
UNIVERSIDADE FEDERAL DE SERGIPE

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Recommendation of Microservices Patterns Through
Information Retrieval

Dissertação de Mestrado

Álex dos Santos Moura

Programa de Pós-Graduação em

Ciência da Computação/UFS

São Cristóvão – Sergipe

2023

UNIVERSIDADE FEDERAL DE SERGIPE

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Álex dos Santos Moura

Recommendation of Microservices Patterns Through
Information Retrieval

Dissertação de Mestrado apresentada ao Programa
de Pós-Graduação em Ciência da Computação da
Universidade Federal de Sergipe como requisito parcial
para a obtenção do título de mestre em Ciência da
Computação.

Orientador(a): Michel dos Santos Soares
Coorientador(a): Fabio Gomes Rocha

São Cristóvão – Sergipe

2023

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL
UNIVERSIDADE FEDERAL DE SERGIPE

M929r
Moura, Álex dos Santos

Recommendation of microservices patterns throught
information retrieval / Álex dos Santos Moura ; orientador Michel
dos Santos Soares ; coorientador Fábio Gomes Rocha. – São
Cristóvão, SE, 2023.

81 f. : il.

Dissertação (mestrado em Ciência da Computação) –

Universidade Federal de Sergipe, 2023.

1. Computação. 2. Arquitetura orientada a serviços
(Computador). 3. Recuperação da informação. I. Soares, Michel
dos Santos, orient. II. Rocha, Fabio Gomes, coorient. III. Título.

CDU 004.2:025.4.036

Este trabalho é dedicado às crianças adultas que,
quando pequenas, sonharam em se tornar cientistas.

Acknowledgements

Em primeiro lugar, quero agradecer a Deus por me dar forças, coragem e não me deixar
desistir. Quero agradecer aos meus pais, Aldevan e Edilma, e ao meu irmão, Enderson, por me
auxiliarem e me apoiarem em diversos momentos. A minha noiva, Danielle, por me incentivar
a ingressar no curso de mestrado em Ciência da Computação, pelas suas orientações, palavras
positivas e por me motivar em momentos que pensei em desistir.

Aos meus professores e orientadores, Fabio e Michel, por todo auxílio e motivação.
Sou muito grato pelas valiosas orientações, por compartilharem os seus conhecimentos e pela
confiança que depositaram em mim. As instruções que os dois me deram, foram sem dúvidas,
responsáveis por me fazer desenvolver uma grande pesquisa e chegar até aqui.

Quero agradecer também aos demais professores que de algum modo me ensinaram algo.
Aos colegas de curso que pude conhecer em determinadas disciplinas e que de alguma forma
me auxiliaram e aos colegas de trabalho que sempre compreenderam as minhas ausências para
participar das aulas ou para desempenhar tarefas relacionadas ao curso. Enfim, quero agradecer
imensamente a todos que de alguma maneira contribuíram com a minha jornada.

“Temos que continuar aprendendo.
Temos que estar abertos.

E temos que estar prontos para espalhar nosso
conhecimento a fim de chegar a uma

compreensão mais elevada da realidade.”
(Thich Nhat Hanh)

Abstract
O desenvolvimento de software envolve inerentemente a solução de problemas de projeto
recorrentes, que podem afetar negativamente os atributos de qualidade de um sistema. Esses
problemas são comumente resolvidos por meio da aplicação de padrões de projeto – soluções
comprovadas e forjadas por desenvolvedores experientes. A arquitetura de microsserviços, uma
variante da Arquitetura Orientada a Serviços, está em ascensão, com gigantes como Amazon,
eBay e Netflix adotando essa arquitetura. Neste estilo de arquitetura, os sistemas são compostos
por microsserviços que se comunicam por meio de mensagens. Cada microsserviço tem uma
responsabilidade específica e é implantado, dimensionado e testado de forma independente. Os
padrões de projeto usados para resolver problemas de projeto presentes em sistemas baseados
em microsserviços são chamados de padrões de microsserviços. Resolver problemas de projeto
é teoricamente simples, o desenvolvedor só precisa selecionar padrões de projeto e aplicá-los.
Porém, na prática, tanto desenvolvedores iniciantes quanto experientes têm dificuldade em
selecionar padrões de projeto, as razões para essa dificuldade são o número substancial de padrões
de projeto e o conhecimento limitado. Assim, o objetivo geral deste trabalho é fornecer uma
maneira de ajudar desenvolvedores a selecionar o padrão de microsserviços correto para resolver
um determinado problema de projeto. Este trabalho foi desenvolvido usando a metodologia
de pesquisa denominada Design Science Research, que propõe o desenvolvimento de artefatos
de Tecnologia da Informação para solucionar problemas do mundo real. Inicialmente, foi
proposta uma abordagem de recomendação baseada em Recuperação de Informação para fazer
recomendações de padrões de microsserviços, onde o desenvolvedor pode relatar um problema
de projeto, em linguagem natural (texto), e receber recomendações de padrões de microsserviços
que possam resolver o problema de projeto relatado. No geral, os testes utilizando um conjunto
de problemas de projeto mostraram que a abordagem de recomendação foi capaz de resolver 60%
dos problemas de projeto e que há espaço para melhorias, uma vez que 40% dos problemas de
projeto não foram resolvidos. Essa abordagem foi então usada em uma ferramenta chamada Floc.
Essa ferramenta possui uma interface de usuário amigável onde o desenvolvedor pode gerenciar
problemas de projeto e obter recomendações de padrões de microsserviços. A ferramenta foi
avaliada utilizando problemas de projeto em uma empresa que atua na área de Segurança de
Software e demonstrou resultados promissores. Entrevistas realizadas com desenvolvedores da
indústria corroboraram a eficácia e praticidade da ferramenta de recomendação.

Palavras-chave: Microsserviços. Recomendação. Padrões de Projeto. Recuperação de Informação.
Padrões de Microsserviços.

Abstract
Software development inherently involves solving recurring design problems, which can negatively
affect the quality attributes of a system. These problems are commonly solved through the
application of design patterns – proven solutions forged by experienced developers. Microservices
architecture, a variant of Service-Oriented Architecture, is on the rise, given that giants like
Amazon, eBay and Netflix are adopting this architecture. In this architectural style, systems
are composed of microservices that communicate through messages. Each microservice has a
specific responsibility and is deployed, scaled, and tested independently. Design patterns used to
solve design problems present in microservices-based systems are called microservices patterns.
Solving design problems is theoretically simple, the developer only needs to select design patterns
and apply them. However, in practice, both beginners and experienced developers have difficulty
selecting design patterns, the reasons for this difficulty are the substantial number of design
patterns and limited knowledge. Thus, the overall goal of this work is to provide a way to help
developers select the right microservices pattern to solve a given design problem. This work
was developed by using the research methodology named Design Science Research, which
proposes the development of Information Technology artifacts to solve real-world problems.
Initially, a recommendation approach based on Information Retrieval was proposed to make
recommendations for microservices patterns, where the developer can report a design problem,
in natural language (text), and receive recommendations for microservices patterns that can solve
the design problem reported. Overall, testing using a set of toy design problems showed that the
recommendation approach was able to solve 60% of design problems and that there is room for
improvement as 40% of design problems were not solved. This approach was then used in a
tool called Floc. This tool has a friendly user interface where the developer can manage design
problems and get microservices pattern recommendations for them. The tool was evaluated using
industrial design problems and demonstrated promising results. Furthermore, interviews with
industry developers corroborated the effectiveness and practicality of the recommendation tool.

Keywords: Microservices. Recommendation. Design Patterns. Information Retrieval. Microser-
vices Patterns.

List of Figures

Figure 1 – Steps Performed by an Information Retrieval System. 23
Figure 2 – CMP Screenshot. 29
Figure 3 – Microservices Patterns per Group. 29
Figure 4 – Communication Microservices Patterns per Subgroup. 30
Figure 5 – Recommendation Approach: Steps. 31
Figure 6 – Class Diagram: Recommendation Approach. 37
Figure 7 – Sequence Diagram: Interaction Between the Classes. 39
Figure 8 – Solved and Unsolved Design Problems. 42
Figure 9 – Distribution of Important Recommendations per Rank. 43
Figure 10 – Coverage. 44
Figure 11 – Floc: Components. 46
Figure 12 – MPR OpenAPI Specification. 47
Figure 13 – Sequence Diagram: Communication Between a Client and the MPR. 48
Figure 14 – Database: Entity Relationship Diagram (ERD). 48
Figure 15 – Sequence Diagram: Interaction Between the Layers. 51
Figure 16 – Login Page. 52
Figure 17 – Sign Up Page. 52
Figure 18 – My Design Problems Page. 53
Figure 19 – New Design Problem Page. 54
Figure 20 – Design Problem Details Page. 55
Figure 21 – Edit Design Problem Page. 56
Figure 22 – Floc: Deployment Diagram. 56
Figure 23 – Class Diagram: Login. 57
Figure 24 – Class Diagram: Sign Up. 59
Figure 25 – Class Diagram: List of Design Problems. 60
Figure 26 – Class Diagram: Solve Design Problem. 61
Figure 27 – Class Diagram: View Design Problem Details. 62
Figure 28 – Class Diagram: Edit Design Problem. 63
Figure 29 – Class Diagram: Delete Design Problem. 65
Figure 30 – Class Diagram: Feedback for a Recommended Microservices Pattern. 67
Figure 31 – Distribution of Recommended Microservices Patterns per Label. 69
Figure 32 – Distribution of Recommendations per Microservices Pattern. 70

List of Tables

Table 1 – Information of Each Microservices Pattern. 22
Table 2 – Boolean Model: Documents Represented. 24
Table 3 – Query Examples. 25
Table 4 – Recommendation Approach: Treatments Applied in the First Step. 32
Table 5 – Example of a Vector Space: Microservices Patterns. 34
Table 6 – Example of a Vector Space. 35
Table 7 – Text Class: Treatment that Each Method Does. 38
Table 8 – Each Toy Design Problem with the Microservices Pattern that Can Solve it. . 41
Table 9 – Recommendations per Design Problem (DP). 42
Table 10 – Metrics per Design Problem. 43
Table 11 – Time of Experience of Developers Involved in the Tests. 68
Table 12 – Questions Asked in the Interviews. 68

Lista de códigos

Código 1 – MPR: Dockerfile. 55

List of abbreviations and acronyms

CDP Catalog of Design Patterns

CMP Corpus of Microservices Patterns

CS Cosine Similarity

CSV Comma-Separated Values

CTDP Collection of Toy Design Problems

DDD Domain-Driven Design

DF Document Frequency

DP Design Problem

DSR Design Science Research

ERD Entity Relationship Diagram

GoF Gang of Four

IDF Inverse Document Frequency

IR Information Retrieval

IRS Information Retrieval System

IS Information Soup

ISs Information Soups

IT Information Technology

LDA Latent Dirichlet Allocation

MAP Mean Average Precision

MPR Microservices Patterns Recommender

MVC Model-View-Controller

NaN Not a Number

NDCG Normalized Discounted Cumulative Gain

NLTK Natural Language Toolkit

OOP Object-Oriented Programming

RPI Remote Procedure Invocation

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SRP Single Responsibility Principle

TF-IDF Term Frequency-Inverse Document Frequency

TF Term Frequency

UFS Universidade Federal de Sergipe

UI User Interface

WSDL Web Services Description Language

Contents

1 Introduction . 14
1.1 Context . 14
1.2 Problem . 15
1.3 Objectives . 15
1.4 Methodology . 16
1.5 Related Works . 17

1.5.1 Approach: Information Retrieval . 17
1.5.2 Approach: Text Classification . 17
1.5.3 Approach: Mix . 18
1.5.4 Comparison of this Research with Others 18

1.6 Work Structure . 19

2 Theoretical Background . 20
2.1 Microservices . 20
2.2 Design Patterns . 21
2.3 Information Retrieval . 22

2.3.1 Steps Performed by an Information Retrieval System 22
2.3.1.1 Step 1: Preprocess Documents 22
2.3.1.2 Step 2: Represent Documents and Query 24
2.3.1.3 Step 3: Match . 24

2.3.2 Evaluation Metrics . 25
2.3.2.1 Precision . 25
2.3.2.2 Recall . 25
2.3.2.3 F1-Score . 25
2.3.2.4 Coverage . 26

3 A Microservices Patterns Recommendation Approach 27
3.1 Corpus of Microservices Patterns . 28
3.2 Recommendation Approach . 30

3.2.1 Step 1: Preprocess Documents . 31
3.2.2 Step 2: Represent Documents and Query 33
3.2.3 Step 3: Match . 34

3.3 Implementation of the Recommendation Approach 35
3.3.1 Step 1: Preprocess Documents . 36
3.3.2 Step 2: Represent Documents and Query 38
3.3.3 Step 3: Match . 38

3.4 Evaluation of the Recommendation Approach 40
3.5 Results . 41

4 Floc: A Microservices Patterns Recommendation Tool 45
4.1 Floc Components View . 45

4.1.1 Microservices Patterns Recommender 46
4.1.2 Floc Database . 47

4.2 Floc Implementation View . 49
4.3 Floc Scenarios of Execution . 51
4.4 Floc Deployment View . 53
4.5 Floc Features . 56

4.5.1 Login . 57
4.5.2 Sign Up . 58
4.5.3 List of Design Problems . 59
4.5.4 Solve Design Problem . 60
4.5.5 View Design Problem Details . 62
4.5.6 Edit Design Problem . 63
4.5.7 Delete Design Problem . 64
4.5.8 Feedback for a Recommended Microservices Pattern 65
4.5.9 See More Information About a Microservices Pattern 66
4.5.10 Logout . 67

4.6 Floc Evaluation . 67
4.7 Results . 68

4.7.1 Tests with Industrial Design Problems 69
4.7.2 Interviews with Developers . 70

4.8 Threats to Validity . 72
4.8.1 Construct Validity . 72
4.8.2 Internal Validity . 72
4.8.3 External Validity . 72
4.8.4 Conclusion Validity . 72

5 Conclusions, Contributions and Future Works 73
5.1 Conclusions . 73
5.2 Contributions . 75
5.3 Future Works . 75

Bibliography . 77

14

1
Introduction

1.1 Context

When a developer is developing or maintaining a system, it is common for this developer
to face design problems. A design problem is a recurring problem (SANYAWONG; NANTAJEE-
WARAWAT, 2015), which is capable of negatively impacting the quality attributes of a system
(SOUSA et al., 2017), for this reason it is important to solve it. Design problems are commonly
solved through design patterns. A design pattern is a proven solution, developed by experienced
developers (HUSSAIN et al., 2019). Thus, developers often use design patterns to solve design
problems.

Usually, a design pattern can be found in a Catalog of Design Patterns (CDP) that
proposes solutions to solve design problems of a specific context. For example, the book named
“Design Patterns: Elements of Reusable Object-Oriented Software” (GAMMA et al., 1995) is
a popular CDP that proposes solutions to solve design problems present in systems developed
using concepts of Object-Oriented Programming (OOP).

The Service-Oriented Architecture (SOA) is an architectural style that proposes that a
system is composed of services/Web services, which are independent and well-defined modules
that offer functionalities that can be used by other systems or Web services (PAPAZOGLOU;
HEUVEL, 2007). Web services are described using a standard definition language, such as Web
Services Description Language (WSDL) and, typically, communication between Web services
occurs through a protocol, such as Simple Object Access Protocol (SOAP) (PAPAZOGLOU;
HEUVEL, 2007).

