809	809	809	809	809	809
35,71 38,98 38,78 39,55 39,46 38,98 39,26 39,65 38,78 38,40 38,50 39,26 39,28 39,29 39,28 39,29 39,28 39,29 39,2	Posição	centro	inter	inter	inter	inter	inter	inter	borda	centro	inter		centro	borda	centro	borda	centro	borda	centro	borda
2,50 2,59 2,59 2,40 2,88 2,59 2,78 2,78 2,78 2,98 2,88 2,89 2,98 2,02 2,02 17,38 19,37 19,87 19,87 20,16 20,16 20,16 20,45 19,39 19,01 19,10 20,16 18,43 2,48 16,51 15,74 15,55 15,26 15,74 16,15 16,10 16,80 15,80 15,84 19,01 19,10 20,16 18,43 2,48 16,51 15,74 15,55 15,26 15,24 16,14 16,80 16,80 15,80 15,84 19,01 19,10 20,16 10,29 10,29 0,29 0,29 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,1	SiO ₂	35,71	38,98	38,78	39,55	39,46	38,98	39,26	39,65	38,78	38,40	38,50	39,36	39,26	37,92	38,59	38,98	39,74	39,26	38,88
1,38 19,39 19,78 19,97 19,87 20,16 20,16 20,45 19,39 19,01 19,10 20,16 18,43 24,48 16,51 15,74 15,55 15,26 15,74 15,46 15,07 16,13 16,80 16,80 15,84 14,78 19,01 20,29 0,29 0,29 0,29 0,29 0,29 0,29 0,29 0,29 0,29 0,41 9,71 9,71 9,71 9,72 9,41 9,41 9,41 9,41 9,22 9,41 9	TiO ₂	2,50	2,59	2,59	2,40	2,88	2,59	2,78	2,78	2,78	2,98	2,88	2,69	2,98	2,02	1,92	1,34	1,44	2,02	2,11
24,48 16,51 15,74 15,55 15,26 15,74 15,46 15,07 16,13 16,80 16,80 15,84 14,78 19,01 0,29 0,29 0,19 0,29 0,29 0,29 0,29 0,19 0,29 0,39 0,19 0,19 0,19 0,19 0,19 0,29 7,30 9,41 9,41 9,22 9,22 9,23 9,23 9,12 8,83 9,13 9,79 9,41 9,31 9,79 9,41 8,35 8,35 8,93 8,83 9,02 9,02 8,93 8,83 9,12 8,83 8,93 8,74 8,93 8,83 9,31 9,89 10,18 99,59 100,18 99,52 100,17 100,4	Al ₂ O ₃	17,38	19,39	19,78	19,97	19,87	20,16	20,16	20,45	19,39	19,01	19,01	19,10	20,16	18,43	19,01	17,76	18,05	19,10	19,39
0,29 0,29 0,19 0,29 0,29 0,29 0,29 0,19 0,29 0,10 0,10	FeO	24,48	16,51	15,74	15,55	15,26	15,74	15,46	15,07	16,13	16,80	16,80	15,84	14,78	19,01	18,14	18,82	17,47	16,90	16,90
7,30 9,41 9,41 9,42 9,22 9,32 9,31 9,22 8,64 9,79 9,41 9,31 9,79 9,41 8,35 9,41 9,84 9,44	MnO	0,29	0,29	0,19	0,29	0,29	0,29	0,29	0,19	0,29	0,38	0,19	0,19	0,19	0,29	0,19	0,38	0,38	0,38	0,19
8,35 8,93 8,83 9,02 9,02 8,93 8,83 9,12 8,83 8,93 8,74 8,93 8,83 9,31 0,50 0,00 0,10 0,80 0,70 0,30 0,30 0,10 0,10 0,10 0,10 0,10 0,1	MgO	7,30	9,41	9,41	9,22	9,22	9,31	9,22	8,64	9,79	9,41	9,31	6,79	9,41	8,35	8,74	68,6	9,98	9,02	8,83
8,35 8,93 8,83 9,02 9,02 8,93 8,83 9,12 8,83 8,93 8,74 8,93 8,83 9,31 0,60 0,10 0,80 0,70 0,30 0,20 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10 3,89 4,09 3,76 4,06 3,71 3,77 4,11 3,93 4,09 3,77 4,07 3,94 3,83 3,89 100,18 99,52 100,16 100,47 100,41 100,41 100,10 100,0 99,54 100,07 99,96 100,13 3,89 100,18 99,52 100,12 100,17 100,11 100,16 100,09 100,0 99,54 100,05 99,96 100,13 3,83 100,18 99,52 100,17 100,17 100,11 100,16 100,00 99,54 100,05 99,96 100,13 3,83 100,18 99,52 100,17 100,17 100,11 100,16 100,00 99,54 100,05 99,96 100,13 3,84 1,143 1,206 1,168 1,172 1,189 1,282 1,041 0,979 1,016 1,006 1,189 4,006 1,024 2,036 2,207 2,207 2,207 2,312 2,329 2,301 2,236 2,207 4,007 4,007 4,007 4,007 2,003 2,003 2,003 2,004 2,005 2,003 2,0	CaO														0,58	0,67	0,58		0,58	0,58
0,60 0,10 0,80 0,70 0,30 0,20 0,00 0,10	K ₂ O	8,35	8,93	8,83	9,02	9,02	8,93	8,83	9,12	8,83	8,93	8,74	8,93	8,83	9,31	8,74	8,35	8,93	8,93	9,12
3,89 4,09 3,76 4,06 3,71 3,77 4,11 3,93 4,09 3,94 3,77 4,07 3,94 3,83 3,89 4,09 3,76 4,06 3,71 3,77 4,11 3,93 4,09 3,94 3,77 4,07 3,94 3,83 3,89 100,18 99,79 100,16 100,47 100,47 100,47 100,11 100,33 100,09 100,1 99,79 100,07 99,96 100,13 3,89 100,18 99,79 100,16 100,47 100,47 100,11 100,13 100,09 100,1 99,79 100,07 99,96 100,13 3,88 100,18 99,79 100,14 100,47 100,47 100,11 100,16 100,09 100,1 99,79 100,07 99,96 100,13 4,000 2,200 2,226 2,247 2,320 2,247 2,322 2,329 2,301 2,326 2,273 2,310 4,000 2,266 2,266 2,267 2,2	ш			09'0	0,10	0,80	0,70		0,30		0,20	09'0		0,30	0,30	09'0	0,10	09'0	0,70	0,30
