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Abstract

Electrocardiography is a frequently used examination technique for heart disease diagnosis.
Represented by the test called electrocardiogram (ECG), electrocardiography is essential in
the clinical evaluation of athletes, risk patients who need surgery, and also those who have
heart disease. Through electrocardiography, doctors can identify whether the cardiac muscle
dysfunctions presented by the patient are of inflammatory or degenerative origin and early
diagnose serious diseases that primarily affect the blood vessels and the brain. Thus, the objective
of this project is to develop a prototype capable of capturing, analyzing, and classifying a patient’s
electrocardiogram signals for the detection and prevention of cardiac arrhythmia in clinical
patients. Our ECG signal classification model obtained an accuracy of 98.12% and an F1-score of
99.72% in the classification of ventricular ectopic beats (V). Our ECG acquisition board circuit

tested gain output is 28.8V/V and the frequency cut is 40Hz.

Keywords: electrocardiography, ECG, acquisition, classification.
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Introduction

Cardiovascular diseases (CVD) are listed as the leading cause of death by the World Health
Organization (MCALOON et al., 2016). Arrhythmia or heart rhythm disorder is considered one
of the most common disorders of the heart. Arrhythmia is a problem with the rate or rhythm
of the heartbeat. During an arrhythmia, the heart may beat too fast, slow, or irregularly. Atrial
fibrillation (AF) is the most prevalent case of arrhythmia. AF causes irregular heartbeats. In AF,
the electrical activity of the atria (upper chambers of the heart) is irregular, inconsistent, and not
synchronized with the ventricles (HAGIWARA et al., 2018).

AF is diagnosed by interpreting the ECG. Automatic diagnosis is useful in home settings,
where an ECG interpretation specialist is not available to diagnose AF (MANT et al., 2007).
Classification of ECG signals is necessary for the automatic diagnosis of arrhythmia. To improve
AF detection, machine learning methods were used by Lown (LOWN et al., 2020; POLLOCK et
al., 2020; SHOEMAKER et al., 2020). Convolutional neural networks (CNN) have the capability
of hierarchical feature learning, which allows the neural network to distinguish and generalize
ECG signal patterns with greater accuracy than a human expert (CHEN et al., 2022; KIRANYAZ
et al., 2021). CNNs have been used to diagnose arrhythmias, coronary artery disease, and classify
strokes (ZHIQIANG; JUN, 2017).

Telemedicine is the remote delivery of healthcare services, including examinations
and consultations, through telecommunications infrastructure (ROCKWELL; GILROY, 2020).
Telemedicine allows healthcare providers to assess, diagnose and treat patients without the need
for a face-to-face visit. The implementation of a device for home and academic use to acquire
ECG signals combined with an automatic classifier is useful to increase the popularization of
heart disease prevention devices. The low cost of the device and the ease of its implementation
outside the hospital environment, through telemedicine by connecting the device to the Internet
network, make the new circuits feasible for remote environments, far from the help of a health
professional (AMINE; REDOUANE; NARIMA, 2022).
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1.1 Objective

This dissertation focus on the classification of arrhythmia signals in public ECG datasets
and the implementation of an ECG signal acquisition device. The improved classification of ECG
signals can generate accurate responses in the detection of cardiac arrhythmias, facilitating the
care of patients by health professionals. The creation of a cardiac arrhythmia detection device
with home and academic use may help expand access to ECGs and reduce the number of deaths
from heart disease (CHEN et al., 2022).

1.2 Specific objectives

This section lists the specific objectives needed to implement an ECG signal acquisition
device and the classification of cardiac arrhythmia signals. The objectives required to implement

ECG acquisition device are:

* Design and simulation of the ECG signal acquisition circuit.

* Implementation in the protoboard and testing of signal-to-noise ratio and gain of the ECG

signal in the protoboard.

* Validation of frequencies cut and gain of the ECG signal on the protoboard.

The objectives required for the classification of cardiac arrhythmia signals are:

Develop the code for preprocessing the ECG signal.

Develop the architecture of the CNN classifier.

Develop the classifier training method.

Evaluate the trained classifier by comparing accuracy, sensitivity, specificity, precision,

and F1-score tests with those of other works.

1.3 Work Organization

This document is organized as follows into seven chapters that will serve as a basis for
understanding the problem, the rationale for the work, the platform, the experimental study used
to achieve the results, and the conclusion. The following topics describe the content of each

chapter:

* Chapter 1 presents the introduction;
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* Chapter 2 presents the theoretical background on CNN, performance metrics, and machine

learning.
* Chapter 3 presents works related to the project;

* Chapter 4 presents the ECG signal acquisition board. The acquisition circuit is formed by

the ECG signal conditioning and amplification steps;
» Chapter 6 presents the methodology to be used in the classification of ECG signals;
» Chapter 5 presents the classifier results obtained and discusses them;
* Chapter 7 presents the device results obtained and discusses them;

* Chapter 8 exposes the final considerations and the contributions



Machine Learning

Machine learning (ML) is a branch of artificial intelligence where computers can learn
behaviors, identify patterns, and make decisions with minimal interaction from humans (Mitchell,
1997). From a dataset, learning algorithms go through a training process, generating a model
that can handle new situations and solve problems (Tan; Steinbach; Kumar, 2006). According to
Marsland (MARSLAND, 2015), there are four categories of learning:

* Supervised Learning: It is done using a set of training examples containing the correct
answers. Based on this training set, the algorithm generalizes the answers to correctly

answer all possible inputs.

* Unsupervised Learning: Correct answers are not provided. The algorithm identifies
similarities between entries so that entries that have something in common are categorized

together.

* Reinforcement learning: It is the training of machine learning models to make decisions.
The agent learns to achieve a correct response in an uncertain and potentially complex
environment. In reinforcement learning, the artificial intelligence system faces a situation,
in which the computer uses the strategy of trial and error to find a solution to the problem.
To get the machine to do what the programmer wants, the classification model receives
rewards or penalties for the actions it performs, with the goal being to maximize the total

rewards.

* Evolutionary Learning: The biological evolution algorithm can be seen as a learning
process. Organisms adapt to improve their survival rates and their chances of having

offspring in their environment.

In classification problems, the classifier needs to be able to generalize the data contained

in the training set and classify each of the inputs, with the purpose of later labeling objects not
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found in the training set. In regression problems, the algorithm seeks to estimate continuous
values based on a series of other historical data (Guimaraes; Meireles; Almeida, 2019). This
learning process requires several steps: getting the data; preparing, cleaning, and manipulating
the data; choosing and training the model; testing the data; evaluating the model, and improving
the model (Tan; Steinbach; Kumar, 2006). Data is one of the most important factors for ML and
its quality is a major concern. The quality of the knowledge extracted is largely determined by
the quality of the data provided in the input (Guimaraes; Meireles; Almeida, 2019). It is very
common for the database to have some category of noise, and it ends up being necessary to do
data cleaning to detect and remove anomalies, make decisions for missing data, or even remove

irrelevant attributes.

Data preprocessing prepares the data for training by removing input noise and improving
the quality of model training. Data preprocessing is a process that depends on the ability of the
person conducting it to identify the problems present in the data and to use appropriate methods
to solve each of the problems (Neves, 2003). In addition to problems in data preprocessing, there
are also problems in the training and testing steps. One of these problems is overfitting. This
occurs when the model is trained too much, generating low error rates only on the training set
and causing any other unknown input to have a greater error rate (Russell; Norvig, 2010). Just as
there is overfitting, there is also underfitting which is when the model cannot find a relationship

between variables, causing the model to be of no use at all (Russell; Norvig, 2010).