Microservices architecture is an architectural style known as a variant of Service-Oriented
Architecture (SOA) (SOARES; FRANCA, 2016), this architectural style has become increasingly
popular. Several companies, such as Amazon, eBay and Netflix are adopting this architectural
style (CHEN; LI; LI, 2017) which proposes that a system is composed of microservices that

Chapter 1. Introduction 15

communicate through messages (DRAGONI et al., 2017). A microservice is a small application
that has a single responsibility and can be independently deployed, scaled and tested (THÖNES,
2015).

Another architectural style is monolithic architecture that proposes the encapsulation of
all business rules in a single system (CHEN; LI; LI, 2017). Monolithic architecture is widely
used and can be considered a traditional architectural style. As mentioned, several companies are
adopting the microservices architecture, migrating from monolithic architecture to microservices
architecture, this is the case of the companies mentioned (Amazon, eBay and Netflix) (CHEN;
LI; LI, 2017). During this migration, a developer can face, for example, a design problem related
to decomposition of microservices.

There is a CDP that proposes solutions to solve design problems present in systems based
on microservices architecture, this CDP is Richardson’s book called “Microservices Patterns:
With Examples in Java” (RICHARDSON, 2018). The design patterns present in this catalog
are known as microservices patterns, this catalog contains 50 microservices patterns. Thus, for
developers who work on systems based on microservices architecture, understanding the catalog
of microservices patterns can be considered essential.

1.2 Problem

Systems with many design problems are subject to being discontinued or re-engineered
(SOUSA et al., 2018), as these problems negatively impact their quality attributes (SOUSA et al.,
2017). This shows that it is important to solve design problems, and as explained in Section 1.1,
these problems can be solved through design patterns.

Thus, solving design problems is theoretically simple, the developer needs to select
design patterns and apply them. However, in practice, beginner and experienced developers may
have difficulty when selecting design patterns, given the substantial number of design patterns
and limited knowledge (HAMDY; ELSAYED, 2018; SANYAWONG; NANTAJEEWARAWAT,
2015). Therefore, this work seeks to offer a solution to this difficulty.

1.3 Objectives

The general objective of this work is to provide a way to help developers to select the
correct microservices pattern to solve a given design problem. To achieve the general objective,
the following specific objectives are proposed:

• Propose a microservices patterns recommendation approach;

• Develop a tool that makes use of this approach for developers to use.

Chapter 1. Introduction 16

1.4 Methodology

This work was developed using the research methodology called “Design Science
Research” (DSR), which proposes the development of Information Technology (IT) artifacts
to solve real-world problems (HEVNER et al., 2010). An IT artifact can be, for example, a
system, an algorithm or even a framework. According to Hevner (HEVNER, 2007), this research
methodology has 3 cycles: Relevance, Design and Rigor.

The real-world problem is identified in the “Relevance Cycle”. In the “Rigor Cycle”,
existing solutions are investigated, a rigorous evaluation is carried out, involving, for example,
metrics, and the results are communicated. The “Design Cycle” is considered the “Central Cycle”,
the “Design Cycle” involves the development of an artifact to solve the problem identified and
preliminary evaluation of this artifact.

As presented in Section 1.2, the real-world problem that this work seeks to solve is the
difficulty that beginners and experienced developers may experience when selecting a design
pattern, given a design problem. The reasons of this difficulty are the considerable number of
existing patterns and lack of mastery of these patterns. Thus, as explained in Section 1.3, the
general objective of this work is to provide a solution capable of helping developers to select
design patterns to solve design problems.

It is important to highlight that this work is focused on microservices-based systems,
this means that this work is restricted only to design patterns applied in these systems, also
known as microservices patterns, and to design problems present in these systems. Systems that
have many design problems are subject to being discontinued or re-engineered (SOUSA et al.,
2018). The problem that this work seeks to solve is important because it can help to prevent
microservices-based systems reaching this point.

After identifying the problem, understanding its importance and defining objectives,
existing solutions were investigated. These solutions can be viewed in Section 1.5. In summary,
the solutions found largely deal with “Gang of Four” (GoF) design patterns and design problems
present in systems developed using concepts of Object-Oriented Programming (OOP). These
solutions are based on Information Retrieval (IR), text classification or mix. No solution was
found that deals with microservices patterns and design problems present in microservices-based
systems.

The artifact to solve the problem addressed in this work was developed after understanding
existing solutions. In summary, this artifact is able to receive a design problem reported by a
developer and recommend 3 microservices patterns that can solve the design problem reported.
Chapters 3 and 4 show how this artifact was developed, evaluated and evolved.

Given the information presented, the 3 cycles (Relevance Cycle, Rigor Cycle and Design
Cycle) were applied in this work. The artifact developed can be considered innovative, as
no solution was found that deals with microservices patterns and design problems present in

Chapter 1. Introduction 17

microservices-based systems. According to Hevner (HEVNER et al., 2010), it is important that
the artifact developed in a DSR-based research is innovative.

1.5 Related Works

In this Section, some work related to the recommendation of design patterns are discussed
and what are the differences of this work in relation to them. Each work presented suggests a
different recommendation approach, using Information Retrieval, Text Classification or Mix.
These works are grouped by type of approach and presented in specific Subsections.

1.5.1 Approach: Information Retrieval

Hamdy and Elsayed (HAMDY; ELSAYED, 2018) propose a GoF patterns recommendation
approach that is based on information retrieval plus LDA (Latent Dirichlet Allocation). For the
recommendation of these patterns, this approach proved to be superior to traditional information
retrieval with unigrams vector space. The authors stated this after carrying out tests with 29
problems, obtaining a precision rate equal to 72%.

Rahmati and the other authors (RAHMATI; RASOOLZADEGAN; DEHKORDY, 2019)
also deal with the recommendation of GoF patterns through an approach, suggested by them,
which is based on information retrieval. This approach makes use of an improved weighting
algorithm that proved to be superior to the original algorithm after the authors ran tests with 29
problems and obtained superior results in terms of precision (8.5%), recall (1.2%) and accuracy
(5.2%). It is worth mentioning that out of 29 problems used in the tests, 9 are industrial problems
and 20 are toy problems.

Hussain and other authors (HUSSAIN et al., 2019), in addition to dealing with recom-
mending GoF patterns, also deal with recommending security patterns (SCHUMACHER et al.,
2013), patterns mentioned by Landay and Hong (LANDAY; HONG et al., 2003), and Douglass
(DOUGLASS, 2003). The authors propose a recommendation approach based on information
retrieval and “Learning to Rank”. Their approach uses 3 algorithms called Coordinate Ascent,
AdaRank and LambdaMART. After the authors test 47 industrial problems and observe 2 metrics
called MAP (Mean Average Precision) and NDCG (Normalized Discounted Cumulative Gain),
they conclude that LambdaMART is superior to other algorithms and that the approach they
propose is promising.

1.5.2 Approach: Text Classification

Sanyawong and Nantajeewarawat (SANYAWONG; NANTAJEEWARAWAT, 2015) deal
with recommending GoF design patterns (GAMMA et al., 1995). Their goal is to improve on
part of a hierarchical recommendation approach they developed in a previous work (SANYA-

Chapter 1. Introduction 18

WONG; NANTAJEEWARAWAT, 2014). With this in mind, the authors use textual classification
algorithms, such as Naive Bayes, J48, K-NN and SVM, to relate a given design problem to one of
the 3 categories of GoF patterns: creational, structural and behavioural. As a form of evaluation,
the authors test 26 industrial problems and use 3 metrics, precision, recall and F-measure. After
analyzing the results, the authors conclude that with this improvement, developers can select a
GoF pattern more quickly and that the software industry can use the approach they present.

Silva-Rodríguez and the other authors (SILVA-RODRÍGUEZ et al., 2020) deal with
recommending interaction patterns to help designers develop better user interfaces. The rec-
ommendation approach they propose is based on textual classification, where 4 algorithms are
used: Logistic Regression, Multinomial Naive Bayes, Linear SVM and Random Forest. After
the authors tested the approach, Linear SVM stood out in relation to the other algorithms, the
authors observed this after checking 4 metrics: accuracy, precision, recall and F1-score.

1.5.3 Approach: Mix

Celikkan and Bozoklar (CELIKKAN; BOZOKLAR, 2019) also propose a GoF pattern
recommendation approach. Their approach is also based on information retrieval, it makes
recommendations from texts, cases and questions. In order to evaluate the approach, the authors
performed tests with 120 industrial problems. Initially, recommendations were made without
considering questions, only texts and cases. According to the authors, the results were as follows:
for 65% of the problems, the expected pattern was one of the first 3 recommended patterns;
for 76% of the problems, the expected pattern was one of the top 5 recommended patterns; for
86% of the problems, the expected pattern was one of the top 7 recommended patterns; and
finally, when considering questions, the answers of more experienced developers improved the
recommendations considerably.

1.5.4 Comparison of this Research with Others

The main difference between this work in relation to the presented works is that it deals
with recommending microservices patterns, while the presented works deal with other types
of patterns, mainly GoF patterns. Like most of the works presented, this work also proposes a
recommendation approach based on information retrieval.

In this work, it makes no sense to propose a recommendation approach based on text
classification, since no dataset was found to train a classification model for problems related
to systems based on microservices. According to Uysal (UYSAL, 2016), the effectiveness of
classification-based systems depends on an extensive and representative dataset.

Therefore, the recommendation approach that this work proposes is based on information
retrieval. This work also differs from the works presented by proposing a Web Service capable of
making recommendations and a tool integrated with this Web Service that offers a user interface.

Chapter 1. Introduction 19

1.6 Work Structure

This work contains 4 additional Chapters: Chapter 2, where important concepts are
presented for the understanding of the work; Chapter 3, where the microservices patterns
recommendation approach is presented; Chapter 4, where a tool for developers is presented,
which makes use of this approach; and Chapter 5, which is the last one, where conclusions,
contributions and future works are presented.

20

2
Theoretical Background

2.1 Microservices

The microservices architecture proposes that an application is composed of microservices
that communicate through messages (DRAGONI et al., 2017). A microservice is a small
application that has a single responsibility and can be independently deployed, scaled and tested
(THÖNES, 2015).

This architecture has become increasingly popular, as it offers considerable benefits when
compared to monolithic architecture, such as easier maintenance; ability to deploy and scale a
module individually; and chance to use different and more appropriate technologies in each module
(TAIBI; LENARDUZZI; PAHL, 2017). Although it offers benefits like these, it is not so easy to
adopt it, as one has to deal with extra machinery that can impose considerable costs (SINGLETON,
2016). For example, it may be necessary to invest in tools related to communication, deployment
and monitoring. In addition, there are still efforts, such as determining services; make them
communicate; and be tested and deployed automatically (TAIBI; LENARDUZZI; PAHL, 2018).

The monolithic architecture is a traditional alternative and widely used in applications, it
consists of encapsulating all modules in a single application (CHEN; LI; LI, 2017). Commu-
nication between modules is simple, it occurs through method calls. A system based on this
architecture can be easily deployed since there is only one component. It is also easy to scale such
a system, just create instances of it and use a load balancer (KOSCHEL; ASTROVA; DÖTTERL,
2017).

Some problems of this architecture arise in a system based on it, as this system grows,
as follows: as the number of modules increases and the existing modules as well, the coupling
between them makes the maintenance and evolution of the system difficult; and the larger the
system becomes, the more time is required to compile, test and deploy it (CHEN; LI; LI, 2017).
Other problems are already incorporated into the architecture itself, such as: making any changes

Chapter 2. Theoretical Background 21

to a specific module available requires deploying the entire system (CHEN; LI; LI, 2017); scaling
a specific module individually is not possible (FRITZSCH et al., 2019); and it is also not possible
to use different and appropriate technologies in different modules (TAIBI; LENARDUZZI;
PAHL, 2017).

The microservices architecture is not a “silver bullet”1 for these problems, but this
architecture has proven to be an interesting solution. Therefore, several companies are adopting
this architecture, while others, such as Amazon, eBay and Netflix, have already adopted it (CHEN;
LI; LI, 2017).

2.2 Design Patterns

A problem that recurs in systems is called a design problem (SANYAWONG; NANTA-
JEEWARAWAT, 2015) and can negatively impact the quality attributes of a system (SOUSA
et al., 2017). Applications that have many design problems may need to be discontinued or
re-engineered (SOUSA et al., 2018). One example is an application with low maintainability,
thanks to one or more design problems, where it becomes difficult to make changes to correct
defects or adapt to new requirements.

To solve design problems, developers make use of design patterns, which are proven
solutions devised by experienced developers through trials and errors (HUSSAIN et al., 2019).
For example, there is a design pattern called Remote Procedure Invocation (RPI) that is used when
the problem is “how to make microservices communicate”. This pattern allows microservices to
communicate through a request/response based protocol.

A design pattern used to solve a design problem in a system based on microservices
architecture is called a microservices pattern, RPI is an example. Chris Richardson’s book, briefly
introduced in Section 1.1, is a relevant catalog of such patterns. The author also has a website
where he exposes the information of each pattern (RICHARDSON, 2023). This information is
presented in Table 1.

In addition to this catalog, there are others that expose patterns to solve problems related
to other contexts, such as the popular book called “Design Patterns: Elements of Reusable
Object-Oriented Software” which presents 23 patterns to deal with problems in systems based on
Object-Oriented Programming (OOP) (GAMMA et al., 1995).

In view of the damage caused by design problems, it is possible to note that design
patterns are extremely important to guarantee quality software, especially when they are correctly
selected and applied. This makes evident how fundamental it is for a developer to master design
patterns.
1 The term “silver bullet” is used by Brooks (BROOKS; KUGLER, 1987) as a metaphor for a single solution

capable of quickly and easily solving a problem related to software development.

Chapter 2. Theoretical Background 22

Table 1 – Information of Each Microservices Pattern.
Information Description
Name One or more words designating the pattern

Group Class the pattern belongs to, for example, RPI is a communication pat-
tern

Subgroup Subclass that the pattern belongs to, for example, RPI is a communica-
tion style pattern

Layer Level at which the pattern is used: Infrastructure, Application Infra-
structure or Application

Context Circumstance in which the default should be used
Problem Question that the pattern solves

Forces Represent a concrete scenario that exposes the motivation for using the
pattern, considering the context and the problem to be solved

Solution How the pattern solves the problem
Examples Show how to use the pattern

Resulting Context Describes the postconditions and side effects that arise when using the
pattern

Issues Pertinent points that must be addressed before the pattern is used
Related Patterns Names of other patterns that have some relation to the pattern

2.3 Information Retrieval

Information Retrieval (IR) is the process of retrieving documents that match a query
(HAMBARDE; PROENCA, 2023). A Document (D) is an information unit that can be, for
example, a text document (Web page, report, email and plain text) or even a multimedia file
(image, video and audio). An IR-based system is called Information Retrieval System (IRS).
Google, a search engine, is an example of IRS, where a user submits a query and receives a set of
matching Web pages as a result (IBRIHICH et al., 2022).

2.3.1 Steps Performed by an Information Retrieval System

An IRS that deals with text documents performs 3 steps to retrieve them: 1) Preprocess
Documents, 2) Represent Documents and Query, and 3) Match (ROSHDI; ROOHPARVAR,
2015). Figure 1 shows these steps, including their inputs and outputs.

2.3.1.1 Step 1: Preprocess Documents

In this step, the text documents and the query are subjected to a set of treatments. It is
necessary to apply these treatments so that the IRS has quality. There are 3 main treatments, the
first is called “Tokenization”, the second is “Stop Word Removal” and the third is “Stemming”.