3,89 4,09 3,76 4,06 3,71 3,77 4,11 3,93 4,09 3,94 3,77 4,07 3,94 3,83 99,89 100,18 99,79 100,16 100,47 100,47 100,11 100,33 100,09 100,1 99,79 100,07 99,96 100,13 99,89 100,18 99,72 100,17 100,17 100,11 100,16 100,09 100,0 99,74 100,07 99,96 100,13 a Estrutural com base em 20 oxigénios a Estrutural com base em 20 oxigénios a Estrutural com base em 20 oxigénios 2,257 2,280 2,290 2,228 2,247 2,302 2,275 2,312 2,329 2,301 2,236 2,277 5,690 1,095 1,074 1,143 1,206 1,168 1,172 1,189 1,282 1,041 0,979 1,016 1,061 1,193 0,950 1,095 2,027 2,280 2,287 2,247 2,302 2,277 2,312 2,329 2,301 2,287 2,280 1,095 2,027 2,280 2,287 2,247 2,302 2,277 2,312 2,329 2,301 2,287 2,310 1,095 2,027 2,280 2,287 2,280 2,247 2,302 2,277 2,312 2,329 2,301 2,926 1,095 2,027 2,096 2,287 2,287 2,397 2,397 2,397 3,987 3,987 1,096 2,027 2,028 2,026 2,005 2,003 2,025 2,003 2,027 2,005 2,003 2,027 2,005 2,003 2,027 2,005 2,003 2,027 2,005 2,003 2,027 2,004 2,026 2,005 2,003 2,027 2,046 2,	ວັ			0,10		0,10			0,20		0,10		0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
99,89 100,18 99,79 100,16 100,47 100,47 100,11 100,33 100,09 100,10 99,79 100,07 99,96 100,13 99,89 100,18 99,52 100,12 100,17 100,17 100,16 100,09 100,0 99,54 100,05 99,81 99,98 a Estrutural com base em 20 oxigênios 5,743 5,688 5,720 5,710 5,772 5,753 5,688 5,773 5,688 5,671 5,699 5,764 5,727 5,690 2,257 2,280 2,290 2,228 2,247 2,302 2,276 2,227 2,312 2,329 2,301 2,236 2,273 2,310 1,095 1,074 1,143 1,206 1,168 1,172 1,189 1,282 1,041 0,979 1,016 1,061 1,193 0,950 1,099 2,027 1,939 1,898 1,861 1,925 1,885 1,875 2,141 2,071 2,075 2,080 1,940 1,803 2,385 2,024 2,058 2,065 2,003 2,029 2,003 1,875 2,141 2,071 2,055 2,137 2,046 1,868 1,660 1,671 1,659 1,680 1,678 1,665 1,642 1,652 1,682 1,652 1,683 1,643 1,782 1,600 4,000 4,000 3,696 3,954 3,606 3,954 3,415 3,415 3,416 3,4	H ₂ O*	3,89	4,09	3,76	4,06	3,71	3,77	4,11	3,93	4,09	3,94	3,77	4,07	3,94	3,83	3,73	3,96	3,75	3,72	3,90
-0,28 -0,04 -0,36 -0,29 -0,17 100,16 100,00 100,0 99,54 100,05 99,81 99,98 99,89 100,18 99,52 100,12 100,17 100,17 100,11 100,16 100,00 100,0 99,54 100,05 99,81 99,98 99,81 99,98 99,81 99,98 99,81 99,98 99,81 99,98 99,81 99,98 99,81 99,98 99,81 99,98 90,81 90,72 90,710 90,72 9	Subtotal	99,89	100,18	99,79	100,16	100,47	100,47	100,11	100,33	100,09	100,1	99,79	100,001	96,66	100,13	100,43	100,26	100,45	100,71	100,30
India Estrutural com base em 20 oxigênios 1 09,89 100,18 99,52 100,12 100,17 100,17 100,11 100,16 100,0 99,54 100,05 99,81 99,98 nula Estrutural com base em 20 oxigênios 5,743 5,720 5,710 5,772 5,698 5,724 5,773 5,688 5,671 5,699 5,764 5,727 5,690 2,257 2,280 2,290 2,228 2,247 2,302 2,276 2,312 2,329 2,301 2,236 2,278 2,310 2,329 2,310 2,286 2,247 2,302 2,276 2,277 2,312 2,329 2,301 2,236 2,278 2,312 2,329 2,310 2,278 2,310 2,329 2,310 2,326 2,278 2,312 2,329 2,310 2,296 2,227 2,312 2,329 2,310 2,326 2,320 2,328 2,340 2,386 0,328 0,305 0,305 0,307 0,321 0,024 0,024 <th>O=F,CI</th> <th></th> <th></th> <th>-0,28</th> <th>-0,04</th> <th>-0,36</th> <th>-0,29</th> <th></th> <th>-0,17</th> <th></th> <th>-0,11</th> <th>-0,25</th> <th>-0,02</th> <th>-0,15</th> <th>-0,15</th> <th>-0,28</th> <th>90'0-</th> <th>-0,28</th> <th>-0,32</th> <th>-0,15</th>	O=F,CI			-0,28	-0,04	-0,36	-0,29		-0,17		-0,11	-0,25	-0,02	-0,15	-0,15	-0,28	90'0-	-0,28	-0,32	-0,15