Generalizability refers to the ability of a model to adapt and react appropriately to novel
data chosen from the same distribution as the initial model input. Overtraining the data will
prevent a model from generalizing its data. In such cases, when new data is provided, it will make
inaccurate predictions. Even if the model can make accurate predictions based on the training

data set, it will become inefficient, or overfitted.

To avoid overfitting, underfitting and improve the generalization of the classifier, regu-
larization techniques have been created. One of the simplest regularization techniques involves

adding a regularization parameter b to the Loss error function.
Loss = f(preds, y) 2.1
preds =WX + b 2.2)

where y is the vector of the desired output, preds is the model’s predicted value, W is the
parameters, and X is the input vector. The softmax function is a function that transforms a
vector of Q real values into a vector Q of non-negative real values smaller than 1. The values of
the function’s input can be positive, negative, null, or greater than 1, but the softmax function
transforms the values to be between 0 and 1, to be interpreted as probabilities (equation 2.3). The

advantage of softmax is to mimic one hot coding.

e

25'(:1 es

o-,-(E) = (2.3)
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where Z is the input vector for the softmax function, consisting of (zy, ..., zx). The values z; are
the elements of the input vector for the function softmax. The e* is the standard exponential
function, applied to each input vector element. The function generates a positive value greater
than zero, which will be very small if the input is negative, and very large if the input is positive.
The Zle e* is the normalization term, which ensures that all output values of the function will
sum up to 1 and each will be in the range O to 1, thus constituting a valid probability distribution.

The K is the number of classes in the multiclass classifier.

One of the most widely used forms of regularization is the L regularization, LASSO
(Least Absolute Shrinkable and Selection Operator) regularization. LASSO regularization adds a
factor to the sum of the absolute values of the model coefficients. LASSO regularization attempts

to minimize the following function:

J(61, 65,65, ...,6,) = Loss +/lZ 16,1 (2.4)
j=1

The values of 6 are the weights that are being adjusted, A is the regularization rate and is
responsible for controlling the amount of regularization applied to the model. The A is selected
using cross-validation (BERRAR, 2019).

Cross-validation is a technique used to evaluate and test a machine learning model’s
performance. The technique involves reserving a specific sample of a dataset with which the
model is not trained and then testing the model on this sample to evaluate it. Cross-validation
methods can be classified into exhaustive and non-exhaustive methods. Exhaustive methods test
all possible ways of partitioning the original data sample into a training set and a test set, while

non-exhaustive methods test only part of the ways of partitioning the data.

The Loss function for the LASSO and ridge regularizations can be obtained with
the following methods: mean square error function (Equation 2.5), residual sum of squares

(Equation 2.6), and ordinary least squares method (Equation 2.7).

n i aiy2
Loss = % 2.5)
i=1
Loss = ) (v = f(x:))? (2.6)
i=1

The values $ and f(x;) represent the values of the i-th variable to be predicted, y’
represents the true value of the i-th observation and # is the total number of observations. In the
ordinary least squares method, values of b and b are selected so that the sum of squares of the
difference between the calculated and observed values of y are minimized, (¢;) represents the

error for the i-th observation, as shown in equation 2.7.
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n
Loss = ) (v =5
= > (' = bixi + by)?

= Zn: ()

2.7)

LASSO regularization (equation 2.4) can be used for feature selection because the
coefficients of the least important features are reduced to zero. If A is too large, the regularization
term will be high, the cost function will be too high. Then the downward gradient will try to

make all the values of A reach zero to reduce the cost.

Different values of A can reduce different § parameters to zero, for example, 1> can
penalize 63, 64 and 85, while A3 can penalize only 63 and 64. The A4, on the other hand, may not

penalize any 6.

The L, regularization, ridge regularization, is also a widely used form of regularization.
Ridge regularization adds a factor of the sum of the square values of the model coefficients. Ridge

regularization tries to minimize the 2.8 function.

J(61,02,05.....6,) = Loss +1 Y ‘95‘ (2.8)
=

The difference between smoothing L and L, is that the gradients of the functions with
respect to the parameters in smoothing L; are independent of the input parameters, so the
parameters of L can be set completely to zero and can be ignored. In smoothing L, the gradients
of the function are linearly dependent on the parameters, so the parameters cannot be zero. The

regularization dropout will be explained in section 2.1.

Once the model is built, it is very useful to measure its performance, as such a measurement
can provide an unbiased evaluation of your model. Among the measures for comparing model
performance are accuracy, precision, sensitivity, specificity, and F1-score (Tan; Steinbach; Kumar,
20006).

The confusion matrix (Table 1) is a table that shows the performance of a classification

algorithm. The binary classification problem will show four values, which are:

* True positive: Occurs when the model correctly predicts the positive class.
* False positive: Occurs when the model incorrectly predicts the positive class.

* True negative: Occurs when the model correctly predicts the negative class.



Chapter 2. Machine Learning 11

* False negative: Occurs when the model incorrectly predicts the negative class.

Table 1 — Confusion Matrix - source: (MARSLAND, 2015)

True False
positive | positive
False True
negative | negative

* Accuracy (ACC): This is a widely used metric in the literature and its formula calculates
the number of hits divided by the total sample size, represented by the number of hits +

number of errors, as shown in the equation 2.9.

(TP + TN)
(TP + FN + FP + FN)

ACC = (2.9

* Precision (PRE): Precision evaluates the correctly classified samples among those classified

as positive. It is used to work only with the positive values as shown in the equation 2.10.

TP

PRE= —
(TP + FP)

(2.10)

* Sensitivity (SEN) and specificity (SPE): Sensitivity is used to evaluate model performance,
as it allows us to see how many positive instances the model was able to correctly identity, i.e.,
sensitivity measures a model’s ability to correctly identify positive instances (equation 2.11).
Specificity measures the proportion of true negatives that are correctly identified by the
model. High specificity means that the model correctly identifies most negative outcomes,
while low specificity means that the model incorrectly labels negative outcomes as positive
(equation 2.12).

TP

SEN=—— 2.11
(TP + FN) @1h)
TN
PE=—— 2.12
S (TN + FP) 2.12)

* Fl-score (F1S): This is the harmonic mean of the precision with the sensitivity, resulting

in a single number that indicates the overall quality of the model (equation 2.13).

(2.13)

FIS = (ZPREXSEN)

PRE + SEN
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Any pair of these measures provide more information than just accuracy. By using
various evaluation metrics, it is possible to measure the performance of the classifier and see the

advantages and disadvantages of the model for improvement.

After going through all the steps of the machine learning flow, the model can be used to
store the acquired knowledge and be used in another unrelated but similar task. This learning is
called transfer learning. Transfer learning occurs when one domain uses as much information
from another domain as possible, without affecting predictions due to the difference between the

training and application sets (Shao; Zhu; Li, 2015).

Deep neural networks (DNNs) are another machine learning technique built using artificial
neural networks. This model resembles how neurons work, consisting of input, output, and
hidden layers. The main purpose of a deep neural network is to receive a set of inputs, perform
progressively complex computations on them, and provide output to solve problems, such as

classification.

