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Abstract
The objective of autonomous driving edge computer systems is to ensure the safety of Autonomous
Vehicles (AV). However, this is extremely difficult. Advanced Driver Assistance Systems (ADAS)
are of great importance in AV systems, as they increase the level of safety in vehicles. As
vehicles become more connected, some ADAS features can be improved with the cooperation of
the surrounding vehicles. For example, cooperative adaptive cruise control or a lane departure
warning for all vehicles in the vicinity. Traffic Signal Detection and Recognition (TSDR) is
a recent technology applied to intelligent driving responsible for identifying and recognizing
traffic signs in the images captured by the vehicle’s sensors. TSDR systems have a wide range
of applications. However, many of the proposed techniques use solutions based on expensive
devices and are unsuitable for large-scale and low-cost edge computing solutions. Implementing
these systems on OEM embedded platforms will provide the opportunity to create genuinely
cost-effective and low-energy systems.

In order to contribute to this research area, our study proposes not only the development of a
convolutional neural network capable of performing the classification of vertical traffic signals but
also the creation of a neural model compression pipeline. Based on the literature and experiments
located through a systematic review, we chose to use the GTSRB dataset to evaluate the work.
The pipeline has three stages: knowledge distillation, pruning, and quantization of neural models.
The goal is to reduce the complexity of the final neural network, thus allowing the model to
be embedded in a device with limited computational resources. The final models are evaluated
considering performance metrics such as accuracy, precision, recall, F1-Score, inference time,
and model size in bytes.

Using the proposed methodology, our compressed CNN model achieved an accuracy of 85.91%
and an F1-Score of 85.80%. The final model size was only 59 KB and the inference of a color
image with a resolution of 32x32 pixels took only 80 ms to run in ESP32 and 83 ms to run in
ESP32-S2, demonstrating the capability of this resource-constrained device to detect an image
with a reasonable accuracy rate.

Keywords: CNN. Edge devices. Quantization. Traffic signs. Knowledge distillation. Pruning.
TSDR. GTSRB.
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1
Introduction

In recent years, the world population has experienced significant benefits due to techno-
logical advances in different areas. This advance has brought greater convenience and quality
of life to citizens, enabling tasks that previously required hours of execution or a great deal of
human effort to be performed in minutes or seconds. In most modern industries, these innovations
were enabled by electronic systems, which allowed the development of control and information
processing devices to become increasingly cost-effective and power-efficient while reducing the
size of their components.

The automotive industry is a notable example of this development of semiconductor
components, which, as one of the most dynamic industries in the world, is considered to have a
significant influence on other sectors of the economy. Driven by groundbreaking innovations,
such as the introduction of the mass production systems by Henry Ford in 1914 and Toyotism
in 1970 (TURI, 2015), which provided several improvements in vehicle production. Due to its
competitive market (SENHORAS, 2005), the automobile industry must continually reformulate
its strategies, deciding where to deploy factories or which technologies are required or should
be developed. In order to achieve a large production volume which is mandatory to reduce
unitary costs, the basic raw materials, assembly machinery, and labor must be carefully selected
to optimize all processes (RETORNO, 2019). This economy of scale is a core concept in this
industry and platform sharing lately employed by car manufacturers is another excellent example
of one among various strategies used to reduce production costs (CARTHROTTLE, 2016).