nula Estrutural com base em 20 oxigênios 5,743 5,720 5,710 5,772 5,698 5,724 5,773 5,688 5,671 5,699 5,764 5,727 5,690 2,257 2,280 2,290 2,228 2,247 2,302 2,276 2,227 2,312 2,329 2,301 2,236 2,273 2,310 1,095 1,074 1,143 1,206 1,168 1,172 1,189 1,282 1,041 0,979 1,016 1,061 1,193 0,950 0,298 0,286 0,287 0,263 0,316 0,285 0,305 0,305 0,307 0,331 0,321 0,296 0,326 0,228 1,999 2,027 1,939 1,898 1,861 1,925 1,885 1,878 2,075 2,080 1,940 1,803 2,385 0,036 0,036 0,024 0,036 0,036 0,036 0,034 0,024 0,024 0,024 0,037 2,024 2,058 2,065 2,005 2,003 2,029 2,003 1,875 2,141 2,071 2,055 2,137 2,046 1,868 1,660 1,671 1,659 1,680 1,678 1,665 1,642 1,694 1,652 1,682 1,682 1,682 1,683 1,782 4,000 4,000 3,696 3,954 3,606 3,676 4,000 3,812 4,000 3,812 1,915 1,915 1,915 1,915 19,155 19,115 19,035 19,112 19,035 19,015 19,115 19,115 19,035 19,112 19,035 19,015 19,115 19,115 19,035 19,112 19,035 19,015 19,116 19,035 1,485 1,485 1,485 1,485 19,146 19,035 1,485 1,485 1,485 19,146 19,035 1,485 1,485 1,485 19,146 19,035 1,485 1,485 19,146 19,035 1,485 19,146 19,035 19,146 19,035 19,045 1	Total	99,89	100,18	99,52	100,12	100,17	100,17	100,11	100,16	100,00	100,0	99,54	100,05	99,81	99,98	100,16	100,20	100,18	100,39	100,15
5,743 5,720 5,710 5,772 5,753 5,698 5,724 5,773 5,688 5,671 5,699 5,764 5,727 5,690 2,257 2,280 2,290 2,228 2,247 2,302 2,276 2,237 2,312 2,329 2,301 2,236 2,273 2,310 1,095 1,074 1,143 1,206 1,168 1,172 1,189 1,282 1,041 0,979 1,016 1,061 1,193 0,950 0,298 0,286 0,287 0,263 0,316 0,285 1,885 1,885 1,978 2,075 2,080 1,940 1,940 1,980 2,028 1,999 2,027 1,939 1,898 1,861 1,925 1,885 1,875 2,141 2,071 2,055 2,137 2,046 1,868 2,065 2,005 2,003 0,036	Fórmula Es	trutural c	som bas	em 20	oxigênic	S														
2,257 2,280 2,290 2,228 2,247 2,302 2,276 2,237 2,312 2,329 2,301 2,236 2,273 2,310 1,095 1,074 1,143 1,206 1,168 1,172 1,189 1,282 1,041 0,979 1,016 1,061 1,193 0,950 0,298 0,286 0,287 0,263 0,316 0,285 0,305 0,305 0,305 0,307 0,331 0,321 0,296 0,326 0,228 1,999 2,027 1,939 1,898 1,861 1,925 1,885 1,885 1,978 2,075 2,080 1,940 1,803 2,385 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,048 0,024 0,037 2,046 1,888 1,887 2,141 2,071 2,055 2,137 2,046 1,888 1,782 1,680 1,671 1,659 1,680 1,678 1,665 1,642 1,694 1,652 1,682 1,682 1,689 1,689 1,689 1,685 1,642 1,694 1,652 1,682 1,682 1,683 1,782 1,694 1,995 1,911 1,9113 19,152 19,116 19,088 19,063 19,112 19,059 19,015 19,155 19,186 19,126 19,136 19	Si	5,743	5,720	5,710	5,772		5,698	5,724	5,773	5,688	5,671	5,699	5,764	5,727	5,690	5,724	5,789	5,865	5,776	5,736
1,095 1,074 1,143 1,206 1,168 1,172 1,189 1,282 1,041 0,979 1,016 1,061 1,193 0,950 0,298 0,286 0,287 0,263 0,316 0,285 0,305 0,305 0,305 0,307 0,331 0,321 0,296 0,326 0,228 1,999 2,027 1,939 1,898 1,861 1,925 1,885 1,875 2,141 2,077 2,080 1,940 1,803 2,087 2,024 2,058 2,065 2,003 0,036 0,036 0,036 0,024 0,036 0,024 0,036 0,036 0,036 0,036 0,024 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,036 0,038 1,875 2,141 2,071 2,055 2,137 2,046 1,868 1,664 1,662 1,642 1,694 1,652 1,682 1,682 1,682 1,683 1,782 1,883 1,782 1,884 1,000 3,892 3,719 3,975 3,837 3,832 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,026 0,036 0,036 0,036 0,036 0,038 19,063 19,112 19,059 19,015 19,185 19,185 19,185 19,185 19,186 19,088 19,063 19,112 19,059 19,015 19,185 19,185 19,185 19,186 19,186 19,186 19,186 19,185 19,185 19,185 19,186 19,1	≥	2,257	2,280	2,290	2,228		2,302	2,276	2,227	2,312	2,329	2,301	2,236	2,273	2,310	2,276	2,211	2,135	2,224	2,264