2.1 Convolutional neural networks

Convolutional neural networks are an effective deep learning algorithm for solving
classification problems. Its effectiveness comes through the use of the multi-layer convolution
procedure (Simard; Steinkraus; Platt, 2003). The convolution of x and %, denoted by x*h, returns
a third function, z(¢), with the sum of the multiplication of the function kernel by its offset
k (Yamashita et al., 2018) (equation 2.14).

(o)

() =x*h= Z x[k)h[n - k] (2.14)

k:—OO

Cl:Feature Maps
12@16x90

1440

C2:fmaps  S3:f.maps: 144  Output

6@12x80 6@6x40

Input 20x100

Convolutions Convolutions ~ Subsampling Flattening Connection

Figure 1 — Typical CNN model

CNNs have several layers and the only requirement is that the CNN must have at least

one convolutional layer, as shown in Figure 1. Below are the most common layers.
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* Convolutional layer: This layer aims to extract the labeled data and obtain common
characteristics (features) of its input. In the convolutional layer, a convolution is performed
between the input and a filter that is represented by a matrix with an equal number of rows
and columns. By sliding the filter over the input, the sum of the product of the filter values
by the input values is obtained to generate the output. The output is the feature map that
gives us information about the input. The feature map is then sent to other layers to get new
features of the input (Schmidhuber, 2015).

* Subsampling layer: The function of this layer is to progressively reduce the spatial size of
the input to reduce the number of parameters and computations needed in the network.
One of the most widely used techniques for performing pooling is max-pooling. Let n be
the size in pixels of a square image. The max-pooling layer takes a pool size as a parameter,
usually a 2x2 matrix. It then divides the image into 2X2 areas and selects for each area the
pixel with the highest value. The selected pixels compose a new image with the same order
of magnitude as the original image. The max-pooling layer produces an image n/2 X n/2
with half the side, a quarter of the size of the original image. Max-pooling is done in part to
help reduce overfitting. The other forms of pooling are averaging and summation. Average
pooling calculates the average of the elements in an image section of a predefined size.

The total sum of the elements in the predefined section is calculated using sum pooling.

* Fully connected layer: This layer is at the end of the network, also known as dense
layer. It extracts the features obtained by the previous layers and uses them to obtain an
output with n neurons, where 7 is the number of classes needed for the model to finish
classification (Schmidhuber, 2015).

* Dropout layer: The dropout layer removes, at each training step, individual nodes from the
network with probability 1 — p or keeps them with probability p, so its output is a network
with more relevant neurons; the incoming and outgoing edges for a dropped node are also
removed. In the fully connected layer, all nodes in the output layer are directly connected
to nodes of the previous layer. Most parameters and neurons develop co-dependence on
each other during training, which restricts the individual power of each neuron, leading to
overfitting of the training data. The dropout layer prevents overfitting by turning off these
neurons (Krizhevsky; Sutskever; Hinton, 2017). The dropout layer receives as a parameter

the percentage of neurons that are turned off.

* Activation layer: This layer uses an activation function, i.e., an artificial neuron that
calculates the weighted sum of its inputs and adds a bias. The activation layer is usually

present after the convolutional layers or the dense layers.

* Flatten layer: This layer prepares the data to be sent to other layers of the neural network.
It transforms the resulting matrix from the previous convolutions and pooling layers into

an array that will serve as the input layer for the dense layer.
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* Softmax layer: Many multilayer neural networks end in a penultimate layer that produces
real-valued scores that do not scale conveniently and can be difficult to work with (LIU et
al., 2016). The softmax layer converts the scores to a normalized probability distribution.
For this reason, it is customary to add a softmax function as the final layer of the neural

network.

The use of smaller, shared weights, and thus being easier to train than the multilayer
perceptron (MLP), was an improvement that made CNN (BOTALB et al., 2018) a powerful tool

for solving problems in computer vision, facial, speech, and character recognition.

2.2 Long short-term memory

Long short-term memory (LSTM) is a type of recurrent neural network (RNN). In
recurrent neural networks, the output of a layer can be used as input to previous layers, forming
a cycle (HOCHREITER; SCHMIDHUBER, 1997). It is used for processing, predicting, and
classifying time-series data.

LSTM is designed to handle sequential data, such as time series, speech, and text. LSTM
networks are capable of learning long-term dependencies in sequential data, which makes them
well-suited for tasks such as language translation, speech recognition, and time series forecasting.
A traditional RNN has a single hidden state that is passed through time, which can make it difficult
for the network to learn long-term dependencies. LSTMs address this problem by introducing
a memory cell, which is a container that can hold information for an extended period of time.
The memory cell is controlled by three gates: the input gate, the forget gate, and the output gate.

These gates control the information to be added or removed from the memory cell.

* Input gate: The input gate optionally classifies information that is relevant to the current
cell state. It is the gate that determines which information is necessary for the current input
by using the sigmoid activation function, o. It then stores the information in the current
cell state and the hyperbolic tangent function computes the vector representations of the

input-gate values, which are added to the cell state.

ir =0 (Wilhi-1,x:] + by) (2.15)
C, = tanh(W;[hy—1,x,] + by) (2.16)

In equation 2.16 the i, represents the input gate, W; represents the weight of current gate
neurons, /,_; represents the previous LSTM state block, C; represents candidates for
cell state in the timestamp 7, and b r represents the biases of the current gate (GRAVES;
GRAVES, 2012).
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* Forget gate: After getting the output of the previous state h;_1, the forget gate, f;, helps
in the decisions about what must be removed from the /;_; state and thus keeping only
relevant stuff. After the forget gate receives the input x, and output from #,_1, it performs
a pointwise multiplication with its weight matrix with an add-on of sigmoid activation,
which generates probability scores. These probability scores help it determine what is
useful information and what is irrelevant. The input gate remembers which tokens are
relevant and adds them to the current cell state with hyperbolic tangent activation enabled.
Also, the forget gate output, when multiplied with the previous cell state, memory, C;_i,
the forget gate discards the irrelevant information. Hence by combining these two gates the
cell state is updated without any loss of relevant information or the addition of irrelevant

ones.

fr = o (Wilhi—1,x] + by) (2.17)
C, = fi(Cim) +i,C, (2.18)

* Output gate: The output gate o, decides what to output from our current cell state. The
output gate also has a matrix where weights are stored and updated by backpropagation.
This weight matrix takes in the input token x; and the output from the previously hidden
state h;—; and does the same pointwise multiplication task. However, as said earlier, this
takes place on top of a sigmoid activation as we need probability scores to determine what

will be the output sequence.

or = o (Wilh-1,x:] +by) (2.19)
h[ = 0¢ tanh(cl) (220)

After we get the sigmoid scores, we simply multiply them with the updated cell state,
which contains some relevant information required for the final output prediction. A final
hyperbolic tangent multiplication is applied at the very last, to ensure the values are in the

range [—1, 1], and our output sequence is ready.
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Related works

The papers listed below were selected by the search string with the key concepts of this
project. The search was performed in ACM Digital Library, Scopus, ScienceDirect (Elsevier),
Web of Science, and Google Scholar. The selection was carried out based on the paper’s abstract.
If the paper’s abstract did not mention anything referring to ECG signal analysis, the study was

removed from the list. The search string used was

("convolutional neural network" OR "neural networks" OR "1D-CNN")
AND
("electrocardiogram" OR "ECG" OR "cardiac arrhythmia")

Shih (SHIH et al., 2009) proposed an embedded mobile ECG classification system
that integrates ECG signal classification and radio-frequency identification (RFID) together to
monitor elderly patients. The method has an accuracy of 92% in detecting cardiac arrhythmias

and allows continuous monitoring and identification of elderly patients when alone.