Tokenization consists of dividing the text into tokens. A token can be a word, phrase or
symbol (CERI et al., 2013). To exemplify, one can consider this text “Tokenization is important”,
if a token is considered as a word, then in this text there are 3 tokens: “Tokenization”, “is” and

Chapter 2. Theoretical Background 23

Figure 1 – Steps Performed by an Information Retrieval System.

“important”. If a token is considered as a phrase, then in this text there is only 1 token which is
“Tokenization is important”. When a token is composed of just 1 word, it is called “Unigram”,
when it is composed of 2 words it is called “Bigram” and so on.

After obtaining the tokens from a text, the Stop Word Removal treatment is applied. Words
that are not relevant to the retrieval process, such as prepositions and articles, are removed from the
tokens (IBRIHICH et al., 2022). To exemplify, one can consider these 3 tokens: “Tokenization”,
“is” and “important”. Applying the Stop Word Removal treatment, the “is” token is removed, after
applying this treatment, there are only 2 tokens which are “Tokenization” and “important”.

Stemming treatment is applied after the Stop Word Removal treatment. The goal of
Stemming treatment is to reduce inflected words – words that have different grammatical forms
or conjugations – to their stem, minimize the number of words, ensure that stems are matched
with precision and save memory (IBRIHICH et al., 2022). To exemplify, one can consider the
tokens “Tokenization” and “important”, applying the Stemming treatment, the result is “Token”
and “import”.

After being subjected to these treatments, the text documents and the query are called
preprocessed text documents and a preprocessed query. As Figure 1 shows, the preprocessed text
documents and the preprocessed query are the outputs of this step. In addition to these treatments,
there are others that are more specific, as can be seen in Subsection 3.2.1.

Chapter 2. Theoretical Background 24

2.3.1.2 Step 2: Represent Documents and Query

In this step, the preprocessed text documents and the preprocessed query are represented
using models so that it is possible to compare them, aiming to retrieve the matching text
documents. There are two classic models, the Boolean model and the Vector Space Model (VSM)
(IBRIHICH et al., 2022).

Initially, the two models form a vocabulary from preprocessed text documents. In the
Boolean model, when a preprocessed text document or a preprocessed query contains a vocabulary
word, this word receives the value of “true” or “1”, otherwise, this word receives the value of
“false” or “0”. Table 2 shows an example, where this “Token” preprocessed query is represented
and the following preprocessed text documents are represented:

• Document 1: Token import;

• Document 2: Token Inform Retriev;

• Document 3: Master dissert.

Table 2 – Boolean Model: Documents Represented.

Words Query Document 1 Document 2 Document 3
Token 1 1 1 0
import 0 1 0 0
Inform 0 0 1 0
Retriev 0 0 1 0
Master 0 0 0 1
dissert 0 0 0 1

In the VSM, the preprocessed text documents and the preprocessed query are represented
by vectors (IBRIHICH et al., 2022). Subsections 3.2.2 and 3.2.3 explain how to measure how
relevant a word is to a document, considering all documents, using the VSM. In the Boolean
model it is not possible to do this. As Figure 1 shows, the outputs of this step are the represented
documents and the represented query.

2.3.1.3 Step 3: Match

In this step is where the documents that match the query are retrieved. Considering Table
2, where the documents and the query were represented using the Boolean model, documents 1
and 2 would be retrieved, as they are the only ones that have the “Token” word.

In the Boolean model, logical operators (AND, OR, and NOT) can be used (IBRIHICH
et al., 2022). Therefore, it is possible to have, for example, a query like “Master AND dissert”.
In this case, only document 3 would be retrieved, as it is the only document that has the words
“Master” and “dissert”.

Chapter 2. Theoretical Background 25

In the case of the VSM, in this step is used a measure of similarity to check how similar a
document is to a query. Documents that have a considerable degree of similarity are retrieved. In
Subsection 3.2.3, this process is explained in detail. This step is the last one, its outputs are the
recovered documents.

2.3.2 Evaluation Metrics

It is possible to measure the quality of an IRS through metrics such as Precision,
Recall, F1-Score and Coverage. To explain these metrics, one can consider a collection/set of
documents called C, where 𝐶 = {𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5, 𝐷6, 𝐷7, 𝐷8}, and Table 3 that exposes
query examples.

Table 3 – Query Examples.

Query (Q) Important Documents (IDs) Retrieved Documents (RDs)
Q1 𝐷2 and 𝐷8 𝐷2, 𝐷5, 𝐷6 and 𝐷8
Q2 𝐷2, 𝐷6 and 𝐷8 𝐷1, 𝐷3, 𝐷7 and 𝐷8
Q3 𝐷5 𝐷2, 𝐷5, 𝐷6 and 𝐷7
Q4 𝐷2, 𝐷4, 𝐷6 and 𝐷8 𝐷2, 𝐷4, 𝐷6 and 𝐷8

2.3.2.1 Precision

The Precision metric indicates the relationship between the number of Important Docu-
ments Retrieved (IDR) and RDs. This metric is given by Equation 2.1. Considering Table 3, the
Precision of Q1 is 0.5 or, multiplying by 100, 50%. This means that 50% of the RDs are IDs. For
other queries, Precision is: Q2 (25%), Q3 (25%) and Q4 (100%). The higher the Precision, the
better.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 |

|𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 | (2.1)

2.3.2.2 Recall

The Recall metric indicates the relationship between the number of IDR and IDs. This
metric is given by Equation 2.2. Considering Table 3, the Recall of Q1 is 1.0 or, multiplying by
100, 100%. This means that 100% of the IDs were retrieved. For the other queries, the Recall is:
Q2 (≈35%), Q3 (100%) and Q4 (100%). The higher a Recall, the better.

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 |

|𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 | (2.2)

2.3.2.3 F1-Score

The Precision and Recall metrics are frequently used to measure the quality of an IRS
(SAINI; SINGH; KUMAR, 2014). From these two metrics, it is possible to calculate the F1-Score

Chapter 2. Theoretical Background 26

metric which is especially useful when the aim is to balance the need to retrieve IDs (Recall) and
the need to ensure that the documents retrieved are really important (Precision). The F1-Score
metric is given by Equation 2.3.

𝐹1-𝑆𝑐𝑜𝑟𝑒 =
2 · (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(2.3)

Considering Table 3, the F1-Score of Q1 is ≈0.70 or, multiplying by 100, ≈70%. This
means that for Q1, the IRS had a performance of ≈70%, combining Precision and Recall. For the
other queries, the F1-Score is: Q2 (≈30%), Q3 (40%) and Q4 (100%). The higher the Recall, the
better.

2.3.2.4 Coverage

The Coverage metric indicates the proportion of IDs that the IRS was able to re-
trieve. This metric is given by Equation 2.4. Considering Table 3, there are 5 IDs available
(𝐷2, 𝐷4, 𝐷5, 𝐷6 and 𝐷8), all these 5 documents were retrieved. Thus, the IRS had a Coverage of
1.0 or, multiplying by 100, 100%.

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
(2.4)

27

3
A Microservices Patterns Recommendation
Approach

In this Chapter, an IR-based recommendation approach is proposed to make microservices
patterns recommendations, where the developer can report a design problem, in natural language
(text), and receive microservices patterns recommendations that can solve the reported design
problem. From this approach, it is possible to develop a tool to help developers in selecting
microservices patterns to solve design problems present in microservices-based systems.

The Corpus of Microservices Patterns (CMP) is an important component, as it is
responsible for storing the microservices patterns that can be recommended. This means that the
microservices patterns recommended by the recommendation approach are retrieved from the
CMP. Thus, the CMP can be considered a fundamental component, since it is from it that the
recommendation approach obtains the microservices patterns necessary for its recommendations.
Section 3.1 describes the CMP in details.

In Section 3.2, a detailed explanation of how the recommendation approach works is
provided. Section 3.3, in turn, presents a computer program developed in Python that represents
the implementation of this approach. For the development of this program, object-oriented
programming principles were followed, along with the use of some popular libraries, such as
Natural Language Toolkit (NLTK) and Scikit-Learn, in order to guarantee a certain ease and
speed in development.

The recommendation approach is evaluated through tests carried out with toy design
problems, in which microservices patterns recommendations were requested for these problems.
Section 3.4 presents these toy design problems and details of how the recommendation approach
was evaluated. After obtaining the recommendations, they were analyzed to verify the quality
of the recommendation approach through metrics. The results of the tests carried out, together
with the analysis of the recommendations obtained and the evaluation of quality metrics, are
presented in Section 3.5.

Chapter 3. A Microservices Patterns Recommendation Approach 28

3.1 Corpus of Microservices Patterns

The CMP is a fundamental component for recommending microservices patterns, given a
design problem, through information retrieval. The CMP is responsible for having the description
of each microservices pattern. This description is formed by 14 pieces of information, 12 of
which can be seen in Table 1. The other 2 pieces of information are as follows:

• Id: Unique number used to identify the microservices pattern;

• Link: Page address on Richardson’s website (RICHARDSON, 2023) that provides
additional information about the microservices pattern.

Technically, the CMP is a Comma-Separated Values (CSV) file. A CSV file is a simple
text file used to store data in tabular format, where each line of the file represents a row of
the table and the values within each row are separated by commas or other delimiters, such
as semicolons. Figure 2 shows a screenshot of the CMP. At row 1, where the table columns
are, there are 7 pieces of information that were not mentioned, they are: “consequent_benefits”,
“consequent_drawbacks”, “consequent_issues”, “successors”, “alternatives ”, “generalizations”
and “specializations”. In fact, this information was synthesized into 2 pieces of information,
where “Resulting Context” represents the first 3 pieces of information: “consequent_benefits”,
“consequent_drawbacks” and “consequent_issues”, while “Related Patterns” represents other
information: “successors”, “alternatives”, “generalizations” and “specializations”. Thus, actually
these 7 pieces of information were presented.

The CMP contains the description of 10 microservices patterns presented in the book
called “Microservices Patterns: With Examples in Java” by Richardson (RICHARDSON, 2018).
Out of these 10 microservices patterns, 2 are decomposition patterns and 8 are communication
patterns, as shown in Figure 3. Communication patterns can be divided into subgroups, Figure
4 shows the number of communication patterns per subgroup. One can note that 2 of the
communication patterns belong to the communication style subgroup, 1 to the reliability
subgroup, 4 to the discovery subgroup and 1 to the transactional messaging subgroup.

The 10 microservices patterns present in CMP are: Decompose by Business Capability,
Decompose by Subdomain, Remote Procedure Invocation, Circuit Breaker, Self Registration,
Client-Side Discovery, 3rd Party Registration, Server-Side Discovery, Messaging and Transac-
tional Outbox. Microservices patterns are presented per group and, in the case of communication
patterns, per subgroup, as follows:

• Decomposition:

– Decompose by Business Capability

– Decompose by Subdomain

Chapter 3. A Microservices Patterns Recommendation Approach 29

Figure 2 – CMP Screenshot.

Figure 3 – Microservices Patterns per Group.

• Communication:

– Communication Style:

∗ Remote Procedure Invocation

∗ Messaging

Chapter 3. A Microservices Patterns Recommendation Approach 30

Figure 4 – Communication Microservices Patterns per Subgroup.

– Reliability:

∗ Circuit Breaker

– Discovery:

∗ Self Registration

∗ Client-Side Discovery

∗ 3rd Party Registration

∗ Server-Side Discovery

– Transactional Messaging:

∗ Transactional Outbox

At the time, 50 microservices patterns are presented on the Richardson website
(RICHARDSON, 2023). These patterns belong to 9 different groups. This means that the
CMP contains 20% of the patterns presented by Richardson, covering more than 20% of the
patterns groups. It is worth mentioning that the information that forms the description of each
microservices pattern was taken from two sources, the book and Richardson’s website. The CMP
is important because it contains the microservices patterns that can be recommended.

3.2 Recommendation Approach

To recommend microservices patterns, given a design problem, this work proposes a
recommendation approach based on information retrieval. Classification algorithms can be
used as another way to make recommendations, but these algorithms depend on a dataset with
many examples and covering all the different possible categories to generate effective results

Chapter 3. A Microservices Patterns Recommendation Approach 31

(UYSAL, 2016). In the context of this work, the examples would be design problems and the
categories would be microservices patterns. As no such dataset was found, this work proposes a
recommendation approach based on information retrieval.

As Figure 5 shows, the proposed approach is defined in 3 steps, which are: 1) Preprocess
Documents, 2) Represent Documents and Query, and 3) Match. Each of these steps is explained
in this Section. Subsection 3.2.1 explains the first step. Subsection 3.2.2 explains the second step.
Finally, Subsection 3.2.3 explains the third and last step.

Figure 5 – Recommendation Approach: Steps.

3.2.1 Step 1: Preprocess Documents

In this Chapter, the term “documents” is used to refer to each microservices pattern
present in the CMP, and to the design problem for which microservices pattern recommendations
are sought. This design problem is reported, in natural language, by the developer. To be more
specific, this design problem is informed in text. As Figure 5 shows, the CMP and this design
problem are the inputs of this step that is responsible for preprocessing them.

Preprocessing documents means applying a set of treatments to them that make them
more suitable for being represented and then, in the case of microservices patterns, recovered.
Thus, it is possible to have an effective information retrieval. In total, 12 treatments are applied,

Chapter 3. A Microservices Patterns Recommendation Approach 32

Table 4 – Recommendation Approach: Treatments Applied in the First Step.

Treatment Input (E.g.) Output (E.g.)
Remove Null Values Null Empty String
Change Letters to Lowercase This is a TEXT this is a text
Remove Not a Number (NaN) NaN Empty String
Remove New Lines This is a \n Text This is a Text
Remove Tabs This is a \t Text This is a Text
Remove Returns This is a \r Text This is a Text
Remove HTML Tags This is a Text This is a Text
Remove Punctuation This is a Text!!! This is a Text
Remove Extra Spaces This is a Text This is a Text
Get Uncontracted Words It’s hard It is hard
Remove Stop Words This is a communication pattern communication pattern
Get Stems Communication Commun

as follows: 1) Remove Null Values, 2) Change Letters to Lowercase, 3) Remove Not a Number
(NaN), 4) Remove New Lines, 5) Remove Tabs, 6) Remove Returns, 7) Remove HTML Tags,
8) Remove Punctuation, 9) Remove Extra Spaces, 10) Get Uncontracted Words, 11) Remove
Stop Words and 12) Get Stems. Table 4 exposes these 12 treatments, including input and output
examples.

In the case of microservices patterns, only 6 pieces of information are preprocessed, they
are: Context, Problem, Forces, Solution, Resulting Context and Related Patterns. These 6 pieces
of information are used in the recovery process. Other information is not considered because it
does not contribute to this process. The following are the data not considered and the reason for
this:

• Id: Serves only as an identifier for each microservices pattern in the CMP;

• Name: It is a specific information, but it may not be interesting because if a design problem
has the name of a certain microservices pattern, this microservices’ pattern will probably
be recommended, which is not interesting for the developer, because if he/she reported the
name this microservices pattern is because he/she already knows it;

• Group: Generic information, present in many microservices patterns;

• Subgroup: Generic information, present in many microservices patterns;

• Layer: Generic information, present in many microservices patterns;

• Examples: Information from specific contexts, for example, supermarket. In addition to
involving images, which is not interesting for the recommendation approach because it
does not support them;

• Issues: Useful information when the microservices pattern is already known, as it indicates
important points that must be considered before applying the pattern;

Chapter 3. A Microservices Patterns Recommendation Approach 33

• Link: It is only useful for the developer to know more about a microservices pattern.