0,298 0,286 0,287 0,263 0,316 0,285 0,305 0,305 0,307 0,331 0,321 0,296 0,326 0,228 1,999 2,027 1,939 1,898 1,861 1,925 1,885 1,835 1,978 2,075 2,080 1,940 1,803 2,385 0,036 0,037 1,875 2,141 2,071 2,055 2,137 2,046 1,868 1,643 1,782 1,660 1,671 1,659 1,680 1,678 1,665 1,642 1,694 1,652 1,682 1,650 1,668 1,643 1,782 1,782 1,600 4,000 3,696 3,954 3,606 3,676 4,000 3,812 4,000 3,882 3,719 3,975 3,837 3,832 0,025 0,025 0,025 0,025 0,025 1,9116 19,088 19,063 19,112 19,059 19,015 19,155 19,185 19,185 19,186 19,035 19,343 3,352 3,354 3,435 3,415 3,474 3,464 3,509 3,352 3,309 3,317 3,297 3,466 3,260 1,486	, Z	1,095	1,074	1,143	1,206		1,172	1,189	1,282	1,041	0,979	1,016	1,061	1,193	0,950	1,047	0,898	1,005	1,088	1,109
1,999 2,027 1,939 1,898 1,861 1,925 1,885 1,835 1,978 2,075 2,080 1,940 1,803 2,385 0,036 0,038 1,875 2,141 2,071 2,055 2,137 2,046 1,868 1,669 1,671 1,659 1,680 1,678 1,665 1,682 1,682 1,652 1,682 1,662 1,668 1,643 1,782 1,600 4,000 3,696 3,954 3,606 3,676 4,000 3,812 4,000 3,882 3,719 3,975 3,837 3,832 0,225 0,025 0,025 0,025 0,025 0,025 0,038 19,113 19,152 19,116 19,088 19,063 19,112 19,059 19,015 19,155 19,185 19,185 19,186 19,086 3,415 3,474 3,464 3,509 3,352 3,309 3,317 3,297 3,466 3,260 1,485 1,486	j	0,298	0,286	0,287	0,263		0,285	0,305	0,305	0,307	0,331	0,321	0,296	0,326	0,228	0,214	0,150	0,160	0,223	0,234
0,036 0,036 0,024 0,036 0,036 0,036 0,036 0,024 0,036 0,048 0,024 0,024 0,024 0,027 2,025 2,137 2,046 1,868 1,660 1,671 1,659 1,680 1,671 1,659 1,680 1,671 1,659 1,680 1,671 1,659 1,680 1,671 1,678 1,665 1,642 1,694 1,652 1,682 1,650 1,668 1,643 1,782 1,782 1,000 4,000 3,696 3,954 3,606 3,676 4,000 3,812 4,000 3,882 3,719 3,975 3,837 3,832 0,225 0,025	Fe	1,999	2,027	1,939	1,898		1,925	1,885	1,835	1,978	2,075	2,080	1,940	1,803	2,385	2,251	2,337	2,156	2,079	2,085
2,024 2,058 2,065 2,005 2,003 2,029 2,003 1,875 2,141 2,071 2,055 2,137 2,046 1,868 0,093 1,660 1,671 1,659 1,686 1,642 1,694 1,652 1,682 1,650 1,668 1,643 1,782 0,093 0,324 0,324 0,018 0,093 0,093 0,281 0,093 0,281 0,095 0,025 0,025 0,025 0,025 0,025 0,025 0,049 0,0049 0,005	Z Z	0,036	0,036	0,024	0,036		0,036	0,036	0,024	0,036	0,048	0,024	0,024	0,024	0,037	0,024	0,048	0,048	0,048	0,024
1,660 1,671 1,659 1,680 1,678 1,665 1,642 1,694 1,652 1,682 1,650 1,668 1,643 1,782 4,000 3,882 3,719 3,975 3,837 3,832 0,279 0,046 0,369 0,324 0,049 0,049 0,025	Mg	2,024	2,058	2,065	2,005		2,029	2,003	1,875	2,141	2,071	2,055	2,137	2,046	1,868	1,932	2,189	2,196	1,979	1,942
1,660 1,671 1,659 1,680 1,678 1,665 1,642 1,694 1,652 1,682 1,650 1,668 1,643 1,782 4,000 3,696 3,954 3,606 3,676 4,000 3,812 4,000 3,882 3,719 3,975 3,837 3,832 0,279 0,046 0,369 0,324 0,049 0,0025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,049 0,049 19,152 19,116 19,088 19,063 19,112 19,059 19,015 19,155 19,185 19,146 19,126 19,035 19,343 2,3432 3,435 3,415 3,474 3,464 3,509 3,352 3,309 3,317 3,297 3,466 3,260 5,544	Ca														0,093	0,107	0,092		0,091	0,091
4,000 4,000 3,696 3,954 3,606 3,676 4,000 3,812 4,000 3,882 3,719 3,975 3,837 3,832 0,229 0,279 0,046 0,369 0,324 0,138 0,148 0,025	ᅩ	1,660	1,671	1,659	1,680	1,678	1,665	1,642	1,694	1,652	1,682	1,650	1,668	1,643	1,782	1,653	1,582	1,681	1,675	1,716
0,279 0,046 0,369 0,324 0,138 0,093 0,281 0,138 0,142 0,025	* O	4,000	4,000	3,696	3,954	3,606	3,676	4,000	3,812	4,000	3,882	3,719	3,975	3,837	3,832	3,693	3,928	3,695	3,649	3,835