Kiranyaz (KIRANYAZ; INCE; GABBOUYJ, 2015) proposed a system for electrocar-
diogram classification and monitoring by adaptively implementing 1D CNNs. These networks
are used to merge the two main sections of the classification of an ECG signal into a single
learning corpus. Thus, for each patient, an individual 1D CNN was trained using a small
common, patient-specific database, which improves the ability to extract patient-specific features,

patient-specific heartbeats, and cardiac arrhythmia classification performance.

Kiranyaz (KIRANYAZ; INCE; GABBOUIJ, 2017) proposed a personalized health
monitoring system that can detect early occurrences of arrhythmias from a patient’s ECG signal
by modeling the common causes of arrhythmias in the signal domain as degradation from normal
ECG beats to abnormal beats. Using the degradation models, abnormal beats were created from
the patient’s average normal beat. A CNN was trained using real normal beats and synthesized

abnormal beats. The main contribution of this study is to model the causes of cardiac arrhythmias
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modeled by a set of filters and used to synthesize potential abnormal beats from a healthy person,

thus discarding the need to have a set of abnormal beats already recorded.

Acharya (ACHARYA et al., 2017a) proposed a CNN technique to automatically detect
the different segments of the ECG signal. The algorithm consists of an eleven-layer deep CNN
with the output layer having four neurons, each representing the classes of an ECG normal beats,

atrial fibrillation, atrial flutter and ventricular fibrillation.

Acharya (ACHARYA et al., 2017b) developed a nine-layer deep convolutional neural
network (DCNN) to identify five different classes of heartbeats in ECG signals: non-ectopic
beat, supraventricular ectopic beat, ventricular ectopic beat, fusion beat, and unknown beat.
The experiment was conducted on noise-attenuated and non-attenuated data sets from a public
database, MIT-BIH. The DCNN was artificially augmented to equalize the number of instances

of the five heartbeat classes and filtered to remove high-frequency noise.

Li (LI etal., 2020) developed a deep learning method for cardiac arrhythmia classification
based on ResNet. The design consists of a 1D 31-layer convolutional residual network. The
algorithm includes four residual blocks, each of which consists of three layers of 1D convolutions,
three layers of batch normalization (BN), three layers of the rectified linear unit (ReLLU) activation
function, and a structure of identity shortcut connections. The 2-lead ECG signals were used in
combination with deep learning techniques to automatically identify the normal, left group, right

group, premature atrial, and premature ventricular contraction heartbeats.

Han (HAN; SHI, 2020) presented a method to detect and localize myocardial infarction by
combining a multiple-lead residual neural network (ML-ResNet) framework with three residual
blocks and feature fusion using 12-lead ECG recordings. The single-lead feature branching
network is trained to automatically learn local features of different levels between different layers,
which can be used to characterize the spatial representation of the ECG. The main features are
merged as global features. For the generalization and evaluation of the proposed method in clinics,

intra-patient and inter-patient schemes were used.

Krizhevsky (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) trained a DCNN to classify
1.2 million high-resolution images in the ImageNet LSVRC-2010 competition into 1000 different
classes. Error rates of 37.5 percent and 17.0 percent were achieved, which was considerably
better than the state of the art at the time of the work. The neural network, with 60 million
parameters and 650,000 neurons, consists of five convolutional layers. Unsaturated neurons and a

GPU implementation were used for training.

Huang. (HUANG et al., 2020) developed a deep neural network to predict the mortality of
patients at Chang Gung Memorial Hospital using a 12-lead ECG. The clinical database MUSE of
the Chang Gung Memorial Hospital was used to analyze 12-lead ECG voltage-time traces of 10s
at rest, which were linked to the national death registry for all-cause and cause-specific mortality.

Ten thousand patients, out of the twenty thousand tested, who died within one year of
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ECG examinations were randomly selected to train a 1D deep neural network to predict mortality
risk. The data was divided into 16,000 patients for model training and 4,000 patients for the
validation set. The model achieved an area under the receiver operating characteristic curve
(ROC) of 0.85 on the tested data set.

Martis (MARTIS et al., 2014) investigated four different methods for atrial fibrillation and
atrial flutter feature extraction: the principal components of discrete wavelet transform coefficients,
independent components of discrete wavelet transform coefficients, principal components of
discrete cosine transform coeflicients, and independent components of discrete wavelet transform
coefficients methods. Martis explored three different classification techniques: K-nearest neighbor,
decision tree, and artificial neural network. The methodology used data from MIT-BIH arrhythmia
and atrial fibrillation databases. Discrete cosine transform coupled with independent component
analysis and K-nearest neighbor yielded the highest average sensitivity of 99.61%, average

specificity of 99.99%, and classification accuracy of 99.45% using tenfold cross-validation.

Sellami (SELLAMI; HWANG, 2019) proposed a new type of deep convolutional neural
network for heartbeat classification. A batch-weighted loss function was created to quantify the
loss and to decrease the imbalance between classes. The loss weights change dynamically as
the distribution of classes in each batch changes. Twenty-two heartbeat records from among
the 48 available in the MIT-BIH database were used to increase the accuracy of the heartbeat
classification. Although only one derivation of the ECG signal is used without data preprocessing,
the method has higher accuracy and precision when compared to existing methods, at the time, of
classifying heartbeats into 5 classes: non-ectopic beat, supraventricular ectopic beat, ventricular
ectopic beat, fusion beat, and unknown beat. The accuracy, precision, sensitivity, and specificity
obtained were 99.48%, 98.83%, 96.97%, and 99.87% for the intra-patient and 88.34%, the
48.25%, 90.90%, and 88.51% between patients.

Zhai (ZHAI; TIN, 2018) developed a high-performance ECG-based arrhythmic beat
classification system. The classifier was designed based on a CNN. The single-channel ECG
signal was segmented into heartbeats according to the change in beats. The beats were transformed
into a double-beat coupling matrix with a CNN classifier with 2D inputs, which captured the
beat morphology and beat-to-beat correlation in the ECG. A systematic training beat selection
procedure was implemented, including the most representative beats in the training set to improve
the classification. The CNN system improved the sensitivity and accuracy for ectopic beats by

more than 12.2% and 11.9%, respectively.

Zhu. (ZHU et al., 2020) developed a deep learning approach for the automated diagnosis
of multiple cardiac rhythm labels or conduction abnormalities by real-time ECG signal analysis.
The dataset used was obtained from ECG data, in the 10s pattern and 12-channel format, from
adult patients, with 21 distinct rhythm classes for the diagnosis of multilabel level cardiac

arrhythmias.

ECG signal data were collected at three campi of Tongji Hospital (Huazhong University
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of Science and Technology, Wuhan, China) and annotated by cardiologists. The deep learning
model used to diagnose abnormalities in the heart obtained an overall average F1-score of 0.887,

a sensitivity of 0.867, and a specificity of 0.995.
Schwab (SCHWAB et al., 2017) proposed a machine learning approach based on recurrent

neural networks (RNN) to analyze different cardiac arrhythmias with only a single lead and short
ECG recordings, below 10s. To facilitate training dependencies on the temporal dimension, a
new task formulation was introduced that takes advantage of the natural beat-based segmentation
of ECG signals.