After documents undergo these treatments, they are called preprocessed documents. It
is worth mentioning that the 6 preprocessed information from each microservices pattern are
concatenated, forming what is called Information Soup (IS). Thus, the IS of each microservices
pattern and the preprocessed design problem are the outputs of this step, also called preprocessed
documents.

3.2.2 Step 2: Represent Documents and Query

Represent documents and query means transforming preprocessed documents into
something that the computer is capable of understanding and analyzing. With the documents
preprocessed and represented, it is possible to compare the design problem with each IS of each
microservices pattern and retrieve the 3 microservices patterns that most closely resemble the
design problem. This comparison is made in step 3.

In this step, the Term Frequency-Inverse Document Frequency (TF-IDF) model is
applied to represent the preprocessed documents. This model assigns a numerical value to each
term/word of a document. This numerical value can also be called weight and is given by two
measurements, Term Frequency (TF) and Inverse Document Frequency (IDF). This weight
indicates the importance of a term in a document, considering the importance of this term in a
corpus of documents. In the case of microservices patterns, the corpus considered is the CMP.
The mentioned weight is calculated using Equation 3.1, where “t” represents a term and “d” a
document.

𝑇𝐹 − 𝐼𝐷𝐹 (𝑡, 𝑑) = 𝑇𝐹 (𝑡, 𝑑) · 𝐼𝐷𝐹 (𝑡) (3.1)

As mentioned and shown in Equation 3.1, to calculate the weight it is necessary to
calculate the TF and the IDF. The TF is the number of times a term appears in a document
divided by the total number of terms this document has, i.e., it measures the frequency of a term
in a document. The IDF measures how rare a term is in a corpus of documents. Rare terms have
a higher IDF, while common terms have a lower IDF. The IDF is calculated using Equation 3.2.
Where “n” is the total number of documents present in a corpus, and Document Frequency (DF)
is the number of documents that have the term represented by “t”.

𝐼𝐷𝐹 (𝑡) = log
1 + 𝑛

1 + 𝐷𝐹 (𝑡) + 1 (3.2)

The greater the weight of a term in a document, the more important this term is for this
document. Terms that appear frequently in a document, but are rare in other documents in a
certain corpus, have higher weights. To illustrate, one can consider the IS of each microservices

Chapter 3. A Microservices Patterns Recommendation Approach 34

pattern, in total there are 10 Information Soups (ISs), as the CMP contains 10 microservices
patterns. The IS of a microservices pattern called “Messaging” contains the “communication”
term, in total, this IS contains 100 terms. Assuming that this term appears 5 times in this IS and
that this term appears in 2 of these 10 ISs, the value of TF is “0.05” and the value of IDF is
approximately “1.60”. Therefore, the weight of the “communication” term in this specific IS is
“0.08”. This weight indicates that this term is very important for this IS.

After the preprocessed documents are represented, they can be called represented
documents. These documents are the outputs of this step. It is worth mentioning that the
documents represented are the ISs and the design problem. These documents are useful in the
next step.

3.2.3 Step 3: Match

The represented documents, which are the outputs of the previous step, are actually
vectors in a multidimensional space, where each dimension corresponds to a term. There are
11 vectors in this space, 1 referring to the design problem and the other 10 referring to the 10
ISs. With these vectors available, it is possible to measure the similarity between the vector that
represents the design problem and the vectors that represent microservices patterns, this step is
responsible for this.

To exemplify, one can consider the 3 microservices patterns presented in Table 5 and this
design problem “microservic need commun”. One can note that the microservices patterns and
design problem are preprocessed. What the step 2 did initially was build a vocabulary based on
the terms present in microservices patterns and the design problem. Then the weight of each
term in a microservices pattern was calculated using TF-IDF, as explained in Subsection 3.2.2.
This was also done for the design problem. In the end, the result is a vector space with the 5
vectors, where each microservices pattern is represented by a vector and the design problem is
also represented by a vector.

Table 5 – Example of a Vector Space: Microservices Patterns.

ID Microservices Pattern Simplified IS
MP1 Decompose by Subdomain defin servic correspond ddd subdomain
MP2 Remote Procedure Invocation use rpibas protocol interservic commun
MP3 Messaging use asynchron messag interservic commun

Table 6 shows the vector space of the commented example, where the first column
represents the vocabulary was built, while the other columns represent the vectors. The numeric
values present in each column that represent a vector are the weights. It is worth mentioning that,
to simplify the example, the values have only one decimal place.

From a vector space like the one shown in Table 6, this step measures the similarity
between the vector that represents the design problem and the vectors that represent microservices

Chapter 3. A Microservices Patterns Recommendation Approach 35

Table 6 – Example of a Vector Space.

Terms Design Problem Vector MP1 Vector MP2 Vector MP3 Vector
microservic 0.7 0.0 0.0 0.0

need 0.7 0.0 0.0 0.0
commun 0.5 0.0 0.3 0.3

defin 0.0 0.3 0.0 0.0
servic 0.0 0.3 0.0 0.0

correspond 0.0 0.3 0.0 0.0
ddd 0.0 0.3 0.0 0.0

subdomain 0.0 0.3 0.0 0.0
use 0.0 0.0 0.3 0.3

rpibas 0.0 0.0 0.3 0.0
protocol 0.0 0.0 0.3 0.0

interservic 0.0 0.0 0.3 0.3
asynchron 0.0 0.0 0.0 0.3

messag 0.0 0.0 0.0 0.3

patterns. This is done using a Cosine Similarity (CS) that is given by Equation 3.3, where “V” is
the microservices pattern vector, “W” is the design problem vector and “n” is the size of the
vectors. Thus, the first 3 microservices patterns, ordered in descending order by CS value, are
indicated to solve the design problem.

𝐶𝑆(𝑉,𝑊) =
∑𝑛

𝑖=1𝑉𝑖𝑊𝑖√︃∑𝑛
𝑖=1𝑉

2
𝑖

√︃∑𝑛
𝑖=1 𝑊

2
𝑖

(3.3)

3.3 Implementation of the Recommendation Approach

This Section presents the implementation of the recommendation approach presented
in Section 3.2. Each Subsection in this Section describes the development of a specific step.
Subsection 3.3.1 explains the implementation of the first step, which involves preprocessing the
documents. Subsection 3.3.2 describes the implementation of the second step, where documents
are represented. Finally, Subsection 3.3.3 explains the implementation of the last step, which
involves measuring the similarity between the design problem that needs to be solved and the
microservices patterns present in the CMP.

To implement the recommendation approach, a computer program was developed in
Python. Python is a programming language that has a concise syntax and holds libraries that
helped simplify the implementation of the approach. As development environment, Collaboratory
was used, which is a cloud service offered by Google. Collaboratory allows to work with Python
in an environment where multiple people can contribute. This environment was shared with 2
contributing researchers.

The computer program was developed using OOP, this computer program consists of

Chapter 3. A Microservices Patterns Recommendation Approach 36

7 classes, as Figure 6 shows. The “Recommender” class is responsible for coordinating the
execution of each step of the recommendation approach. This class uses the other classes to
perform each step. One can note that the “Recommender” class has only 1 method called
“recommend_microservices_patterns_for”. This method receives a design problem and returns a
list with 3 recommendations. The “Recommender” class performs its responsibility through the
“recommend_microservices_patterns_for” method.

The list, returned by the “recommend_microservices_patterns_for” method, with 3
recommendations, is a list with 3 instances of the “Recommendation” class that, as its name
suggests, represents a recommendation. One can note that the “Recommendation” class has 2
attributes, “rank” and “microservices_pattern”. The “rank” attribute represents how important
the recommendation is for the design problem, its value ranges from 1 to 3. Considering 3
recommendations: R1, R2 and R3, and assuming that the rank of R1 is “2”, the rank of R2
is “1” and the rank of R3 is “3”, R2 is more important to the design problem than R1 and
R3, while R1 is more important than R3. The “rank” attribute is related to the similarity that
the recommended microservices pattern has with the design problem, the more similar the
recommended microservices pattern is to the design problem, the more important this pattern
is. About the “microservices_pattern” attribute, it represents the recommended microservices
pattern.

The “microservices_pattern” attribute of the “Recommendation” class is of type “Microser-
vicesPattern”. The “MicroservicesPattern” class, as its name suggests, represents a microservices
pattern and has 3 attributes, “id”, “nm” and “link”. The “nm” attribute represents the microservices
pattern name. The “id” and “link” attributes have a clear name, which requires no explanation.
The value for each of these attributes comes from the CMP. It is worth mentioning that this
information was already presented in Section 3.1. In summary, the “Recommendation” and “Mi-
croservicesPattern” classes are data structures that the “recommend_microservices_patterns_for”
method of the “Recommender” class uses as return. The other classes present in Figure 6 that
were not mentioned are presented in the following 3 Subsections.

3.3.1 Step 1: Preprocess Documents

There are 2 classes involved in preprocessing of documents, the “Text” and “Dataset”
classes. The “Text” class represents a text information, for example, a design problem or some
information that a microservices pattern has and that must be preprocessed (Context, Problem,
Forces, Solution, Resulting Context or Related Patterns). While a “Dataset” class represents the
CMP.

The “Text” class offers methods capable of performing the treatments presented in Section
3.2.1. These treatments are performed on the text information that the “text” attribute stores.
Table 7 shows the treatment that each method of the “Text” class does. The “clean” method
is responsible for coordinating the execution of each treatment, invoking the other methods in

Chapter 3. A Microservices Patterns Recommendation Approach 37

Figure 6 – Class Diagram: Recommendation Approach.

proper order. Thus, to preprocess, for example, a design problem, it is necessary to create an
instance of “Text’, assign this design problem to the “text” attribute and then invoke the “clean”

Chapter 3. A Microservices Patterns Recommendation Approach 38

method.

Table 7 – Text Class: Treatment that Each Method Does.
Treatment Method
Remove Null Values rmv_null
Change Letters to Lowercase lower
Remove Not a Number (NaN) rmv_not_a_number
Remove New Lines rmv_new_ln
Remove Tabs rmv_tabulation
Remove Returns rmv_return
Remove HTML Tags rmv_html
Remove Punctuation rmv_punctuation
Remove Extra Spaces rmv_x_sp
Get Uncontracted Words uncontract_wd
Remove Stop Words rmv_stop_wd
Get Stems stem_wd

The “Text” class is also useful for preprocessing the microservices patterns present in
the CMP, but only the “Text” class is not enough, because it is necessary to generate the IS of
each microservices pattern. The “Dataset” class has 2 methods, “clean” and “genr_soup”, and 1
attribute called “columns”, which represents the information that must be preprocessed about the
microservices patterns. The “clean” method uses the “Text” class to preprocess the microservices
patterns, while the “genr_soup” method generates the ISs.

It is important to mention the libraries used to implement this step, which include
“BeautifulSoup” for removing HTML tags, “NLTK” for eliminating stopwords and extracting
stems, and “Pandas” for loading and manipulating the CMP.

3.3.2 Step 2: Represent Documents and Query

In this step, only 1 class is involved, this class is called “Weighter”. The “Weighter”
class has 2 methods, “weigh_microservices_patterns” and “weigh_design_problem”. The
“weigh_microservices_patterns” method is responsible for representing the microservices patterns
or in other words, creating a vector for each IS, while the “weigh_design_problem” method is
responsible for representing the design problem, creating a vector for the design problem. To
represent microservices patterns and the design problem, this step was developed using a library
called “Scikit-Learn”. This library is used in the mentioned methods.

3.3.3 Step 3: Match

This step was also developed using the “Scikit-Learn” library. This library is used to
measure the similarity between the design problem and microservices patterns. In this step, only
1 class is involved, this class is called “Quantifier”. The “Quantifier” class has only 1 method,
this method is called “quantify”. The “quantify” method is responsible for receiving the vector

Chapter 3. A Microservices Patterns Recommendation Approach 39

of the design problem and the vector of each microservices pattern, and then measuring the
similarity between the vector of the design problem and the vectors of the microservices patterns,
as explained in Section 3.2.3.

Considering that all classes have been presented, it is relevant to explain how the “Recom-
mender” class interacts with each class. First, the “Recommender” class asks the “Text” class to pre-
process the design problem passed by parameter to the “recommend_microservices_patterns_for”
method. Then, the “Recommender” class asks the “Dataset” class to preprocess the CMP. With the
design problem and the CMP, both preprocessed, the “Recommender” class asks the “Weighter”
class to represent them. After obtaining the design problem and the CMP, both represented, the
“Recommender” class asks the “Quantifier” class to measure the similarity between the design
problem and each microservices pattern present in the CMP. Finally, the “Recommender” class
orders the microservices patterns by similarity and recommends the 3 microservices patterns
that better fits to the design problem. Figure 7 shows this interaction.

Figure 7 – Sequence Diagram: Interaction Between the Classes.

Chapter 3. A Microservices Patterns Recommendation Approach 40

3.4 Evaluation of the Recommendation Approach

With the intention of testing and evaluating the recommendation approach, a Collection of
Toy Design Problems (CTDP) was created, where 10 problems were defined. These 10 problems
are presented as follows:

• Toy Design Problem 1: A company that develops software systems, received a new
demand, where it is necessary to develop a clinical management system. In view of this,
the requirements analysts performed the requirements survey, and from the requirements,
the software architects concluded that the microservices architecture would be the most
suitable for the system. Then, systems analysts created a top-level domain model, identified
command and query operations, and finally mapped business capabilities, with the help
of requirements analysts. Now systems analysts want to define system services. These
services must be independent, small and contextually limited;

• Toy Design Problem 2: OnShop is a monolithic software system that will be migrated to
microservices. Professionals participating in this migration want to use Domain-Driven
Design (DDD) concepts to decompose the system into services, as they are familiar with
DDD;

• Toy Design Problem 3: The fictional company, XGO, is designing a microservices
architecture for its main system and it needs to make the microservices communicate. This
communication must be request/response based and synchronous;

• Toy Design Problem 4: After making the services communicate through REST, it was
observed that when the mobile app makes multiple requests to the order service, through
an API gateway, and the order service is down or responding to the requests extremely
slowly, the API gateway is unable to service new requests;

• Toy Design Problem 5: Instances of ordering, payment and other services need to make
their network address available in some way, as customers need this information to make
requests;

• Toy Design Problem 6: The ordering service is a client of the ticketing service, so there
needs to be communication between them, but for that, the client needs to find out which
instance of the ticket service should be called;

• Toy Design Problem 7: We want instances of the services not to be responsible for
registering through the registry service as we do not want to hook them up. Therefore, we
would like to transfer this task to a third party;

• Toy Design Problem 8: Clients need to communicate with the services, but there must be
a server-side mechanism that figures out which instance of the services should serve the
request;

Chapter 3. A Microservices Patterns Recommendation Approach 41

• Toy Design Problem 9: The ordering service is responsible for creating a new order,
for this it must communicate with the payment service, if the payment is approved, the
ordering service must notify the ticket service that there is a new meal to prepare;

• Toy Design Problem 10: The order service must send a message to the payment service if
the order is created successfully, as the message must be part of the transaction, in case of
failure, the message must not be sent.

Each of these problems has been labeled with the microservices pattern that can solve
it. Table 8 exposes each problem with its label. One can note that all microservices patterns
that belong to the CMP were used as labels. An important point is that only one microservices’
pattern was considered to solve a problem, in this case the most appropriate pattern, however it is
worth highlighting that a problem can be solved by more than one microservices’ pattern.