0,025 0,025	ட			0,279	0,046	0,369	0,324		0,138		0,093	0,281		0,138	0,142	0,281	0,047	0,280	0,326	0,140
19,113 19,152 19,116 19,088 19,063 19,112 19,059 19,015 19,155 19,185 19,146 19,126 19,035 19,343 3,352 3,354 3,432 3,435 3,415 3,474 3,464 3,509 3,352 3,309 3,317 3,297 3,466 3,260	<u></u>			0,025		0,025			0,049		0,025		0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025
3,352 3,354 3,432 3,435 3,415 3,474 3,464 3,509 3,352 3,309 3,317 3,297 3,466 3,260	Total	19,113	19,152	19,116	19,088	19,063	19,112	19,059	19,015	19,155	19,185	19,146	19,126	19,035	19,343	19,227	19,297	19,246	19,183	19,201
1 0.407 0.406 0.484 0.486 0.487 0.487 0.485 0.480 0.500 0.503 0.476 0.469 0.564	Al total	3,352	3,354	3,432	3,435	3,415	3,474	3,464	3,509	3,352	3,309	3,317	3,297	3,466	3,260	3,323	3,109	3,139	3,312	3,372
0,430 0,430 0,400 0,400 0,400 0,400 0,400 0,400 0,000 0,000 0,400 0,400 0,400	Fe/(Fe+Mg)	0,497	0,496	0,484	0,486	0,482	0,487	0,485	0,495	0,480	0,500	0,503	0,476	0,469	0,561	0,538	0,516	0,495	0,512	0,518

l abeia 3.4.3. Alialises quillicas polituais elli clistais d	7. Andills	as dallill	cas por																
Lâmina	1011c	1011c	1011c	1011c	1011c	1011c	1011c 1011c 1011c	1011c	1011c	1011c	1011c	1011c	1011c	1011c 1011c 1011c 1011c 1011c	1011c	1011c	1011c	1011c	
Posição	centro	inter	inter	inter	borda	centro	borda	centro	borda	centro	borda	centro	borda	centro	inter	centro	borda	centro	
SiO ₂	36,86	37,15	37,34	36,86	36,77	36,77	37,73	37,15	37,44	37,15	36,48	36,67	38,21	36,00	37,06	36,96	38,21	37,06	
TIO ₂	2,30	2,30	2,40	1,92	2,02	2,40	2,59	2,30	2,11	1,92	2,11	2,11	1,82	3,07	2,88	2,50	2,21	1,92	
AI_2O_3	16,70	17,28	16,80	16,90	16,90	16,51	17,47	16,61	16,90	16,70	16,22	16,51	17,57	15,84	16,61	16,70	17,76	17,47	
FeO	19,10	17,76	18,24	18,72	18,43	18,91	17,66	18,24	17,86	18,34	19,78	18,53	16,61	20,06	18,34	18,24	16,22	17,76	
MnO	0,38	0,38	0,38	0,38	0,48	0,38	0,29	0,38	0,29	0,38	0,29	0,38	0,29	0,48	0,38	0,29	0,29	0,38	
MgO	11,62	11,81	11,71	12,10	12,00	11,42	11,33	11,71	12,10	12,00	11,52	12,19	12,77	10,66	11,33	11,42	12,00	11,14	
K ₂0	9,02	9,31	9,12	9,12	9,12	9,60	8,93	9,60	9,41	9,41	9,60	9,12	8,74	9,89	9,22	9,50	8,64	9,41	
L	0,40	0,80	0,50	0,20	0,20	0,60	0,40		0,60	0,20	0,30	0,40	0,80	0,30	0,30	0,40	09'0	0,80	
ਠ		0,10	0,10				0,10			0,10		0,10		0,10	0,10	0,10			
H ₂ O*	3,79	3,60	3,74	3,89	3,88	3,68	3,81	3,99	3,73	3,87	3,81	3,75	3,68	3,76	3,82	3,76	3,76	3,59	
Subtotal	100,19	100,50	100,34	100,09	99,80	100,28	100,31	66,66	100,42	100,001	100,11	99,77	100,48	100,16	100,13	99,87	69,66	99,53	
O=F,CI	-0,17	-0,36	-0,23	-0,08	-0,08	-0,25	-0,19		-0,25	-0,11	-0,13	-0,19	-0,34	-0,15	-0,15	-0,19	-0,25	-0,34	
Total	100,02	100,14	100,11	100,01	99,71	100,03	100,12	99,99	100,17	96,66	96,66	99,58	100,14	100,01	99,88	99,68	99,43	99,19	
						Đ	Fórmula Estrutura	strutura	_	com base em 20	0 oxigênios	ios							
Si	5,551	5,559	5,594	5,543	5,542	5,554	5,614	2,587	5,598	2,588	5,539	5,544	5,643	5,500	5,575	5,577	5,666	5,596	
ĕ	2,449	2,441	2,406	2,457	2,458	2,446	2,386	2,413	2,402	2,412	2,461	2,456	2,357	2,500	2,425	2,423	2,334	2,404	
Ā	0,516	909'0	0,561	0,537	0,543	0,494	0,679	0,531	0,576	0,549	0,442	0,486	0,701	0,352	0,520	0,548	0,771	0,707	
F	0,261	0,259	0,270	0,217	0,229	0,273	0,290	0,261	0,237	0,217	0,241	0,240	0,203	0,353	0,326	0,283	0,246	0,218	
Fe	2,406	2,222	2,285	2,354	2,323	2,389	2,198	2,294	2,233	2,306	2,511	2,343	2,051	2,564	2,307	2,302	2,012	2,243	