Heartbeat features that have proven useful for classification in previous work were
used (SARKAR; RITSCHER; MEHRA, 2008; TATENO; GLASS, 2001; GARCIA et al., 2016;
RODENAS et al., 2015; ALCARAZ et al., 2006), in addition to stacked denoising autoencoder
(SDAE) to capture differences in morphological structure. The RNNs were extended with a soft
attention mechanism that allows them to select which segment of the ECG the RNNs prioritize

for their decision-making. The model achieves an F1-score of 0.79 on the test set.

Rahhal (RAHHAL et al., 2019) proposed a novel end-to-end architecture based on a
dense convolutional network (DCN) for ECG signal classification. The architecture is based on
two main modules: the first is a generative module and the second is a discriminative module.
The generative module converts the 1D ECG signal into an image through fully connected
up-sampling layers and convolutional layers. The discriminative module receives the image from

the generative module and performs feature learning and classification.

To deal with the data imbalance problem that characterizes ECG data, focal loss (FL)
was used, which is based on remodeling the standard cross entropy loss function that reduces
the error assigned to correctly classified ECG beats. The experiments were validated using the
MIT-BIH arrhythmia database in four different scenarios, using four classes in the first scenario,
five in the second, and 12 in the third. The proposed method achieves a significant improvement

in accuracy, obtaining an accuracy of 97%.
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ECG signal acquisition board

This chapter will describe the steps necessary for prototyping the ECG signal acquisition
circuitry and attaining the specific objectives listed in Section 1.2. These steps include designing
circuits for amplifying and conditioning ECG signals and validating the printed circuit boards for
these circuits. The code is processed by the Raspberry Pi (RASPBERRY PI (TRADING) LTD.,
2019) board, which is connected to a circuit for ECG signal acquisition. The circuit performs the
amplification and processing of the signal. For this, an AD620 amplifier (GOIS et al., 2017), a
band-stop, and a low pass filter circuit are used to eliminate out-of-range signals from the ECG

signal. The steps required to achieve this goal are presented below:

* Design and simulation of the ECG signal acquisition circuit.

* Implementation on a protoboard and performing tests of signal-to-noise ratio and gain of

ECG signal on protoboard.

* Validation of the frequencies cut and gain of the ECG signal on the protoboard.

4.1 Acquisition and conditioning step

Figure 2 shows a block diagram with an overview of the project from the acquisition of
the bioelectric signal to processing in the Raspberry Pi board. The implementation of the board

and the acquisition and conditioning step bode plots are publicly available!.

' https://github.com/Igor-Lopes-Souza/PCBlayout
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Figure 2 — Circuit step block diagram

4.1.1 Amplification step

The ECG signal has low voltage amplitude, in the order of millivolts, for our circuit to
read the cardiac signal an amplification step is required. The bioelectric signal amplification step
1s composed of AD620 (ANALOG DEVICES, 2007). This is due to its high common mode
rejection capability, and high input impedance, among other advantages. The electrodes that
provide the differential output connected to the conditioning circuit input are connected to pins
3 and 2, while a third reference electrode is connected in between R, and R»3, as shown in

Figure 3.

The amplification step creates a DC offset gain that adds noise to the circuit. In order to
remove the offset, an AC coupling step was used (SPINELLI; MAYOSKY, 2000), as shown in
Figure 3. For the AC coupling step, the ideal is to implement a filter with a frequency as close
to OHz as possible. For this, it is necessary to use resistors and capacitors with high values. As
electrolytic capacitors do not have a good frequency response, a ceramic capacitor was used
whose highest value easily found was 4.4uF. With the capacitor limited, resistors of values in
the order of megohms would reach cut-off frequencies very close to 0Hz, however, the current
flowing through the AC coupling circuit could be in the order of the polarization currents of
the circuit. For this reason, it was decided to use a 100kQ resistor (JUNIOR et al., 2019). The
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Table 2 — Resistors and capacitors values used in the ECG acquisition board

Components Values
R],RQ,R7,R10 10kQ
R3, Ry 220Q
R4, R12 470Q
Rs, Ri3 33kQ
Rg, R15 1kQ
Rs, Rig 820Q

Rs 1.8MQ

R4 1.5MQ
C1,C2,C3,C4,C6,C7 | 1uF
Cs 4.4uF

Ry7 1.1kQ

Ris 18kQ

Ri9 2.4kQ

Ry 22kQ

R 100kQ

R, Ry3 2.2kQ
R4 1.2kQ

resulting cutoff frequency was approximately 0.4Hz, which effectively removed the DC level from
the signal. In Figure 4 the design of the amplifier circuit in conjunction with the conditioning
circuit is shown using the EAGLE simulator. The values of the resistors and capacitors used in
Figure 4 and 6 are shown in Table 2. Let R be the value of the gain resistor in Figure 3, where
R is R4, the value of the gain G; (ANALOG DEVICES, 2007) is given by

1=

(49,4kQ)+1 @

Rg
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Figure 3 — Amplification step of the signal using AD620 (ANALOG DEVICES, 2007) connected
to ad coupling

—

Figure 4 — Amplification step of the signal using AD620 (ANALOG DEVICES, 2007) connected
to the conditioning step, simplified model (SPINELLI; MAYOSKY, 2000).

4.1.2 Conditioning step

ECG signals monitoring needs a stable signal passing frequency range between 0.37Hz
and 40Hz. This step is composed of a band-stop filter, a low-pass filter, and a DC signal adder
circuit. The band-stop filter removes the effects of the electromagnetic interference from the
electric grid by attenuating the 60Hz frequency, present in electronic devices, and is composed
of two Bainter Chebyshev fourth-order filters, as shown in Figure 5. The low-pass filter cuts all
frequencies above 40Hz to remove unnecessary signals and potential noise from our circuit, as
shown in Figure 6. The cutoff frequencies of the band-stop (f;1) and low-pass f.,) filters are

given by the equations 4.2 and 4.3 2. The band-stop filter also applies a gain (G») to its input,

2 https://github.com/Igor-Lopes-Souza/PCBlayout/filters
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given by equation 4.4.
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Figure 5 — Band-stop filter

AMNA
Yy

Figure 6 — Low pass filter

From the values shown in Table 2, the frequencies of the equations 4.2 and 4.3 from
Figures 5 and 6 are approximately 60Hz and 39Hz, with the gains G| and G, of the equations 4.1
and 4.4 equal to 40V/V and 5V/V. With this, the gain is given by
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G = (G1G,) =200 (4.5)

The myoelectric signal can present negative voltages, but the Raspberry Pi board pins
available for A/D conversion require positive voltage values. As a conditioning step, it is necessary
to add a DC voltage level to the output of the conditioning step to detect the entire excursion of
the signal. In this step, an amplifier in the inverter adder configuration and the voltage regulator
LM317 (SEMICONDUCTOR, 2016) were used (SILVA et al., 2018).

The inverter adder was implemented with the CI TL084 which has four simple operational
amplifiers (AMPLIFIERS, 1999), which receive the signal frequency conditioning output and
the DC level as inputs, provided by the voltage regulator, as shown in Figure 7. The myoelectric
signal is multiplied by a unitary gain G = R7/Rs = 1, we altered the R7 value to 1kQ, while the
DC level is multiplied by a unit module gain. The voltage regulator LM317, as shown in Figure 8,
receives a positive DC voltage as input and outputs another positive DC voltage level, as long as
the difference between these voltages is in the range of 3V to 40V. The adjustable output voltage
is defined by Equation 4.6. According to the LM317 datasheet, the values of Vf and I,4; are
1.25 V and 50uA, respectively (SEMICONDUCTOR, 2016). Therefore, the DC level provided
by the regulator will be approximately 1.6 V. This value was chosen because the Raspberry Pi

analog pins detect values in the range from OV to 3.3V.