Table 8 – Each Toy Design Problem with the Microservices Pattern that Can Solve it.

Design Problem Microservices Pattern
1 Decompose by Business Capability
2 Decompose by Subdomain
3 Remote Procedure Invocation
4 Circuit Breaker
5 Self Registration
6 Client-Side Discovery
7 3rd Party Registration
8 Server-Side Discovery
9 Messaging
10 Transactional Outbox

The recommendation approach was evaluated through tests carried out with the problems
present in the CTDP, where recommendations were requested for each of these problems. After
obtaining the recommendations, they were analyzed considering Table 8 to verify the quality of
the recommendation approach through the metrics presented in Subsection 2.3.2.

3.5 Results

This Section presents the results of tests carried out with the CTDP. The microservices
patterns recommended for the design problems of this collection can be seen in Table 9. In
total 30 microservices patterns were recommended, 3 microservices patterns recommended
per design problem. The recommended microservices patterns are organized into 3 columns,
“Recommendation 1”, “Recommendation 2” and “Recommendation 3”. These columns have
relationship with the “rank” attribute, explained in Section 3.3.

When checking if each design problem received as recommendation the microservices
pattern that is capable of solving it, as shown in Table 9, 6 of the 10 design problems received

Chapter 3. A Microservices Patterns Recommendation Approach 42

Table 9 – Recommendations per Design Problem (DP).

DP Recommendation 1 Recommendation 2 Recommendation 3

1 Decompose by Business
Capability Decompose by Subdomain Server-Side Discovery

2 Decompose by Subdomain Decompose by Business
Capability

Remote Procedure
Invocation

3 Remote Procedure
Invocation Messaging Decompose by Subdomain

4 Remote Procedure
Invocation Client-Side Discovery Server-Side Discovery

5 Server-Side Discovery Remote Procedure
Invocation Client-Side Discovery

6 Remote Procedure
Invocation Client-Side Discovery Server-Side Discovery

7 Self Registration 3rd Party Registration Client-Side Discovery

8 Remote Procedure
Invocation Client-Side Discovery Self Registration

9 Remote Procedure
Invocation Self Registration 3rd Party Registration

10 Transactional Outbox Messaging Circuit Breaker

and only 4 did not receive. The 6 design problems that received were: 1, 2, 3, 6, 7 and 10. While
the 4 design problems that did not receive were: 4, 5, 8 and 9. The microservices pattern that can
solve each design problem can be seen in Table 6. Figure 8 shows this information, where the
6 that receives are called “Design Problems Solved” and the 4 that do not receives are called
“Unsolved Design Problems”.

Figure 8 – Solved and Unsolved Design Problems.

Table 10 exposes, for each design problem, the following metrics: Precision, Recall and
F1-Score. One can note that for the design problems solved (1, 2, 3, 6, 7 and 10), the values of

Chapter 3. A Microservices Patterns Recommendation Approach 43

these metrics are the same, as only 1 microservices pattern was considered as label, as explained
in Section 3.4. For the unsolved design problems (4, 5, 8 and 9), the values are also the same,
as none of them received the label how recommendation. For the design problems solved, the
values were Precision (≈ 35%), Recall (100%) and F1-Score (≈ 50%), while for the unsolved
design problems, the values were Precision (0%), Recall (0%) and F1-Score not calculated.

Table 10 – Metrics per Design Problem.

Design Problem Precision Recall F1-Score
1 ≈ 35% 100% ≈ 50%
2 ≈ 35% 100% ≈ 50%
3 ≈ 35% 100% ≈ 50%
4 0% 0% -
5 0% 0% -
6 ≈ 35% 100% ≈ 50%
7 ≈ 35% 100% ≈ 50%
8 0% 0% -
9 0% 0% -
10 ≈ 35% 100% ≈ 50%

In this case, Precision is not that important, as only 1 microservices’ pattern was
considered as label for each design problem. In testing, the important thing is that at least
1 of the microservices patterns recommended for each design problem is the label shown in
Table 8. Therefore, in this case, Recall is more important. The metrics values for each design
problem solved were good: Precision indicating that among the 3 recommended microservices
patterns, there is 1 important; Recall indicating that all important microservices patterns have
been recommended; and F1-Score indicating a reasonable performance.

Figure 9 shows a distribution of important recommendations per rank. One can note that
4 of the 6 important microservices patterns were recommended in first and 2 in second. In other
words, this means that 40% of these patterns were recommended in first and 20% in second.

Figure 9 – Distribution of Important Recommendations per Rank.

Out of 10 microservices patterns used as labels, 6 were recommended and 4 were not, as
Figure 10 shows. In other words, the recommendation approach covered/recommended 60% of
these patterns. This indicates that the recommendation approach was able to address 60% of the
design problems and that there is room for improvement, as 40% of the design problems were
not addressed. In general, the recommendation approach presented good results.

Chapter 3. A Microservices Patterns Recommendation Approach 44

Figure 10 – Coverage.

45

4
Floc: A Microservices Patterns Recommen-
dation Tool

In order to provide a way to help developers solve design problems present in microservices-
based systems, this work proposes a tool called Floc. This tool is capable of, given a design
problem, recommending microservices patterns.

Floc is a web tool that offers a friendly and responsive User Interface (UI), that is, capable
of adapting to different devices, such as smartphones, tablets, notebooks and desktops. The tool
offers 10 features, this information is detailed in Sections 4.3 and 4.5. This shows that, despite
having as its main feature the recommendation of microservices patterns, the tool has additional
features.

The tool in question was developed in Java. It is also important to mention that 3 projects
that are part of the Spring ecosystem1 were used to develop this tool, they are: Spring Boot, a
facilitator, since it reduces the need to make configurations in Spring-based systems; Spring
Data, responsible for enabling access to data; and Spring Security, responsible for providing an
authentication and access control structure. In addition to these projects, Thymeleaf, a modern
template engine that integrates well with Spring (THYMELEAF, 2023), was also used. Section
4.1 provides more information on how the tool was developed.

This Chapter has 5 more Sections: Section 4.2 presents the tool layers; Section 4.4
explains how the tool was deployed; Section 4.6 explains how the tool was evaluated; Section 4.7
presents the results from the evaluation carried out; and Section 4.8 addresses threats to validity.

4.1 Floc Components View

The software system, Floc, is composed of 2 components, as shown in Figure 11. One
of them, the database, is responsible for storing relevant data for the system. And the other,
1 The Spring ecosystem provides several projects that drive the development of Java-based systems, as they focus

on productivity, simplicity and speed (VMWARETANZU, 2023).

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 46

called Microservices Patterns Recommender (MPR), is responsible for actually making the
recommendations. Both are explained in detail in this Section. The component called Corpus of
Microservices Patterns, already introduced in Section 3.1, is crucial to MPR.

Figure 11 – Floc: Components.

4.1.1 Microservices Patterns Recommender

The MPR is a REST API that makes use of the recommendation approach presented in
Chapter 3. It is important to mention that the MPR consists of the implementation discussed in
the Chapter 3 with the addition of an endpoint that exposes the recommendation of microservices
patterns, given a design problem. To develop the REST API, the framework called FastAPI2 was
used.

The cited endpoint is /recommendations, it can be used through an HTTP request, using
GET as a verb. It is crucial to indicate the design problem one wants to solve so that solutions,
i.e., microservices patterns, are recommended. The design problem must be indicated in a query
parameter named design_problem that must be part of the request. In response, the endpoint
returns a list of 3 recommendations, each recommendation is represented by an object that has 2
properties called rank and microservices_pattern, it is worth mentioning that these properties
have already been explained in Chapter 3. The response format is JSON.

These communication details can be seen in an OpenAPI specification, available in /docs.
The framework, FastAPI, is capable of generating this specification automatically. Figure 12
2 FastAPI is a modern web framework used for developing API with the programming language “Python”

(TIANGOLO, 2023).

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 47

exposes the MPR OpenAPI specification. As shown in Figure 12, the MPR OpenAPI specification
provides details about the /recommendations endpoint, including the required HTTP verb, the
necessary query parameter, and the expected response.

Figure 12 – MPR OpenAPI Specification.

Figure 13 provides an example illustrating the communication between a client and the
MPR. In the example, the client makes a request to the endpoint that recommends microservices
patterns, indicating the HTTP verb “GET” and the design problem “Microservices A and B, need
to communicate.”. In response, the client receives 3 recommendations, two of which are omitted
to simplify the example response. The Floc communicates with the MPR exactly as explained
throughout this Section, so it is a client of the MPR.

4.1.2 Floc Database

To create this component, PostgreSQL was the chosen database, which is an open source
relational database system that is reliable, in addition to having robust features. As can be seen
in Figure 14, the database has four tables: user, design_problem, microservices_pattern and
recommendation, each with its respective columns. The relationships established between the
tables are crucial to the functioning of the system. A user can create multiple design problems,
and a design problem is associated with a specific user. Furthermore, a design problem receives
three distinct recommendations. It is worth mentioning that a recommendation is related to a
design problem and a microservices pattern.

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 48

Figure 13 – Sequence Diagram: Communication Between a Client and the MPR.

Figure 14 – Database: Entity Relationship Diagram (ERD).

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 49

The user table has four essential columns. The id column serves as the primary key
and provides a unique identification for each user in the system. The first_nm and last_nm
columns respectively represent the user’s first and last name, allowing personal identification. The
email column stores the unique email address associated with each user, used for authentication
purposes. Finally, the password column is used to securely store, that is, encrypted, the user’s
password, ensuring the protection of login information.

The design_problem table also contains four columns. The id column is the primary
key and assigns a unique identifier to each design problem. The description column is used to
store the design problem described by the user. The created_in column stores the date the design
problem was created, aiding time tracking. The user_id column establishes a relationship with
the user table, indicating which user is the author of the design problem, allowing problems to be
assigned to specific users.

The microservices_pattern table has three columns. The id column acts as the primary
key and assigns a unique identifier to each microservices pattern. The nm column represents the
name of the microservices pattern. The link column is used to store the pattern’s page address on
Richardson’s website (RICHARDSON, 2023), allowing direct access to additional information
about the microservices pattern, such as documentation or usage examples.

The recommendation table has four columns. The design_problem_id column establishes a
relationship with the design_problem table, indicating which design problem is being addressed by
the recommendation. The microservices_pattern_id column relates to the microservices_pattern
table, specifying which microservices pattern is being recommended. The status column is
for the user to indicate if the recommended pattern solves the design problem, partially solves
it or does not solve it. Finally, the rank column is used to rank the recommendation against
other recommendations for the same design problem, providing an ordering that is used for
prioritization. It is worth mentioning that the microservices_pattern table receives a data preload
for normalization and performance purposes. Thus, the existing microservices patterns in Corpus
of Microservices Patterns are previously inserted in this table.

With the database structured in this way, it is possible to store and manage information
related to users, design problems, microservices patterns, and recommendations. This structure
is highly relevant to the functioning of the tool, Floc.

4.2 Floc Implementation View

The tool is divided into 5 layers, namely: view, controller, service, model, and repository.
As can be observed, 3 of these layers (model, view, and controller) are part of the Model-View-
Controller (MVC) architecture. This widely-adopted architecture pattern aims to segregate the user
interface (view) and the domain model (model), ensuring they remain decoupled. This decoupling
enhances the adaptability of the interface to changes (DEACON, 2009). In consideration of the

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 50

Single Responsibility Principle (SRP), wherein each layer should have a single, specific reason for
change (MARTIN, 2017), the remaining 2 layers, service and repository, assume responsibilities
abstracted from the model. The responsibility of each of these 5 layers is described as follows:

• View: This layer represents the user interface, it is responsible for ensuring the display of
information appropriately, as well as communicating the user’s actions to the controller;

• Controller: Responsible for receiving user requests and making decisions on how to
handle these requests, triggering, if necessary, the service to process these requests;

• Service: This layer knows about business rules. Its responsibilities include: processing
what the controller requests, coordinating transactions to ensure data consistency in the
database, and handling exceptions and errors related to business rules. As business rules
are centralized in this layer, they can be reused in other parts of the application;

• Model: This layer is the core of the application, as it is responsible for providing a set
of data structures related to the business domain, which are utilized for communication
between different layers;

• Repository: Responsible for data access. This layer provides interfaces that enable
communication with the database. With this layer it is possible to change the data source
without impacting the service layer. It is worth noting that only the service layer interacts
with the repository layer.

Figure 15 shows how the layers interact with each other. Starting with the user performing
a certain action in the view layer. Then, the view layer communicates to the controller layer about
the user’s action, and can, if necessary, pass an input model. The controller layer, aware of this
action that can be understood as a user request, asks the service layer to process this request. If
necessary, the service layer interacts with the repository layer to access the desired data in the
database, this means reading or writing data. After this, the service layer returns a response to the
controller layer that updates the view layer, ending the interaction with the view layer showing the
updates to the user, thus fulfilling the user’s initially performed action. The model layer interacts
with the other layers, as explained previously, the model layer provides data structures relating to
the business that are used in communication between layers.

In addition to the tool having a layered architecture and using concepts from the MVC
architecture, the tool also has a monolithic architecture, as all of its functionalities, except for
recommending microservices patterns, are centralized in a single deployment unit. This means
that the tool was developed as a single program and all its parts share the same database. It is
worth mentioning that the tool is integrated with MPR.

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 51

Figure 15 – Sequence Diagram: Interaction Between the Layers.

4.3 Floc Scenarios of Execution

When accessing the tool, the user can use two features, login or sign up. To sign up, the
user must inform his/her first name, last name, email and password. To log in, it is necessary to
inform an email and password. When registering, the user can log in. The Login and Sign Up
pages can be seen respectively in Figures 16 and 17.

When logging in, the user is redirected to the My Design Problems page, where he/she
can view his/her registered design problems or click on New Design Problem to go to the New
Design Problem page, where it is possible to describe a new design problem. Figures 18 and 19
show the cited pages. The New Design Problem page contains a single field form that receives a
design problem. After reporting a design problem, the user can click Solve to register the reported
design problem and obtain recommendations.

After the user clicks Solve, he/she is redirected to the Design Problem Details page that
presents data regarding the registered design problem: Description, Created In and Recommended
Microservices Patterns. It is possible to view detailed information about a pattern by clicking the
button which has a link icon, it redirects to the exact page on Richardson’s Website which explains

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 52

Figure 16 – Login Page.

Figure 17 – Sign Up Page.

the pattern. The user can also inform if a recommended pattern solves the design problem,
partially solves the design problem or does not solve the design problem. This is important to
build a dataset that can be used in future research to make recommendations with classification
algorithms, for example.

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 53

Figure 18 – My Design Problems Page.

The Design Problem Details page also allows editing the design problem, by clicking
the Edit button which redirects to the Edit Design Problem page which contains a single field
form, where the design problem can be changed. If the user wants to delete the design problem,
then he/she can simply click the Delete button in Design Problem Details and confirm the action.
Figures 20 and 21, respectively show the Design Problem Details and Edit Design Problem pages.

4.4 Floc Deployment View

To deploy the components, two servers were used, server 1 and server 2, as shown in
Figure 22. On server 1, two components were deployed, the tool (Floc) and the database. To serve
Floc, Tomcat (APACHE, 2023), a Web server, was used. As explained in Section 4.1, the tool
depends on the database, and as no other component depends on the database, the database was
also deployed on server 1 and it is not possible to communicate with it outside of server 1.