M	0,049	0,049	0,049	0,049	0,061	0,049	0,036	0,049	0,036	0,049	0,037	0,049	0,036	0,062	0,049	0,037	0,036	0,049	
Mg	2,607	2,634	2,615	2,711	2,696	2,573	2,513	2,626	2,696	2,690	2,607	2,748	2,811	2,427	2,541	2,570	2,653	2,507	
¥	1,733	1,777	1,743	1,749	1,753	1,850	1,695	1,841	1,794	1,805	1,859	1,759	1,646	1,927	1,769	1,829	1,634	1,812	
* O	3,810	3,596	3,738	3,905	3,905	3,713	3,787	4,000	3,716	3,879	3,856	3,783	3,626	3,829	3,832	3,784	3,719	3,618	
L	0,190	0,379	0,237	0,095	0,095	0,287	0,188		0,284	0,095	0,144	0,191	0,374	0,145	0,143	0,191	0,281	0,382	
ច		0,025	0,025				0,025			0,025		0,026		0,026	0,026	0,026			
Total	19,572	19,547	19,523	19,617	19,606	19,628	19,411	19,601	19,573	19,617	19,698	19,624	19,448	19,684	19,511	19,569	19,352	19,537	
Al total	2,965	3,047	2,966	2,994	3,002	2,940	3,065	2,944	2,978	2,961	2,903	2,942	3,058	2,852	2,945	2,971	3,104	3,110	
Fe/(Fe+Mg)	0,480	0,458	0,466	0,465	0,463	0,482	0,467	0,466	0,453	0,462	0,491	0,460	0,422	0,514	0,476	0,473	0,431	0,472	
																		l	

Tabela 3.3.1. Análises químicas pontuais em cristais de epídoto do SSV.

centro centro centro ce 40,6 40,8 39,4 26,0 24,8 25,9 10,2 11,3 11,0 23,1 23,1 23,8 99,9 100,0 100,1 1 ral com base em 25 oxigêni 6,162 6,206 6,010 6 4,651 4,446 4,656 4 1,295 1,437 1,403 1 3,757 3,764 3,890 3 1,00 1,00 1,00 11,0 1,00 1,00 23,757 2,443 23,16 806 806 806 8 centro inter centro b 39,8 40,1 39,6 25,7 26,0 25,0 11,0 10,9 12,0 23,5 23,0 23,4 0,0 0,0 0,0 100,0 100,0 10 ral com base em 25 oxigêni 6,067 6,095 6,054 6 4,617 4,658 4,505 4 1,402 1,386 1,534 1 3,838 3,746 3,833	39,4 39,5 39,5 25,9 25,9 25,9 25,9 25,9 25,9 23,6 23,6 23,6 23,6 23,6 20,1 100,0 100,0 100,0 23,8 23,5 23,6 20,1 20,1 20,1 20,1 20,1 20,1 20,1 20,1	centro inter 39,4 39,2 25,9 25,6 11,0 11,4 23,7 23,7 100,0 99,9 6,014 5,999 4,659 4,618 1,404 1,459 3,876 3,886 1,00 1,00 16,95 16,96 23,16 24,01 806 1005	Centro 2 37,4 3 4 13,1 7 26,0 9 99,9 9 5,827 8 4,297 8 4,297 6 4,340 1,00 1,00 1,00 1,28,43 1 28,43 1 3,44 1 3,44 1 4,44 1 5,44 1 6,44 1 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	inter by 38,9 24,9 12,1 24,1 100,0 10,00 1,000	39,5 25,5 11,3 23,7 100,0 6,034 4,591 1,444 3,879 1,00 1,00 1,00	39,9 26,0 10,5 23,6 100,0 1,00,0 1,00	26,1 26,1 10,6 24,1 100,0 5,988 4,699 1,354 3,944 1,00 16,99				centro ,0 42,4 ,0 26,3 ,2 9,9 ,8 21,5 ,0 100,1 21 6,357 12 4,647 34 1,241 15 3,454 00 1,00 73 16,70 73 16,70 78 21,08	6,384 4,621 26,1 9,6 21,7 99,9 99,9 1,206 3,492 1,00 1,00 1,00
38,4 40,6 40,8 39,4 26,6 26,0 24,8 25,9 11,3 10,2 11,3 11,0 23,7 23,1 23,1 23,8 100,0 99,9 100,0 100,1 5,875 6,162 6,206 6,010 6 4,797 4,651 4,446 4,656 4,797 4,651 1,403 1,400 1,00 1,00 1,00 1,00 1,00 17,00 16,86 16,85 16,96 1,700 17,00 16,86 16,85 16,96 23,16 a 806 806 806 806 8 ião centro centro inter centro E25,6 25,7 26,0 25,0 10,3 11,0 10,9 12,0 21,3 23,5 23,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	4, 7, 6, 6, 6, 6, 7, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	4 0 0 × 0										42,5 26,1 9,6 21,7 99,9 6,384 4,621 1,206 3,492 1,00 1,00
26,6 26,0 24,8 25,9 11,3 10,2 11,3 11,0 23,7 23,1 23,1 23,8 100,0 99,9 100,0 100,1 100,0 99,9 100,0 100,1 5,875 6,162 6,206 6,010 6 4,797 4,651 4,446 4,656 4 1,446 1,295 1,437 1,403 3,885 3,757 3,764 3,890 3 1,885 3,757 3,764 3,890 3 1,00 1,00 1,00 1,00 1,00 1,00 10,0 10,0	6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	2 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										26,1 9,6 21,7 99,9 6,384 4,621 1,206 3,492 1,00 1,00 1,00