The inverter adder inverts the signal after the DC level addition applies a 180-phase
inversion. Therefore, the offset after this step is -1.6 V. In the next conditioning step, another

phase inversion will be used, canceling the phase inversion.

+Ov

AMPOPS:D

GND 12

R5 ” —1{> OUT_ADDER
> 1

1k

-Ov

R6 R7
By F—— | e R

10k 10k

Figure 7 — Inverter adder amplifier
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Figure 8 — Voltage Regulator LM317 (SEMICONDUCTOR, 2016)

R
Vout = Vrer (1 + R_j) (Iadj XRZ) (46)

4.1.2.1 Rectification

The desired voltage restrictions may not always be respected even if the DC level is added
to the signal. It is possible for inputs with greater amplitude than the myoelectric signal to be
unintentionally supplied into the circuit during system test procedures. The inverting adder can
produce a high-amplitude signal that could harm the Raspberry Pi board following the two gain
steps. Applying voltage levels outside of this range to the analog pins of the Raspberry Pi A/D
converter can compromise its functionality, even if the device ignores values outside of the 0 V

to 3.3 V range.

A precision rectifier circuit was introduced in the last step of signal conditioning to ensure
that it does not present voltage values less than zero as output, as seen in Figure 9. This circuit
was built using an operational amplifier CI TL0O84 and two diodes 1N4007. After the precision
rectifier, the Zener diode BZX79C3V3 which has a voltage threshold of 3.3 V, was used to avoid
voltage levels above 3.3 V. Figure 9 shows the precision rectifier circuit diagram and the gain of
its amplifier is given by Equation 4.7. As the resistors Rjg and Rj; have the same impedance,
the gain of the amplifier is negative and unitary, thus canceling the phase inversion obtained in
the previous step. The resistor Ry, was inserted only to ensure the current flow necessary for

operating the Zener diode D3 in reverse polarization.
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4.2 Processing board

Once the output of the ECG signal acquisition circuit is obtained, it will be sent to the
MCP3008 (MICROCHIP TECHNOLOGY, 2008) analog-to-digital converter, which will convert
it to classify the acquired signal. The Raspberry Pi makes the signal classification process easier,
due to its processing power and low cost (SHAH et al., 2016).

The Raspberry Pi connection to the ECG signal acquisition board has not been tested. To
do this, it would be necessary to write the firmware for the A/D conversion and communication
with the USB port of the computer. That will be a future job.
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Device validation

The validation of this circuit included 3 steps: amplification test, low-pass filter frequency
response test, and band-stop 60Hz filter test. The purpose of the first test was to confirm that the
amplifier was offering a 40 V/V gain. The plot of the instrumentation amplifier output from the
function generator signal, as recorded by the oscilloscope, is displayed in Figure 11. The result
was G = (2,88)/(0,10) = 28,8 V/V.
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Figure 11 — Amplification step result using AD620 (ANALOG DEVICES, 2007)

A function generator was used in sweep mode on a logarithmic scale to generate a plot
showing the gain as a function of the frequency of the filters connected in series for the second
test, which was to confirm the behavior of the implemented filters. As shown in Figure 12, the

sweep’s outcome. The oscilloscope’s cursor mode was employed to depict the cutoff frequencies.
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The cursors on the left and right were placed at different frequencies: 0.37 Hz and 40 Hz,
respectively. This graphic demonstrates how the filters are operating as predicted, particularly the
low-pass filter, which displays the two cutoff frequencies of their second-order sections (JUNIOR
et al., 2019). Figures 13 and 14 show the low-pass filter signal gain in 20Hz and 40Hz, where
peak-to-peak voltage is attenuated from 3.44V in 20Hz to 2.16V in 40Hz.

100ms  2.50KSafs 4Kpt 0.00s §NO0.000V
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Figure 12 — Response of the gain as a function of frequency in logarithmic scale of the imple-
mented filters. The cursor on the left indicates 0.37 Hz and the cursor on the right
indicates 40Hz.

The third test was made to validate the operation of the band-stop filter. Since the
band-stop filter’s cutoff frequency was so restricted, it was required to check the amplifier’s gain,
exclusively for 60 Hz. Figures 15 and 16 show the band-stop filter signal gain in 20Hz and 60Hz,
where peak-to-peak voltage is attenuated from 504mV in 20Hz to 424mV in 60Hz. Figure 17
shows the signal acquisition output and Figure 18 shows the typical ECG signal, where we can

see that our circuit results show the typical ECG signal.
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Figure 13 — Low pass filter response to 20Hz
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Figure 14 — Low pass filter response to 40Hz
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Figure 15 — Band-stop filter response to 20Hz
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Figure 16 — Band-stop filter response to 60Hz
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Figure 17 — Typical ECG signal (SACOMANO et al., 2018)
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Figure 18 — Captured ECG signal
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Classification of ECG signals

In this chapter, we will see the steps needed for heartbeat classification as discussed in
Section 1.2.

Develop the preprocessing code for the ECG signal.

Develop the architecture of the CNN classifier.

Develop the training method for the classifier.

Evaluate the trained classifier by comparing the results of test accuracy, sensitivity,

specificity, precision, and F1-score with those of other works.

Chapter 4 will show the prototyping step of the ECG signal acquisition board. Initially,
a cardiac arrhythmia detection software will be developed through neural networks, using
convolutional neural networks for continuous analysis of the data input, model training, and data

classification.

The preprocessing step receives the MIT-BIH database and upsamples the data rows to
have the same number of data rows for every heartbeat type. The CNN, CNN-LSTM and AlexNet
classifiers will convolve the input through a unidimensional filter and will obtain the feature
map, then reduce the size of the input and the number of parameters needed for computation
in the network and prepare the data for training. In our CNN model, we convolve the input
three times, triple-convolution, to obtain better accuracy. In our CNN-LSTM model, we use
triple-convolution and LSTM to obtain better accuracy. In our AlexNet model, we doubled the
number of triple-convolutions and used batch-normalization (BALESTRIERO; BARANIUK,
2022) to obtain better accuracy. The training model will process the input data using Adam
optimizer (Equation 6.1) and will compare the processed output with the expected output. The

result of this correlation is used to feed back new information and modify the model. We then
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compare the results of the modified model with other works to validate our classifier, chapter 7

will show the classifiers comparison.

6.1 Methodology

In this study, we created three classifiers based on CNN, CNN-LSTM and AlexNet
for classifying arrhythmia. The architectures were fine-tuned to achieve the highest validation
accuracy and F1-score, and were compared to the decision tree, random forest and extra trees
classifiers (KUMAR, 2022). The implementation of the CNN!, CNN-LSTM and AlexNet? are
publicly available and were coded in Python using Tensorflow, Keras, and Numpy. The following

topics describe the content of the next sections:

* The dataset section will describe the used dataset for the validation, training, and testing of

our classifier.

* The preprocessing section will explain the ECG signal adjustments and dataset augmenta-

tion.
* The classifier architecture section will explain the architecture of our classifiers.