On server 2, the MPR was implemented, which depends on the Corpus of Microservices
Patterns. The Corpus of Microservices Patterns is embedded in MPR, so it is correct to say
that only MPR has been deployed. MPR contains a file called Dockerfile, in this file there are

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 54

Figure 19 – New Design Problem Page.

instructions to create an image with what is needed to run MPR in a Docker container. With
this, Docker3 was installed on server 2 and MPR was placed running in a Docker container.
Communication between the Floc and the MPR happens as explained in Section 4.1.

The instructions present in the Dockerfile can be seen in Code 1. In line 1, the official
Python 3.10 image is defined as the base image. Base image is an image that serves as a starting
point for creating another image. On line 3, an environment variable called PYTHONUN-
BUFFERED is defined and receives “True” as its value. Line 3 directs Python to display output
in the terminal, this makes the terminal useful for viewing logs. On line 4, an environment
variable called APP_HOME is defined and receives “/app” as its value. On line 5, the value of
the APP_HOME variable is defined as the working directory, which is “/app”. After setting the
working directory, all subsequent commands are executed in that directory. In line 6, the files
and directories present where the Dockerfile is located are copied to the working directory. In
other words, on line 6, the MPR is copied to the working directory. On lines 8, 9 and 10, MPR
dependencies are installed. Finally, on line 12, the command that is executed when starting a
container based on the created image is defined. This command starts a web server called Uvicorn
3 Docker is a container virtualization platform that simplifies packaging, distributing, and running applications in

isolated, portable environments (DOCKER, 2023).

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 55

Figure 20 – Design Problem Details Page.

(ENCODE, 2023), which serves the MPR.

Código 1 – MPR: Dockerfile.

1 FROM python:3.10-slim-bullseye
2
3 ENV PYTHONUNBUFFERED True
4 ENV APP_HOME /app
5 WORKDIR $APP_HOME
6 COPY . ./
7
8 RUN pip install --no-cache-dir -r requirements.txt
9 RUN python -m nltk.downloader punkt

10 RUN python -m nltk.downloader stopwords
11
12 CMD ["uvicorn", "main:webapi", "--host", "0.0.0.0", "--port", "8080"]

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 56

Figure 21 – Edit Design Problem Page.

Figure 22 – Floc: Deployment Diagram.

4.5 Floc Features

In this Section, the tool’s features are described, totaling 10 features. Each feature is
detailed individually in its own subsection, where its implementation and related classes are

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 57

covered. This Section aims to offer a complete understanding of the features of the tool in
question.

4.5.1 Login

The login functionality was implemented using Spring Security, with customizations to
search for the user based on the email provided. If the system does not find a user corresponding to
the email provided, it throws an exception called “UsernameNotFoundException”. If the system
finds the user with the email provided, it proceeds with password verification. It is important to
note that the password entered by the user must match the password registered for that user, Spring
Security takes care of this verification. If the user cannot be found by email or the password is
incorrect, the system displays an error message on the login page.

Figure 23 presents a class diagram with 3 classes and 1 interface that are responsible for
the feature in question. The “SystemUserDetailsSvc” class is composed of the “UserRepository”
interface, as the “SystemUserDetailsSvc” class needs to use the “findByEmail” method that this
interface offers. The “SystemUserDetailsSvc” class depends on the “SystemUser” class, as the
“loadUserByUsername” method returns an instance of that class. The “SystemUser” class is
composed of the “User” class.

Figure 23 – Class Diagram: Login.

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 58

Customizations for user authentication have been implemented in the service class named
SystemUserDetailsSvc, which implements the “UserDetailsService” interface of Spring Security.
When Spring Security receives a login request, it is directed to the “SystemUserDetailsSvc”
class through the invocation of the “loadUserByUsername” method. This overridden method is
responsible for fetching a user based on the username, which in this case is the email address.

To fetch the user from the database, the “SystemUserDetailsSvc” class utilizes an
instance of the “UserRepository” interface. Spring Data is responsible for providing this instance,
simplifying data access. When the user is found in the database based on the provided email
address, the “loadUserByUsername” method returns an instance of the “SystemUser” class.

The “SystemUser” class was created to customize the information stored in the user’s
session by Spring Security. The “SystemUser” class is a specialization of another class called
User, which is part of Spring Security. The Spring Security “User” class implements an interface
called UserDetails. It is worth noting that the “SystemUser” class is composed of the model class,
also named User, which contains user information.

4.5.2 Sign Up

As presented in Section 4.3, to register, the user must provide 4 pieces of information:
first name, last name, email, and password. To access the user registration page, the user must
click on “Sign Up” on the login page. On the page called Sign Up, as already explained, the user
must fill out the registration form with the required information.

Figure 24 shows 3 classes and 1 interface that are related to the “Sign Up” feature,
where the “UserController” class contains two methods, one of them, called getSignUpView, is
responsible for returning the “Sign Up” page when the user clicks on “Sign Up” on the “Login”
page. The method called registerUser, which has a user as one of its parameters, is invoked when
the user clicks on the “Sign Up” button present on the registration form.

When the user clicks on the mentioned button, the “registerUser” method receives the
user who should be registered. Then, the “registerUser” method invokes the “register” method
that belongs to the “UserSvc” service class. The “register” method knows what must be done to
register a user. Firstly, the “register” method verifies whether the email provided by the user is
already in use. If the email is in use, then an exception called “EmailIsAlreadyInUseException”
is thrown, resulting in an error message being presented to the user. If the email is not in use,
then the password provided by the user is encoded and the user is inserted into the database. It
is worth mentioning that validations about, for example, required data, are already done in the
controller, before data is passed to the service.

To insert the user into the database, the “UserSvc” class uses the “UserRepository”
interface. Although Figure 24 does not show, for simplification purposes, the “UserRepository”
interface extends another interface called JpaRepository that belongs to Spring Data. The

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 59

Figure 24 – Class Diagram: Sign Up.

“JpaRepository” interface offers the save method that can be used to perform this insertion. After
inserting the user into the database, the user is redirected to the “Login” page, where a success
message is presented.

4.5.3 List of Design Problems

As explained in Section 4.3, upon logging in, the user is redirected to the “My Design
Problems” page, where he/she can view his/her design problems. All design problems reported by
the user on the “New Design Problem” page to receive microservices pattern recommendations
are displayed on the “My Design Problems” page in the order in which they were created.

Figure 25 presents 3 classes and 1 interface that have a relationship with the feature
in question, where the “DesignProblemController” class holds the “forwardToMyDesignProb-
lemsView” method which is responsible for returning the “My Design Problems” page with
the design problems that belong to the user. The “forwardToMyDesignProblemsView” method
receives a single parameter, which is used to page the design problems that belong to the user.
This parameter is of type “Pageable”. Pageable is an interface that Spring offers to help implement

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 60

paged queries.

Figure 25 – Class Diagram: List of Design Problems.

The “forwardToMyDesignProblemsView” method invokes the “findAllByAuthenticate-
dUserOrderCreatedInDesc” method that belongs to the “DesignProblemSvc” service class. The
“findAllByAuthenticatedUserOrderCreatedInDesc” method receives the Pageable and interacts
with an instance of the “DesignProblemRepository” interface to obtain the design problems that
belong to the logged user. After obtaining these design problems, the method returns a design
problem page with a maximum of 9 problems. Although a design problem has 1 user and a
recommendation list, for the “List of Design Problems” feature it is not important that design
problems have these two attributes fulfilled.

The design problem page returned by the “findAllByAuthenticatedUserOrderCreatedIn-
Desc” method is used by the “forwardToMyDesignProblemsView” method to update the “My
Design Problems” page, so the user is able to view their design problems.

4.5.4 Solve Design Problem

As explained in Section 4.3, given a design problem, the user can request microservices
pattern recommendations on the “New Design Problem” page. Figure 26 shows the 6 classes and
1 interface that are related to this feature. The “forwardToNewDesignProblemView” method of
the “DesignProblemController” class is responsible for returns to the Client, i.e., the browser, the
“New Design Problem” page. When the user clicks the “Solve” button, the “register” method that
belongs to “DesignProblemController” class is invoked.

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 61

Figure 26 – Class Diagram: Solve Design Problem.

The “register” method that belongs to the “DesignProblemController” class is responsible
for receiving the design problem described by the user and invoking the “registerWithAuthenti-
catedUser” method that belongs to the “DesignProblemSvc” class, passing the design problem.
The “registerWithAuthenticatedUser” method, of the “DesignProblemSvc” class, invokes the
“recommendMicroservicesPatternFor” method that belongs to the “RecommendationSvc” class.

As the method name suggests, the “recommendMicroservicesPatternFor” method is
responsible for obtaining microservices pattern recommendations for the problem. This method
obtains these recommendations by communicating with the MPR, this communication occurs as
explained in Subsection 4.1.1. To make requests to the MPR, the “recommendMicroservices-
PatternFor” method uses the HTTP client provided by Spring WebFlux, this client is called
WebClient. The “RecommendationSvc” class has a WebClient as an attribute. After obtaining
the recommendations, the “recommendMicroservicesPatternFor” method returns a “List” with
these recommendations.

After the “registerWithAuthenticatedUser” method, of the “DesignProblemSvc” class,
receives the recommendations, it attributes them to the “recommendations” attribute of the design
problem. After that, the ‘registerWithAuthenticatedUser” method that belongs to the “Design-
ProblemRepository” interface is invoked to insert the design problem and recommendations into
the database.

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 62

After database insertions occur, the design problem that was inserted is returned to the
“register” method with its id, which redirects the user to the “Design Problem Details” page and
presents a success message, indicating that recommendations were made for the design problem
described by the user.

4.5.5 View Design Problem Details

The user can see the details of a design problem on the “Design Problem Details” page.
The user can access this page by using the “Solve Design Problem” feature or by clicking on a
design problem on the “My Design Problems” page. Figure 27 presents 3 classes and 1 interface
responsible for the “View Design Problem Details” feature.

Figure 27 – Class Diagram: View Design Problem Details.

The “forwardToDesignProblemDetailsView” method of the “DesignProblemController”
class is responsible for receiving the user request, invoking the “findByIdAndAuthenticate-
dUserOrThrowException” method that belongs to the “DesignProblemSvc” class to obtain the
design problem that the user wants to see the details and then return to the “Design Problem
Details” page presenting the obtained design problem data.

The “findByIdAndAuthenticatedUserOrThrowException” method interacts with the
“findByIdAndAuthenticatedUser” method of the “DesignProblemRepository” interface to search
the database for the design problem, including its recommendations. If the design problem is not
found, the method “findByIdAndAuthenticatedUserOrThrowException” throws an “DesignProb-
lemNotFoundException”. As the exception name suggests, it indicates that the design problem

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 63

was not found, therefore, the method “forwardToDesignProblemDetailsView” informs the user.
If the design problem is found, then the “forwardToDesignProblemDetailsView” method returns
the “Design Problem Details” page presenting the design problem data.

4.5.6 Edit Design Problem

It is possible to edit a design problem on the “Design Problem Details” page by clicking the
“Edit” button. To understand how this feature was implemented, it is important to observe Figure 28.
When the user clicks on the mentioned button, the “forwardToEditDesignProblemView” method,
that belongs to the “DesignProblemController” class, is invoked. This method is responsible for
redirecting the user to the “Edit Design Problem” page.

Figure 28 – Class Diagram: Edit Design Problem.

Before redirecting, the “forwardToEditDesignProblemView” method gets the design
problem that the user wants to edit to fill the “Description” field with the current description
of the design problem. It is worth mentioning that the “Edit Design Problem” page was

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 64

presented in Section 4.3. To get the design problem, the mentioned method invokes the
“findByIdAndAuthenticatedUserOrThrowException” method of the “DesignProblemSvc” class,
which invokes the “findByIdAndAuthenticatedUser” of the “DesignProblemRepository” interface.

Thus, the “findByIdAndAuthenticatedUser” method fetches the design problem from the
database and returns to the “findByIdAndAuthenticatedUserOrThrowException” method, which
returns to the “forwardToEditDesignProblemView” method. Thus, the “forwardToEditDesign-
ProblemView” method redirects the user to the “Edit Design Problem” page and exposes the
current design problem description.

When entering the “Edit Design Problem” page and changing the design problem
description, the user must click the “Solve” button which invokes the “edit” method that belongs
to the “DesignProblemController” class. This method is responsible for invoking the “update”
method of the “DesignProblemSvc” class, which serves to update the design problem, and
redirect the user to the “Design Problem Details” page with the updated design problem.

To update the design problem, firstly the “update” method invokes the “updateByIdAndAu-
thenticatedUser” method of the “DesignProblemRepository” interface, which is responsible for
updating the design problem description in the database. Secondly, the “update” method invokes
the “deleteByDesignProblemId” method of the “RecommendationSvc” class, which invokes the
“deleteByDesignProblemId” method of the “RecommendationRepository” interface to delete the
current recommendations from the design problem in the database. Thirdly, the “update” method
invokes the “recommendMicroservicesPatternFor” method of the “RecommendationSvc” class
to obtain new recommendations for the design problem. Finally, the “update” method invokes the
“saveAll” method of the “RecommendationSvc” class to insert the new recommendations made
for the design problem into the database. It is worth mentioning that the “saveAll” method makes
the insertions by invoking the “register” method of the “RecommendationRepository” interface.

After updating the design problem and its recommendations, the “edit” method redirects
the user to the “Design Problem Details” page, where he/she can see the updated information, as
well as a success message informing that the design problem was updated successfully.

4.5.7 Delete Design Problem

On the “Design Problem Details” page, it is possible to delete the design problem, as
presented in Section 4.3. To delete the design problem, in the view called “Design Problem
Details” page, there is a JavaScript code that is responsible for making an Asynchronous HTTP
Request to the server. This request is made to “/design-problems/{id}” and the HTTP verb used
is “DELETE”. This snippet “{id}” is replaced by design problem id which should be deleted.

Figure 29, shows 2 classes and 1 interface that are responsible for the “Delete Design
Problem” feature. The “delete” method, which belongs to the “DesignProblemController” class,
is responsible for fulfilling the mentioned request. The “delete” method invokes the “deleteByI-

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 65

dAndAuthenticatedUser” method of the “DesignProblemSvc” service class, which interacts with
the “deleteByIdAndAuthenticatedUser” method that belongs to the “DesignProblemRepository”
interface to delete the design problem in the database. The 3 methods mentioned receive a
parameter of type “Long”. This parameter is the design problem id that is passed between the
methods. An important rule is that the design problem can only be deleted by the user who
reported it.

Figure 29 – Class Diagram: Delete Design Problem.

After deleting the design problem in the database, the “delete” method of the “Design-
ProblemController” class returns an HTTP Response with status code “204” which indicates that
the design problem was successfully deleted and no content was returned by the server. If the
design problem was not reported by the logged user, an HTTP Response is returned with status
code “404” which indicates that the design problem was not found. Upon receiving the response,
in case of success, the view redirects the user to the “My Design Problems” page and displays a
success message. In case of error, the view presents an error message to the user.

4.5.8 Feedback for a Recommended Microservices Pattern

On the “Design Problem Details” page, in the table where the recommended microservices
patterns are presented, there is a column with the title “Does This Microservices Pattern Solve
This Problem?”, for each row in this table, there is a selection field in this column. This field
contains 3 options, they are: 1) Yes, It Does Solve, 2) It Does Partially Solve and 3) It Does Not

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 66

Solve. As explained in Section 4.3, the user can give a feedback for each recommendation by
choosing one of these 3 options.