11,3	6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	0 × 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										9,6 21,7 99,9 6,384 4,621 1,206 3,492 1,00 1,00 1,00
23,7 23,1 23,1 23,8 100,0 99,9 100,0 100,1 100,0 99,9 100,0 100,1 5,875 6,162 6,206 6,010 6 4,797 4,651 4,446 4,656 4 1,446 1,295 1,437 1,403 3 3,885 3,757 3,764 3,890 3 1,00 1,00 1,00 1,00 1,00 17,00 16,86 16,85 16,96 4 17,00 16,86 16,85 16,96 4 17,00 16,86 16,96 806 806 806 8 10,0 16,86 16,85 16,96 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0 23,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 <th>7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7</th> <th>0 4 4 5 0 0 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>21,7 99,9 6,384 4,621 1,206 3,492 1,00 1,00 1,00</th>	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7	0 4 4 5 0 0 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7										21,7 99,9 6,384 4,621 1,206 3,492 1,00 1,00 1,00
ula Estrutural com base em 25 oxigên 5,875 6,162 6,206 6,010 6 4,797 4,651 4,446 4,656 4 1,446 1,295 1,437 1,403 3,885 3,757 3,764 3,890 3 1,00 1,00 1,00 1,00 1,00 17,00 16,86 16,85 16,96 7 23,162 21,78 24,43 23,16 a 806 806 806 806 8 ião centro centro inter centro base em 25,0 23,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	0, 200	0 4 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										6,384 4,621 1,206 3,492 1,00 1,00 16,70
ula Estrutural com base em 25 oxigên 5,875 6,162 6,206 6,010 6 4,797 4,651 4,446 4,656 4 1,446 1,295 1,437 1,403 3 3,885 3,757 3,764 3,890 3 1,00 1,00 1,00 1,00 1,00 17,00 16,86 16,85 16,96 7 23,162 21,78 24,43 23,16 8 abo centro centro inter centro b 42,8 39,8 40,1 39,6 25,0 25,6 25,7 26,0 25,0 10,3 11,0 10,9 12,0 10,3 11,0 100,0 100,0 0,0 10,0 100,0 100,0 100,0 100,0 6,423 6,067 6,095 6,054 6 6,428 4,617 4,658 4,505 4 1,293 1,402 1,383 3,833 3 2,0 2,0	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 6 4 6 0 6										6,384 4,621 1,206 3,492 1,00 16,70 20,70
5,875 6,162 6,206 6,010 6 4,797 4,651 4,446 4,656 4 1,446 1,295 1,437 1,403 3,885 3,757 3,764 3,890 3 1,00 1,00 1,00 1,00 17,00 16,86 16,85 16,96 23,162 21,78 24,43 23,16 as 806 806 806 806 8 23,162 21,78 24,43 23,16 23,162 21,78 24,43 23,16 23,162 21,78 24,43 23,16 23,162 21,78 24,43 23,16 23,162 21,78 24,43 23,16 23,162 21,78 24,43 23,16 25,6 25,7 26,0 25,0 10,3 11,0 10,9 12,0 21,3 23,5 23,0 23,4 0,0 0,0 0,0 0,0 100,0 100,0 100,0 1 010 Estrutural com base em 25 oxigên 6,423 6,067 6,095 6,054 6 4,528 4,617 4,658 4,505 2 1,293 1,402 1,386 1,534	6,020 4,592 1,482 3,847 1,00 16,94 24,4 806	4 0 4 0 0 0 0										6,384 4,621 1,206 3,492 1,00 16,70 20,70
4,797 4,651 4,446 4,656 4 1,446 1,295 1,437 1,403 3,885 3,757 3,764 3,890 3 1,00 1,00 1,00 1,00 17,00 16,86 16,85 16,96 7 23,162 21,78 24,43 23,16 na 806 806 806 806 8 25,6 25,7 26,0 25,0 10,3 11,0 10,9 12,0 21,3 23,5 23,0 23,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	4,592 1,482 3,847 1,00 16,94 24,4 806	040000										4,621 1,206 3,492 1,00 16,70 20,70
1,446 1,295 1,437 1,403 3,885 3,757 3,764 3,890 3 1,90 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,482 3,847 1,00 16,94 24,4 806	4 (0 () (0										1,206 3,492 1,00 16,70 20,70
3,885 3,757 3,764 3,890 3 1,00 1,00 1,00 1,00 17,00 16,86 16,85 16,96 23,162 21,78 24,43 23,16 a 806 806 806 806 8 \$\frac{42,8}{25,6} 39,8 40,1 39,6 25,6 25,7 26,0 25,0 10,3 11,0 10,9 12,0 21,3 23,5 23,0 23,4 0,0 0,0 0,0 100,0 100,0 100,0 1 010 Estrutural com base em 25 oxigên 6,423 6,067 6,095 6,054 6 4,528 4,617 4,658 4,505 2 1,293 1,402 1,386 1,534 3,425 3,838 3,746 3,833 3	3,847 1,00 16,94 24,4 806	(0 (0) (0)										3,492 1,00 16,70 20,70