* The training method section will explain the steps taken for the fine-tuning and training of

the classifiers.

6.1.1 Dataset

In this study, we used the ECG Heartbeat Categorization Dataset, freely available on
the Internet3. We used only the portion of the dataset derived from the Physio Bank MIT-BIH
Arrhythmia database (MARK; MOODY, 1988). This database consists of 48 half-hour long
ECG recordings from 47 subjects—obtained with a Lead II ECG configuration—that were
band-pass filtered over the frequency range from 0.1 to 100Hz and digitized at 360 samples per
second. Furthermore, these recordings were interpreted and validated by at least two cardiologists.
The database consists of annotations for both heartbeat class information and R-peak position
information verified by two or more expert cardiologists. The 17 beat types can be grouped
into five beat classes defined by the Association of Advancement for Medical Instrumentation
(AAMI) which follows the American National Standard for Ambulatory ECGs (ANSI/AAMI
EC38:2007) recommendations. The five beat types are the non-ectopic beat (N), supraventricular

ectopic beat (S), ventricular ectopic beat (V), fusion beat (F), and unknown (Q).

I https://github.com/Igor-Lopes-Souza/VISAPP-2023
https://github.com/Igor-Lopes-Souza/2023-CNN-LSTM

3 https://www.kaggle.com/datasets/shayanfazeli/heartbeat
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Table 3 — Number of samples in the training, validation, and test sets

Before Data Augmentation After data augmentation
Training | Validation | Test | Training | Validation | Test

N 57974 14493 18118 | 57974 14493 -
S 1778 450 556 57974 14493 -
A% 4630 1155 1448 | 57974 14493 -
F 520 127 162 57974 14493 -
Q 5141 1286 1608 | 57974 14493 -

Total | 70043 17511 21892 | 289870 72465 -

6.1.2 Preprocessing

The MIT-BIH dataset is unbalanced, difficulting the analysis of the signal. The original
dataset contains a total of 109,446 data rows. Each data row contains a fraction of the ECG signal
with a duration of 10 seconds and its class, specified in the last column by a number from 0O to 4
representing N, S, Q, F, and Q respectively. There are 70,043 data rows for training, 17,511 for
validation and 21,892 for testing, making the proportions 65/15/20. We augmented the training
and validation datasets to match the number of rows of the biggest class from the five types of

heartbeats using the bootstrap process, as seen in Table 3.

6.1.3 Classifier architecture

Our study proposes the implementation of three architectures based on CNN, CNN-LSTM
and AlexNet models.

Figure 19 shows the schematic of our CNN classifier. The network is composed of
convolutional layers, subsampling layers, activation layers, merge layers, flatten layers, fully
connected layers, and a softmax layer. The merge layer adds two layers, in our case the second
convolution layer and the first activation function of each execution. Usually, each convolution
layer is followed by a subsampling layer. In order to facilitate mapping between the heartbeat
category and its waveform, we use a triple-convolution structure to achieve a better fitting
capability (UCHIDA; TANAKA; OKUTOMI, 2018) in our CNN model. We tested eight CNN
models with preprocessing and without preprocessing, these are divided into with subsampling
and without subsampling, and tested with triple and simple convolution. The preprocessing tests
compare the results of balanced datasets and unbalanced datasets, along with the subsampling
tests that compare the results of using max-pooling without using max-pooling. In all tests,
we compared the results of the metrics using our triple convolution and simple convolution.

Figure 20 shows the structure of a triple-convolution layer sequence.

Figure 21 shows the CNN-LSTM classifier architecture, based on the CNN architecture,

4 https:https://github.com/Igor-Lopes-Souza/2023-CNN-LSTM
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which comprises convolutional layers, subsampling layers, fully connected layers, batch normal-
ization layers, LSTM layers, and a dropout layer. We use the triple-convolution and the LSTM to
obtain better accuracy results in our CNN-LSTM model. Figure 22 shows the schematic of our
AlexNet classifier. The standard AlexNet classifier (KRIZHEVSKY; SUTSKEVER; HINTON,
2012) is used for 2D image classification, while we modify its architecture for the analysis of
ECG signals, which are 1D. The AlexNet classifier comprises convolutional layers, subsampling
layers, fully connected layers, flatten layers, batch normalization layers, and dropout layers. In

our AlexNet architecture when compared to the standard format, we doubled the number of
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triple-convolutions to obtain better accuracy and used the batch-normalization layer to normalize
the interlayer outputs into a standard format.

The CNN, CNN-LSTM and AlexNet models were compared with extra trees, random
forest and decision tree classifiers (ALOM et al., 2018; YU et al., 2019) that were trained with the
sklearn default configuration and our training dataset (KRAMER; KRAMER, 2016). Among our
models, the CNN-LSTM obtained the highest F1-score, the CNN obtained the highest accuracy
and AlexNet obtained the highest sensitivity, chapter 7 will show the results of each classifier. The
extra trees, decision trees and random forest classifiers architecture use the following parameters

with their default values:

* minimal number of leaves:1

* minimal number of samples split: 2

* criterion: gini,

* maximum depth: None,

* maximum number of features’: sqrt,

* maximum number of leaf nodes: None,
* maximum number of samples: None,

¢ number of estimators: 100
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In this study, we use the ReLu activation function in both convolutional layers and fully
connected layers (NAIR; HINTON, 2010; GIROSI; JONES; POGGIO, 1995). In the output layer,
we use the softmax activation function to obtain the five heartbeat classes.

6.1.4 Training method

The goal of training is to reduce the value of the loss function L, i.e., to decrease the CNN,
CNN-LSTM and AlexNet models loss and adjust the weights and biases so that Equation 6.1 fits
the model training set. The cross-entropy function is used as the loss function (XU; LIU, 2020):

We update the weights and offsets using the Adam optimizer (KINGMA; BA, 2014).

First, a batch of samples was sent to calculate the gradient of the Equation 6.1.
1 . .
g={=Vo ) L(f(x:0),y")]. (6.1)
mo5

where g is the gradient value, m is the batch size, 6 is the parameter to be updated, f(x;0) is
the heartbeat type predicted by the i-th sample, y?) is the actual type of the i-th sample, and L is

the loss function.

The CNN-LSTM and AlexNet models training time of each epoch was approximately
20s, and the maximum epoch number was set to 100. In the CNN model, the training time of

each epoch was approximately 5s, and the maximum epoch number was set to 75. We used an
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Table 4 — Hyperparameter values chosen in CNN, CNN-LSTM and AlexNet classifiers fine-

tuning.
Parameters Values Chosen Value
Dropout 0.10, 0.20, 0.30, 0.40, 0.50 0.50
Optimizer Adam, Adamax, SGD Adam
Activation function Relu, Softmax, Softplus Relu
Batch size 10, 32, 54, 76, 98 98
. Binary cross-entropy, Categorical cross-entropy, .
Loss function Poisson, Kullback-Leibler divergence, Huber Categorical cross-entropy

NVIDIA GeForce GTC 1050 for the training. After defining the architecture, fine-tuning was
performed to obtain the best values of dropout, optimizer, activation function, loss function, and
batch size. A grid search in the hyperparameter space tested each possible combination with 20

epochs. Table 4 shows the tested hyperparameter values and the ones that maximized accuracy.
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Classifier results

We performed classification experiments on 44 recordings from the MIT-BIH arrhythmia
database, among the 48 recordings obtained from 47 patients studied by the BIH arrhyth-
mia laboratory, and the heartbeats were classified according to the recommendation of the
AAMI (KLIGFIELD et al., 2007), such as testing the classifier with signals with frequency
between 40Hz and 0.4Hz.