When choosing one of the mentioned options, an Asynchronous HTTP Request is made
to “/{designProblemId},{microservicesPatternId}/modify-status”, using the HTTP verb “PUT”.
The “{designProblemId}” snippet is replaced by the design problem id and the “{microservices-
PatternId}” snippet is replaced by the microservices pattern id, these two data make up the
recommendation id. In addition to this data, the request body contains, in JSON format, the
recommendation with its new status/feedback and its id.

Figure 30 shows 3 classes, 1 interface and 1 enum that are part of this feature. The
“modifyStatus” method that belongs to the “RecommendationController” class, is responsible for
receiving the mentioned request. The “modifyStatus” method of the “RecommendationController”
class receives 3 parameters, the first is the design problem id, the second is the microservices
pattern id and the third is the recommendation sent in the request body. What this method
does is include the id in the recommendation and invoke the “modifyStatus” method of the
“RecommendationSvc” class to update the recommendation status.

The “modifyStatus” method of the “RecommendationSvc” class interacts with the
“modifyStatus” method that belongs to the “RecommendationRepository” interface to update the
recommendation status in the database. It is worth mentioning that the recommendation status is
represented by the “status” attribute present in the “Recommendation” class model. The type of
this attribute is RecommendationStatus which is an enum. The “RecommendationStatus” enum
contains the 3 statuses (SOLVED, PARTIALLY_SOLVE and UNSOLVED) that the user can
choose.

After updating the recommendation status, the “modifyStatus” method of the “Recom-
mendationController” class, returns an HTTP Response with the status code “200”, indicating
that the feedback was given successfully. Thus, the view presents a success message.

4.5.9 See More Information About a Microservices Pattern

As described in Section 4.3, on the “Design Problem Details” page, it is possible to
access more information about the recommended microservices patterns. To do so, simply click
the button with a link icon, located in the last column of the table where the recommended
microservices patterns are displayed. Upon clicking this button, the user is redirected to a page on
the Richardson website (RICHARDSON, 2023), where information about the pattern is available.

The implementation of this feature is simple because each microservices pattern includes
an attribute called “link” that represents the address of the corresponding page. Therefore, it is
only necessary to instruct the button that, when clicked, it should redirect the user to this address.
It is worth noting that when accessing the “Design Problem Details” page, the recommended
patterns are loaded, as explained in Subsection 4.5.5.

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 67

Figure 30 – Class Diagram: Feedback for a Recommended Microservices Pattern.

4.5.10 Logout

To do “Logout”, the user must click on the drop-down menu that presents their name,
then the next step is to click on the “Logout” option. Thus, “Logout” is done and the user is
redirected to the “Login” page. The “Logout” feature was implemented with Spring Security.
When the user clicks “Logout”, a request is made to “/logout”, and Spring Security deletes the
user session. This feature is simple to implement with Spring Security.

4.6 Floc Evaluation

To evaluate the tool, it was published so that tests could be carried out in a company
that offers integrated and innovative cyber security and infrastructure solutions. In 2022, this

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 68

company was classified, by MSSP Alert (MSSP, 2023), as one of the 40 best security companies
in the world. Throughout this dissertation, this company is called by the fictitious name of ASM.

Three developers from ASM ran tests in which they asked for recommendations for
microservices patterns to solve industrial design problems. Then, these developers evaluated, in
the tool itself, each recommendation with one of these 3 response options: 1) Yes, It Does Solve;
2) It Does Partially Solve; or 3) It Does Not Solve. Table 11 shows the time of experience, in
years, that each developer has with software development and systems based on microservices.

Table 11 – Time of Experience of Developers Involved in the Tests.

ID
Time of Experience in
Software Development

(Years)

Experience Time in
Microservices-Based Systems

(Years)
D1 29 7
D2 23 3
D3 12 1

After testing, the developers involved were individually interviewed. A total of 9 questions
were asked, which can be found in Table 12, and they pertained to the tool. The interviews
were essential to collect feedback from each developer and information that could contribute to
improving the tool.

Table 12 – Questions Asked in the Interviews.

Question Description
Q1 In which contexts can the tool help?
Q2 How can the tool help developers?
Q3 What advantages can the tool provide in a software project?
Q4 What disadvantages can the tool provide in a software project?
Q5 How can a company benefit from adopting the tool?
Q6 What limitations does the tool present?
Q7 What can be improved in the tool?
Q8 Would you use the tool in a software project?
Q9 What difficulties did you find with the user interface when using the tool?

4.7 Results

This section presents the results of the tests and interviews, as explained in Section 4.6.
Subsection 4.7.1 provides the results of the tests conducted with industrial design problems,
while Subsection 4.7.2 presents the responses obtained from the interviews with the developers
involved in the tests.

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 69

4.7.1 Tests with Industrial Design Problems

As explained in Section 4.6, tests were performed at ASM with industrial design problems,
where 3 developers have requested recommendations for existing design problems in certain
software products, using Floc. After getting the recommendations, they labeled each recommended
pattern with one of the following: Yes, It Does Solve; It Does Partially Solve; or It Does Not
Solve. This was done on the page called Design Problem Details which was presented in Section
4.3.

Figure 31 – Distribution of Recommended Microservices Patterns per Label.

In total, eight design problems were reported by the developers. Thus, 24 microservices
patterns recommendations were made, given that for a design problem, 3 patterns are recom-
mended, as explained in Subsection 4.1.1. Considering the labels already mentioned, it is possible
to see in Figure 31 that 14 recommended patterns were labeled “Yes, It Does Solve”, 6 were
labeled “It Does Partially Solve” and 4 were labeled “It Does Not Solve”.

With the intention of presenting some examples of industrial design problems reported
during the tests performed and providing an idea of how these problems were described, below it
is possible to view three of the eight industrial design problems reported by the developers:

• Industrial Design Problem 1: In a microservices architecture, it is common for services
to need to communicate with each other to fulfill requests from clients. However, if the
communication between microservices is not optimized, it can lead to performance issues
and slow down the entire system. For example, if each microservice makes separate HTTP
requests to other microservices, it can result in a large number of network calls and slow
down the overall response time;

• Industrial Design Problem 2: How to migrate a monolithic system that has only one
database to microservices systems, with communication between the data;

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 70

• Industrial Design Problem 3: How to make the front-end communicate with several
microservices and ensure security.

As depicted in Figure 32, only two patterns were not recommended, Circuit Breaker and
Self Registration. All other patterns were recommended and it is important to highlight that
the three most recommended patterns were, in descending order, Remote Procedure Invocation,
Messaging and Decompose by Subdomain.

Figure 32 – Distribution of Recommendations per Microservices Pattern.

Data presented in this Subsection indicate that more than 80% of the recommended
patterns were helpful in dealing with the problems. Although four recommended patterns were
labeled “It Does Not Solve”, 100% of the problems received recommendations for important
patterns that solve them. This means that the tool developed in this work is useful. Several different
patterns were recommended, demonstrating that MPR is not addicted to specific patterns.

4.7.2 Interviews with Developers

After running the tests at ASM, the three developers who participated in the tests were
individually interviewed. During the interviews, they answered nine questions related to the tool.
The answers to these questions are presented throughout this Section. In general, the responses
were positive and revealed improvements that can be made in future research.

About Q1, it was pointed out by D1 that the tool is useful in a context where it is necessary
to develop new functionalities, as well as maintaining existing functionalities. This developer
also mentioned that the tool can help in contexts involving less experienced developers. D3, on
the other hand, stated that the tool can be better used by more experienced developers. As for D2,
he explained that the tool can help in contexts where problems need to be dealt with, including
those involving several teams, where support is needed to decide which solution to use.

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 71

Regarding Q2, the three interviewees stated that the tool can help developers to find
microservices patterns to solve problems reported by them. According to D1, this improves the
development process of systems based on microservices architecture. In addition, D1 and D2
pointed out that the tool can also help developers in continuous learning. Increased productivity
was also mentioned by D1, D2 and D3.

About Q3, the three interviewees reported that the tool can offer agility in the search for
patterns to solve problems present in software projects. According to D1 and D2, other advantages
are the standardization of a source of knowledge, as well as the standardization of solutions.

Regarding Q4, D1 reported that given the ease provided by the tool in finding patterns to
solve certain problems, developers, especially the less experienced ones, can become enchanted
and become dependent on the use of patterns, even to solve problems that do not require patterns.
Therefore, D1 concluded that it is important for developers to assess any problems and the real
need to use patterns to solve them. D2 pointed out that if there are patterns recommendations that
have a considerably long learning curve, it can be a disadvantage, considering the existence of
alternative solutions in other sources, with a smaller learning curve, and the short deadlines in
software projects. D3 did not mention disadvantages.

About Q5, D1 stated that the tool can be used to train developers in a shorter time,
providing ease of understanding regarding microservices patterns. D1 also mentioned that the
application of the correct patterns generates agility and ensures that the microservices that are
part of a software product meet the needs of the stakeholders, guaranteeing the quality of the
product. D2 and D3 pointed out that the tool can be used to standardize solutions and support
decision-making. D2 also stated that not having standardized solutions is a problem, taking into
account the turnover of developers in a company. In view of this, D2 stated that the tool can
improve developers’ productivity and communication between them.

Regarding Q6, D1 pointed out that the number of patterns that the tool knows is
a limitation. D2 stated that not demonstrating practical examples and not indicating other
developers’ preferences for solving a certain type of problem are limitations. D3 pointed out, as a
limitation, the absence of suggestions regarding how to organize folders and files related to a
pattern.

About Q7, D1 reported as an improvement the expansion of the CMP. D2 pointed, out
as an improvement, the display of statistics with the aim of helping the developer who seeks to
solve a problem, to understand if the recommended pattern that he thinks of choosing, was the
choice of other developers to solve problems similar to his. D3 declared, as an improvement, the
presentation of suggestions regarding how to organize folders and files related to a pattern.

Regarding Q8, D1 pointed out that he would use the tool in a software project. D2 also
stated that he would use it, but initially on a small project, without involving multiple teams.
D3 said he would also use it, including academically to teach students and develop scientific

Chapter 4. Floc: A Microservices Patterns Recommendation Tool 72

research.

About Q9, the last question, D1 and D2 stated that they had no difficulties with the user
interface, D1 found it simple and D2 found it intuitive. D3 reported that he had difficulties to
understand the information presented and suggested the inclusion of explanations.

4.8 Threats to Validity

According to Ampatzoglou et al. (AMPATZOGLOU et al., 2019), threats to validity are
aspects that compromise research credibility. Thus, aiming to guarantee the credibility of this
work, it was necessary to mitigate these aspects. As reported by Zhou et al. (ZHOU et al., 2016),
it is interesting to ensure: Construct Validity, Internal Validity, External Validity, and Conclusion
Validity.

4.8.1 Construct Validity

This research requires understanding about the microservices architecture, microservices
patterns, and information retrieval. This understanding is given in Chapter 2, where it is also
possible to observe how important it is to help developers in the selection of microservices
patterns.

4.8.2 Internal Validity

This work was conducted by 3 researchers. To ensure that the results are free from bias,
the tests and interviews carried out were analyzed and evaluated by the 3 researchers. It is
important to mention that a presentation about the tool was made to the developers involved in
the tests, ensuring understanding of its use.

4.8.3 External Validity

Regarding the generalization of the results, tests were initially carried out using a
collection of toy design problems. Then, tests were carried out using industrial design problems
in a Cybersecurity company. Testing using industrial design problems was carried out by three
experienced developers who were interviewed individually to ensure responses were free from
bias. The results of the tests and interviews are useful in understanding how to apply this research
in other environments or contexts.

4.8.4 Conclusion Validity

This research can be replicable considering Section 1.4 which explains the methodology
used to develop this work and Chapters 3 and 4 which respectively explain, in detail, the
recommendation approach and the Floc tool.

73

5
Conclusions, Contributions and Future
Works

5.1 Conclusions

The general objective of this work was to provide a means of helping developers to
select microservices patterns to solve design problems present in systems based on microservices
architecture. Aiming to achieve the general objective, two specific objectives were defined:

• Specific Objective 1: Propose a microservices patterns recommendation approach;

• Specific Objective 2: Develop a tool that makes use of this approach for developers to use.

The research methodology used in this work was Design Science Research (DSR) which
proposes the development of Information Technology (IT) artifacts to solve real-world problems
(HEVNER et al., 2010). In summary, the final result of this work is a tool called Floc that allows
developers to manage design problems and obtain microservices patterns recommendations.
Thus, the tool is the IT artifact that was developed to solve the difficulty that developers may
experience when selecting microservices patterns to solve design problems present in systems
based on microservices architecture.

About specific objective 1, it was proposed a recommendation approach based on
Information Retrieval (IR) that is capable of receiving a design problem and recommending 3
microservices patterns that can solve it. This approach was implemented and evaluated through
tests carried out with toy design problems, using metrics.

Each toy design problem was labeled with a microservices pattern that can solve it, this
pattern can be called label. Out of 10 toy design problems, 6 received the label as one of the 3
recommended microservices patterns. For these 6 toy design problems, Precision was ≈35%,
Recall was 100% and F1-Score was ≈50%. The approach presented a Coverage of 60%, as out of
10 labels, 6 were recommended. In general, the approach presented good results, as 60% of toy

Chapter 5. Conclusions, Contributions and Future Works 74

design problems obtained the label as one of the 3 recommended microservices patterns and only
40% did not.

Regarding specific objective 2, it was developed the Floc tool that offers a friendly
and responsive User Interface (UI), where developers can manage design problems and get
microservices pattern recommendations. It was also developed a REST API called Microservices
Patterns Recommender (MPR) which, as the name suggests, is responsible for recommending
microservices patterns. This REST API uses the proposed recommendation approach to perform
recommendations. To recommend microservices patterns, the tool interacts with the MPR.

The tool was evaluated through tests carried out with industrial design problems in
a company that offers integrated and innovative cyber security and infrastructure solutions.
Three developers from this company ran tests in which they asked for microservices patterns
recommendations to solve industrial design problems. Then, these developers evaluated, in the
tool itself, each recommendation with one of these 3 response options: 1) Yes, It Does Solve;
2) It Does Partially Solve; or 3) It Does Not Solve. After testing, the developers involved were
individually interviewed

The results from tests with industrial design problems showed that out of 24 recommen-
dations, 14 were evaluated as “Yes, It Does Solve”, 6 as “It Does Partially Solve” and only 4 as “It
Does Not Solve”. This means that more than 80% of the recommendations contributed to solving
the problems indicated in the tests. Although 4 recommendations were rated as “It Does Not
Solve”, for each problem there was at least 1 useful recommendation. Out of 10 microservices
patterns, only 2 were not recommended, this shows that the recommended patterns vary and that
the recommendations are not biased.

Regarding the interviews carried out with the developers involved in the tests, 9 questions
were asked. In general, the responses obtained indicated that the tool is useful in the context
of systems based on microservices, and can help in the development of new features and the
maintenance of existing features; can help less experienced developers; improves the development
process; can help developers with continuous learning; increases productivity; helps standardize
solutions; helps with quality assurance; serves as support for decision making; it is easy to use;
and finally, it could improve by supporting more patterns, presenting practical examples and
preferences from other developers.

Thus, when developing or maintaining a system based on microservices architecture,
developers and organizations can benefit from microservices patterns recommendations that help
solve design problems. The tests carried out and the interviews carried out corroborated the
effectiveness of the tool and the approach, as the tool uses the approach to make recommendations.