1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 16,94 24,4 806	ဝ က ဝ	_					00				1,00 16,70 20,70
na 806 806 806 806 806 806 806 806 806 806	16,94 24,4 806	တ် ဝ										16,70
23,162 21,78 24,43 23,16 ana 806 806 806 806 806 são centro inter centro 53,6 25,0 42,8 39,8 40,1 39,6 25,6 25,7 26,0 25,0 10,3 11,0 10,9 12,0 21,3 23,5 23,0 23,4 0,0 0,0 0,0 0,0 ula Estrutural com base em 25 oxigên 6,423 6,067 6,095 6,054 4,528 4,617 4,658 4,505 4,505 1,293 1,402 1,386 1,534 2,505 1,293 1,402 1,386 1,534 2,505 1,293 1,402 1,386 1,534 2,505 1,293 1,402 1,386 1,534 2,505 1,293 1,402 1,386 1,534 2,505 1,293 1,402 1,386 1,534 2,505 1,293 1,402 1,534 3,833 3,345 1,293 1,402 1,402 1,402 1,402 1,503 1,203 1,402 1,402 1,402 1,402 1,	24,4 806	9							16,79 1			20,70
na 806 806 806 806 4806<	908					7	_			0		
ião centro inter centro Lota 42,8 39,8 40,1 39,6 25,6 25,7 26,0 25,0 10,3 11,0 10,9 12,0 21,3 23,5 23,0 23,4 0,0 0,0 0,0 0,0 100,0 100,0 100,0 1 6,423 6,067 6,095 6,054 6 4,528 4,617 4,658 4,505 4 1,293 1,402 1,386 1,534 3 1,293 1,402 1,386 1,534 3 1,293 1,402 1,386 1,534 3 1,293 1,402 1,386 1,534 3 1,293 1,402 1,386 1,534 3 1,293 1,402 1,386 1,534 3 1,293 1,402 1,386 1,534 3 1,293 1,402 1,534 3								1022	1022 1	1022 1022		1022
42,8 39,8 40,1 39,6 25,6 25,6 25,7 26,0 25,0 10,3 11,0 10,9 12,0 21,3 23,5 23,0 23,4 0,0 0,0 0,0 0,0 0,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 0,0	_	\sim	o inter			Ö			Ö	centro inter	r centro	centro
25,6 25,7 26,0 25,0 10,3 11,0 10,9 12,0 21,3 23,5 23,0 23,4 0,0 0,0 0,0 0,0 0,0 0,0 100,0	40,0	40,2 39,3		38,9	39,0	39,6	39,5	39,6	39,1	39,7 41		39,6
10,3 11,0 10,9 12,0 21,3 23,5 23,0 23,4 0,0 0,0 0,0 0,0 100,0 100,0 100,0 100,0 10 ula Estrutural com base em 25 oxigêni 6,423 6,067 6,095 6,054 6 4,528 4,617 4,658 4,505 4 1,293 1,402 1,386 1,534 1 3,425 3,838 3,746 3,833	26,5			23,8	24,8		25,4	24,0				24,1
21,3 23,5 23,0 23,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	10,8			13,6	12,2		11,6	13,3				13,0
0,0 0,0 0,0 0,0 0,0 0,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 1,534 1,534 1,402 1,386 1,534 1,534 1,402 1,386 1,534	22,7		,4 23,6	23,6	23,6		23,5	23,2		23,4 21,2	,2 22,5	23,3
Estrutural com base em 25 oxigêni 6,423 6,067 6,095 6,054 6 4,528 4,617 4,658 4,505 4 1,293 1,402 1,386 1,534 1 3,425 3,838 3,746 3,833 3	_							0,0				0,0
Estrutural com base em 25 oxigêni 6,423 6,067 6,095 6,054 6 4,528 4,617 4,658 4,505 4 1,293 1,402 1,386 1,534 1 3,425 3,838 3,746 3,833 3		100,0 99,70	Ο,	99,90	99,60	7	00,00	00,10	00,00	00,00 99,90	90 100,00	100,00
6,423 6,067 6,095 6,054 6 4,528 4,617 4,658 4,505 4 1,293 1,402 1,386 1,534 1 3,425 3,838 3,746 3,833 3	oxigênios											
4,528 4,617 4,658 4,505 4 1,293 1,402 1,386 1,534 1 3,425 3,838 3,746 3,833 3		7										6,071
1,293 1,402 1,386 1,534 1 3,425 3,838 3,746 3,833 3	4,740	3										4,354
3,425 3,838 3,746 3,833 3	1,371	1,218 1,553	3 1,567	1,753	1,570	1,599 1	1,482	1,704	1,603	1,587 1,497	1,540	1,667
000	3,691	6										3,827
0,00 0,00 0,00	0,00 0,00 0,00	_						0,00	0,00		35 0,00	00'0
H 1,00 1,00 1,00 1,00 1,00		_							1,000 1	1,000 1,000	1,000	1,000
Total 16,667 16,924 16,884 16,926 16,873		16,907 16,94	16,96	16,97	16,96	16,91 1	16,94	16,91	16,96	16,92 16,87	37 16,84	16,92
%Ps 22,21 23,30 22,93 25,41 22,43		20,33 25,64	4 25,72	28,85	25,87	26,42	24,47	28,22	26,34	26,42 25,47	17 25,64	27,68