The training dataset contains a total of 109,466 data rows of representative beats from all
classes: type-N, non-ectopic beats; type-S, supraventricular ectopic beats; type-V, ventricular
ectopic beats; type-F, fusion beats; and type-Q, unknown beats. Classification performance is
measured using the statistical error metrics found in the literature (CHEN et al., 2022): accuracy
(ACC), sensitivity (SEN), specificity (SPE), precision (PRE), and F1-score (F1S). The F1-score

measures the overall performance of the beat classification, as shown in Table 5.

We made eight experiments with our CNN model, with all combinations of the following
three parameters: with preprocessing or without preprocessing; with subsampling or without
subsampling; with triple convolution or simple convolution. Table 6 shows the results of different

proposed CNN architectures.

Table 5 shows that the CNN-LSTM model has an F1-score value comparable to those of
other studies, presenting the second best results. Table 7 shows the results of the different proposed
CNN architectures implementations. Table 8 shows the results of the comparison between the
five types of heartbeats using the CNN, CNN-LSTM and AlexNet classifier. Our CNN (SOUZA;
DANTAS, 2023) model achieved an accuracy of 99.33%, sensitivity of 99.59%, specificity of
99.30%, precision of 99.12% and F1-score of 99.44%. Our CNN-LSTM model achieved an
accuracy of 98.12%, sensitivity of 99.00%, specificity of 98.85%, precision of 99.39%, and
F1-score of 99.72%. Our AlexNet model achieved an accuracy of 96.66%, sensitivity of 99.45%,
specificity of 99.10%, precision of 96.85%, and F1-score of 80.07%.

Figure 23 shows the confusion matrix of the classification results of the CNN-LSTM
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Table 5 — Comparison of the proposed algorithm classification using ventricular ectopic beats

V)
ACC SEN SPE PRE FI1S
Martis (MARTIS et al., 2014) 99.45% | 99.61% | 99.99% | 99.99% | 99.80%%
Proposed classifier: CNN-LSTM 98.12% | 99.00% | 98.85% | 99.39% | 99.72%

Proposed classifier: CNN
(SOUZA: DANTAS, 2023) 99.33% | 99.59% | 99.30% | 99.12% | 99.44%

Sellami (SELLAMI; HWANG, 2019) 99.48% | 96.97% | 99.87% | 98.83% | 97.80%

Acharya (ACHARYA et al., 2017b) 94.03% | 96.71% | 91.54% | 97.85% | 97.27%
Zhai (ZHAI; TIN, 2018) 99.10% | 96.40% | 99.50% | 96.40% | 96.40%

Jiang (JIANG; KONG, 2007) 98.80% | 94.30% | 99.40% | 95.30% | 94.70%

Xiang (XIANG et al., 2018) 99.20% | 93.70% | 99.60% | 94.80% | 94.20%

Ince (INCE; KIRANYAZ; GABBOUJ, 2009) | 97.60% | 83.60% | 98.10% | 87.40% | 85.40%
Proposed classifier: AlexNet 96.66% | 99.45% | 99.10% | 96.85% | 80.07%

Table 6 — Comparison of proposed CNN architecture implementations

ACC SEN SPE PRE F1S
Triple
1 99.33% | 99.59% | 99.30% | 99.12% | 99.44%
With convolution
. Simple
subsampling | _ > 7P C | 05320 | 95.73% | 98.83% | 96.39% | 95.40%
With X
preprocessing COI;FVrolﬂfion 95.40% | 95.27% | 94.70% | 95.25% | 95.35%
Without Simole
subsampling Convoliﬁon 90.45% | 90.14% | 92.83% | 90.89% | 90.44%
Triple | ¢ 650 | 89.00% | 97.41% | 91.63% | 89.50%
With convolution
. Simple
subsampling | _ >'7PC | 87.85% | 83.25% | 96.06% | 90.63% | 87.56%
Without Trinle
preprocessing convo?ution 86.68% | 88.69% | 96.80% | 90.05% | 86.67%
Without Simole
subsampling Convolf’mon 87.20% | 90.40% | 90.50% | 89.20% | 85.80%

test set. The model is able to make accurate predictions and distinguish different classes. The
main reason behind this might be due to the fine-tuning of our model, as unrefined tests with

ventricular ectopic beats (V) obtained an average accuracy of 89.99% and an F1-score of 88.54%.
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Table 7 — Comparison of proposed implementations using ventricular ectopic beats (V)

ACC SEN SPE PRE F1S
CNN-LSTM | 98.12% | 99.00% | 98.85% | 99.39% | 99.72%
CNN 99.33% | 99.59% | 99.30% | 99.12% | 99.44%

Decision tree | 59 114, | 99220 | 99.16% | 99.00% | 99.36%

classifier
Random forest | o< 26 | 957300 | 98.83% | 96.39% | 95.40%
classifier
Extratrees | oo /a0 | 95079% | 94.70% | 95.25% | 95.35%
classifier

AlexNet 96.66% | 99.45% | 99.10% | 96.85% | 80.07%

Table 8 — Comparison of the types of heartbeats

ACC SEN SPE PRE FIS
Normal (N) 99.45% | 99.98% | 92.83% | 90.89% | 99.44%
Supraventricular ectopic beats (S) | 97.39% | 88.61% | 98.92% | 88.92% | 95.25%
Ventricular ectopic beats (V) 98.12% | 99.00% | 98.85% | 99.39% | 99.72%
Fusion Beats (F) 87.40% | 77.27% | 84.70% | 95.25% | 82.35%
Unknown Beats (Q) 99.32% | 99.65% | 98.72% | 97.20% | 99.10%

Confusion matrix, with normalization

v ORElON 0.032 0.014 0.036 0.010

0.113 gek:yieR 0.009 0.006 0.001

v/ 0.015 0.004 geAckIeR 0.022 0.008

True label

0.006 0.000 0.022 geReyieR 0.002

-

o/ 0.008 0.001 0.003 0.003 geRetzs

Predicted label

Figure 23 — Confusion matrix for heartbeat classification on the test set.
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Conclusions

This project aims to classify ECG signals for cardiac arrhythmia detection using CNNs
and the implementation of an electrocardiogram signal acquisition circuit. We developed a CNN
classifier for ECG signal classification with an accuracy of 98.12% and an F1-score of 99.72% in
the classification of ventricular ectopic beats (V). In order to optimize our model, we fine-tuned
our variables and functions, the selected values compose our final version of the classifier and
are displayed in Table 4. Compared with the methods in previous literature, our model performed
better in terms of V classification F1-score, only being surpassed by Martis (MARTIS et al.,
2014).

We designed an ECG acquisition board circuit and the test results show that our signal
gain and cut frequency are operating in the ECG delimited parameters and are capturing ECG

signals, as shown in Figure 17. Our tested gain output is 28.8V/V and the frequency cut is 40Hz.

Our study may be refined by using a better set of hyperparameter values and different
augmentation strategies for our classifier. Other projects may implement, test, and validate the
circuit board for signal gain and noise reduction. Future work may test the connection of the

Raspberry Pi to the ECG signal acquisition board.
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