Chapter 5. Conclusions, Contributions and Future Works 75

5.2 Contributions

This research generated two articles, the “Recommendation of Microservices Patterns
Through Automatic Information Retrieval Using Problems Specified in Natural Language”
paper (P1) (MOURA et al., 2022) and the “Microservices Patterns Recommendation Based on
Information Retrieval” paper (P2).

P1 was presented and published at the 22nd International Conference on Computational
Science and Its Applications (ICCSA 2022) (ICCSA, 2022). P2 was submitted this year to a
journal. P1 is about specific objective 1 and P2 is about specific objective 2.

Thus, this work contributed with: 1) a recommendation approach based on IR that is
capable of receiving a design problem and recommending 3 microservices patterns that can solve
it; and 2) the Floc tool that offers a friendly and responsive UI, where developers can manage
design problems and get microservices patterns recommendations.

5.3 Future Works

Regarding future works, it is interesting to consider the limitations, improvements and
difficulties that the interviewed developers pointed out:

• Limitations:

– CMP no longer has microservices patterns;

– Do not show practical examples;

– Do not display other developers’ preferences for solving certain types of problems.

• Improvements:

– Include more microservices patterns in the CMP;

– Include statistics that indicate other developers’ preferences for solving certain types
of problems;

– Include suggestions on how to organize folders and files.

• Difficulties:

– Understand the information presented.

It is interesting to include more microservices patterns in the CMP so that the tool is
capable of dealing with other types of problems. It is important to indicate other developers’
preferences for solving certain types of problems, as this can serve to indicate the best solutions.
It is relevant to include practical examples, involving folders and files. It is also interesting to
include explanations so that the information presented is understood without difficulties.

Chapter 5. Conclusions, Contributions and Future Works 76

In addition to considering limitations, improvements and difficulties, it is also interesting
to think about carrying out tests on larger scales to develop a dataset of design problems, using
the feedback feature described for the tool. This dataset can be used to make recommendations
through machine learning, making possible a comparison with the IR-based recommendation
approach.

It is possible to combine the proposed approach with a questionnaire to better understand
the design problem reported by developers and reduce the number of microservices patterns that
must be compared with the design problem, this can result in more assertive recommendations. It
is also possible to improve the proposed approach by using a lexical database, such as WordNet
(PRINCETONUNIVERSITY, 2023), to consider synonyms.

Finally, it is worth thinking about using the Elasticsearch1 tool, as well as make
comparisons with solutions such as the popular ChatGPT.

1 Elasticsearch is a distributed RESTful search and data analysis engine capable of serving a growing number of
use cases (ELASTICSEARCH, 2023).

77

Bibliography

AMPATZOGLOU, A. et al. Identifying, Categorizing and Mitigating Threats to Validity in
Software Engineering Secondary Studies. Information and Software Technology, Elsevier, v. 106,
p. 201–230, 2019. Citado na página 72.

APACHE. Home. [S.l.], 2023. Disponível em: <https://tomcat.apache.org>. Acesso em:
September 18, 2023. Citado na página 53.

BROOKS, F.; KUGLER, H. No Silver Bullet. H.-J. Kugler, ed., Elsevier Science Publishers B.V.,
Information Processing ’86, North-Holland, 1987. Citado na página 21.

CELIKKAN, U.; BOZOKLAR, D. A Consolidated Approach for Design Pattern
Recommendation. 2019 4th International Conference on Computer Science and Engineering
(UBMK), p. 1–6, 2019. Citado na página 18.

CERI, S. et al. The information retrieval process. Web Information Retrieval, Springer, p. 13–26,
2013. Citado na página 22.

CHEN, R.; LI, S.; LI, Z. From Monolith to Microservices: A Dataflow-Driven Approach. 2017
24th Asia-Pacific Software Engineering Conference (APSEC), p. 466–475, 2017. Citado 4 vezes
nas páginas 14, 15, 20, and 21.

DEACON, J. Model-View-Controller (MVC) Architecture. JOHN DEACON Computer Systems
Development, Consulting & Training, v. 28, 2009. Citado na página 49.

DOCKER. Home. [S.l.], 2023. Disponível em: <https://www.docker.com>. Acesso em:
September 18, 2023. Citado na página 54.

DOUGLASS, B. P. Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems. [S.l.]: Addison-Wesley Professional, 2003. Citado na página 17.

DRAGONI, N. et al. Microservices: Yesterday, Today, and Tomorrow. Present and Ulterior
Software Engineering, Springer, p. 195–216, 2017. Citado 2 vezes nas páginas 15 and 20.

ELASTICSEARCH. Home. [S.l.], 2023. Disponível em: <https://www.elastic.co>. Acesso em:
October 23, 2023. Citado na página 76.

ENCODE. Home. [S.l.], 2023. Disponível em: <https://www.uvicorn.org>. Acesso em:
September 18, 2023. Citado na página 55.

FRITZSCH, J. et al. From Monolith to Microservices: A Classification of Refactoring
Approaches. In: SPRINGER. Software Engineering Aspects of Continuous Development
and New Paradigms of Software Production and Deployment: First International Workshop,
DEVOPS 2018, Chateau de Villebrumier, France, March 5-6, 2018, Revised Selected Papers 1.
[S.l.], 2019. p. 128–141. Citado na página 21.

GAMMA, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software. 1. ed.
[S.l.]: Addison-Wesley Professional, 1995. Citado 3 vezes nas páginas 14, 17, and 21.

https://tomcat.apache.org
https://www.docker.com
https://www.elastic.co
https://www.uvicorn.org

Bibliography 78

HAMBARDE, K. A.; PROENCA, H. Information Retrieval: Recent Advances and Beyond.
IEEE Access, v. 11, p. 76581–76604, 2023. Citado na página 22.

HAMDY, A.; ELSAYED, M. Topic Modelling for Automatic Selection of Software Design
Patterns. Proceedings of the International Conference on Geoinformatics and Data Analysis, p.
41–46, 2018. Citado 2 vezes nas páginas 15 and 17.

HEVNER, A. et al. Design Science Research in Information Systems. Design Research in
Information Systems: Theory and Practice, Springer, p. 9–22, 2010. Citado 3 vezes nas páginas
16, 17, and 73.

HEVNER, A. R. A Three Cycle View of Design Science Research. Scandinavian Journal of
Information Systems, v. 19, n. 2, p. 4, 2007. Citado na página 16.

HUSSAIN, S. et al. A Methodology to Rank the Design Patterns on the Base of Text Relevancy.
Soft Computing, Springer, v. 23, p. 13433–13448, 2019. Citado 3 vezes nas páginas 14, 17,
and 21.

IBRIHICH, S. et al. A Review on Recent Research in Information Retrieval. Procedia Computer
Science, Elsevier, v. 201, p. 777–782, 2022. Citado 3 vezes nas páginas 22, 23, and 24.

ICCSA. Home. [S.l.], 2022. Disponível em: <https://2022.iccsa.org>. Acesso em: October 22,
2023. Citado na página 75.

KOSCHEL, A.; ASTROVA, I.; DÖTTERL, J. Making the Move to Microservice Architecture.
2017 International Conference on Information Society (i-Society), p. 74–79, 2017. Citado na
página 20.

LANDAY, J. A.; HONG, J. I. et al. The Design of Sites: Patterns, Principles, and Processes
for Crafting a Customer-Centered Web Experience. [S.l.]: Addison-Wesley Professional, 2003.
Citado na página 17.

MARTIN, R. C. Clean Architecture: A Craftsman’s Guide to Software Structure and Design.
[S.l.]: Prentice Hall, 2017. Citado na página 50.

MOURA, Á. et al. Recommendation of Microservices Patterns Through Automatic Information
Retrieval Using Problems Specified in Natural Language. International Conference on
Computational Science and Its Applications, p. 489–501, 2022. Citado na página 75.

MSSP. MSSP Alert Top 250 2022 Page. [S.l.], 2023. Disponível em: <https://www.msspalert.
com/top-250-2022>. Acesso em: September 12, 2023. Citado na página 68.

PAPAZOGLOU, M. P.; HEUVEL, W.-J. V. D. Service Oriented Architectures: Approaches,
Technologies and Research Issues. The VLDB Journal, Springer, v. 16, p. 389–415, 2007.
Citado na página 14.

PRINCETONUNIVERSITY. Home. [S.l.], 2023. Disponível em: <https://wordnet.princeton.
edu>. Acesso em: December 11, 2023. Citado na página 76.

RAHMATI, R.; RASOOLZADEGAN, A.; DEHKORDY, D. T. An Automated Method for
Selecting GoF Design Patterns. 2019 9th International Conference on Computer and Knowledge
Engineering (ICCKE), p. 345–350, 2019. Citado na página 17.

https://2022.iccsa.org
https://www.msspalert.com/top-250-2022
https://www.msspalert.com/top-250-2022
https://wordnet.princeton.edu
https://wordnet.princeton.edu

Bibliography 79

RICHARDSON, C. Microservices Patterns: With Examples in Java. [S.l.]: Simon and Schuster,
2018. Citado 2 vezes nas páginas 15 and 28.

RICHARDSON, C. What are Microservices? [S.l.], 2023. Disponível em: <https:
//microservices.io>. Acesso em: June 26, 2023. Citado 5 vezes nas páginas 21, 28, 30, 49,
and 66.

ROSHDI, A.; ROOHPARVAR, A. Information Retrieval Techniques and Applications.
International Journal of Computer Networks and Communications Security, v. 3, n. 9, p.
373–377, 2015. Citado na página 22.

SAINI, B.; SINGH, V.; KUMAR, S. Information Retrieval Models and Searching Methodologies:
Survey. Information Retrieval, v. 1, n. 2, 2014. Citado na página 25.

SANYAWONG, N.; NANTAJEEWARAWAT, E. Design Pattern Recommendation Based-on a
Pattern Usage Hierarchy. 2014 International Computer Science and Engineering Conference
(ICSEC), p. 134–139, 2014. Citado na página 18.

SANYAWONG, N.; NANTAJEEWARAWAT, E. Design Pattern Recommendation: A Text
Classification Approach. Proceedings of the 6th International Conference on Information and
Communication Technology for Embedded Systems, 2015. Citado 4 vezes nas páginas 14, 15, 17,
and 21.

SCHUMACHER, M. et al. Security Patterns: Integrating Security and Systems Engineering.
[S.l.]: John Wiley & Sons, 2013. Citado na página 17.

SILVA-RODRÍGUEZ, V. et al. Classifying Design-Level Requirements Using Machine Learning
for a Recommender of Interaction Design Patterns. IET Software, Wiley Online Library, v. 14,
n. 5, p. 544–552, 2020. Citado na página 18.

SINGLETON, A. The Economics of Microservices. IEEE Cloud Computing, IEEE, v. 3, n. 5, p.
16–20, 2016. Citado na página 20.

SOARES, M. S.; FRANCA, J. M. Characterization of the Application of Service-Oriented
Design Principles in Practice: A Systematic Literature Review. Journal of Software, Academy
Publisher, v. 11, n. 4, p. 403–418, 2016. Citado na página 14.

SOUSA, L. et al. Identifying Design Problems in the Source Code: A Grounded Theory.
Proceedings of the 40th International Conference on Software Engineering, p. 921–931, 2018.
Citado 3 vezes nas páginas 15, 16, and 21.

SOUSA, L. et al. How do Software Developers Identify Design Problems? A Qualitative
Analysis. Proceedings of the XXXI Brazilian Symposium on Software Engineering, p. 54–63,
2017. Citado 3 vezes nas páginas 14, 15, and 21.

TAIBI, D.; LENARDUZZI, V.; PAHL, C. Processes, Motivations, and Issues for Migrating to
Microservices Architectures: An Empirical Investigation. IEEE Cloud Computing, IEEE, v. 4,
n. 5, p. 22–32, 2017. Citado 2 vezes nas páginas 20 and 21.

TAIBI, D.; LENARDUZZI, V.; PAHL, C. Architectural Patterns for Microservices: A Systematic
Mapping Study. In: SCITEPRESS. CLOSER 2018: Proceedings of the 8th International
Conference on Cloud Computing and Services Science; Funchal, Madeira, Portugal, 19-21
March 2018. [S.l.], 2018. Citado na página 20.

https://microservices.io
https://microservices.io

Bibliography 80

THÖNES, J. Microservices. IEEE Software, IEEE, v. 32, n. 1, p. 116–116, 2015. Citado 2 vezes
nas páginas 15 and 20.

THYMELEAF. Home. [S.l.], 2023. Disponível em: <https://www.thymeleaf.org>. Acesso em:
September 12, 2023. Citado na página 45.

TIANGOLO. Home. [S.l.], 2023. Disponível em: <https://fastapi.tiangolo.com>. Acesso em:
September 18, 2023. Citado na página 46.

UYSAL, A. K. An Improved Global Feature Selection Scheme for Text Classification. Expert
Systems with Applications, Elsevier, v. 43, p. 82–92, 2016. Citado 2 vezes nas páginas 18 and 31.

VMWARETANZU. Home. [S.l.], 2023. Disponível em: <https://spring.io>. Acesso em: August
29, 2023. Citado na página 45.

ZHOU, X. et al. A Map of Threats to Validity of Systematic Literature Reviews in Software
Engineering. 2016 23rd Asia-Pacific Software Engineering Conference (APSEC), p. 153–160,
2016. Citado na página 72.

https://www.thymeleaf.org
https://fastapi.tiangolo.com
https://spring.io

	Recommendation of Microservices Patterns Through Information Retrieval
	Title page

	AÁlex Moura.docx
	18e183c4f53296a8a2b0ec8b348d260c7a8e0396c4956a62043d52f9964b615f.pdf
	Recommendation of Microservices Patterns Through Information Retrieval
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Abstract
	List of Figures
	List of Tables
	Lista de códigos
	List of abbreviations and acronyms
	Contents
	Introduction
	Context
	Problem
	Objectives
	Methodology
	Related Works
	Approach: Information Retrieval
	Approach: Text Classification
	Approach: Mix
	Comparison of this Research with Others

	Work Structure

	Theoretical Background
	Microservices
	Design Patterns
	Information Retrieval
	Steps Performed by an Information Retrieval System
	Step 1: Preprocess Documents
	Step 2: Represent Documents and Query
	Step 3: Match

	Evaluation Metrics
	Precision
	Recall
	F1-Score
	Coverage

	A Microservices Patterns Recommendation Approach
	Corpus of Microservices Patterns
	Recommendation Approach
	Step 1: Preprocess Documents
	Step 2: Represent Documents and Query
	Step 3: Match

	Implementation of the Recommendation Approach
	Step 1: Preprocess Documents
	Step 2: Represent Documents and Query
	Step 3: Match

	Evaluation of the Recommendation Approach
	Results

	Floc: A Microservices Patterns Recommendation Tool
	Floc Components View
	Microservices Patterns Recommender
	Floc Database

	Floc Implementation View
	Floc Scenarios of Execution
	Floc Deployment View
	Floc Features
	Login
	Sign Up
	List of Design Problems
	Solve Design Problem
	View Design Problem Details
	Edit Design Problem
	Delete Design Problem
	Feedback for a Recommended Microservices Pattern
	See More Information About a Microservices Pattern
	Logout

	Floc Evaluation
	Results
	Tests with Industrial Design Problems
	Interviews with Developers

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusions, Contributions and Future Works
	Conclusions
	Contributions
	Future Works

	Bibliography