According to data from IBGE (2018), the number of vehicles in Brazil has reached more
than 100 million units (54.7 million are automobiles), a growth of 3.7 percent over the previous
year of 2017. Thus, it is a straightforward deduction that this increasing number of vehicles
increasingly jams Brazilian city traffic. This is also happening in other cities around the world
because cars are still a predominant mode of transport, especially where public transportation
has limited coverage, accessibility, and safety.
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With a large number of human-controlled vehicles moving around the world, it is also
expected that the number of traffic accidents is also high. According to the World Health
Organization (WHO), road accidents are the leading cause of death of people in the world, and 90
percent of these deaths occur in middle and low-income countries, despite having approximately
54 percent of the world’s vehicles (BRASIL, 2018). The reasons for vehicle accidents can be
classified into human, vehicle, and road factors. In Brazil, 90% of the accidents are caused by the
human factor. In other words, some of these deaths can be avoidable (OBSERVADOR, 2018).
Some conditions contributing to human error in driving include speeding, drunk driving, mobile
device or passenger distractions, and driver fatigue. All these factors reduce the driver’s time
needed to observe, process, and react promptly if dangerous situations occur on the road. In order
to help to solve these issues, the employment of the advancement of electronic systems and digital
cameras into ever more robust and efficient devices allows for the prevention of several vehicle
accidents. These systems are known as Advanced Driver Assistance Systems (ADAS) and they
are designed to assist drivers in areas around the vehicle that the driver cannot directly observe,
such as traffic lane changes (LKA - Lane Keep Assist), vehicle stabilization (ESC - Electronic
Stability Control), and traction control (TCS - Traction Control System). Estimated at US$24
billion in 2018, the ADAS market may rise to US$91 billion by 2030. The increasing demand for
a safe, efficient, and convenient driving experience, added to the growing demand for luxury
vehicles worldwide, is the primary growth factor of the ADAS industry (GLOBALLOGIC, 2018).
There are some other systems included in ADAS: Adaptive Cruise Control (ACC), Intelligent
Parking Assist System (IPAS), Collision Avoidance System (CAS), Anti-lock Braking System
(ABS), Automotive Head-Up Display (auto-HUD), and Traffic Sign Detection and Recognition
System (TSDR), the latter of which will be the focus of our work.

TSDR solutions operate by continuously acquiring images of the vehicle’s surroundings
through one or more cameras, typically positioned in zones near the vehicle’s sides and/or roof.
After image acquisition, methods and techniques for information extraction, detection, and object
recognition are applied to retrieve information about the surrounding environment. Once a target
is identified, the driver is alerted about the traffic sign presence and what action should be
performed.

1.1 Motivation

Developing embedded systems that can assist drivers in the tasks involved in driving
is highly relevant in constructing a safer road ecosystem. Both society and industry have great
expectations regarding how automated vehicles can assist in decision-making and reduce the
number of traffic accidents. However, this promising vehicle solution for traffic issues have
currently few adopters due to high automotive sensitivity to production costs. These devices
that allow vehicle automation, including associated actuators/sensors and how they can support
drivers, still represent a challenge for success in this niche (RICARDO, 2019).
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Recently, in the North American society, the National Highway Traffic Safety Adminis-
tration1 (NHTSA) has started using the vehicle automation level classification system defined by
the Society of Automotive Engineers (SAE) published in 2014 via the J3016 standard and used
for the first time in 2016 (INTERNATIONAL, 2019).

Table 1 – SAE-defined levels of vehicle automation

Level Name Definition

0 No Automation
Systems limited to issuing momentary alerts and assists,

such as emergency brake control, blind spot warning, or lane
departure alerts.

1 Driver Support Steering or Braking Control, such as lane centering or cruise
control, both with driver supervision.

2 Partial steering
automation

Both steering and braking controls are performed by the
system with driver supervision.

3
Conditional

automation of
driveability

all steering controls operated by the system. Human control
will be required when the system cannot handle some tasks.

4 Highly automated
steering

All steering operations are performed by the system, which
remains in charge even in emergencies, without waiting for
human intervention. At this point, the steering wheel and

pedals are completely removed from the vehicle.

5 Fully automated
steering

Steering operations are completely performed by the system
without human intervention.

Source: INTERNATIONAL (2019)

Considering the information in Table 1 and the recent advances of some automakers in the
development of autonomous vehicles, we will detail the case of Tesla Incorporation2. Even with
the various automation and drivability features delivered by Tesla’s products, the brand’s vehicles
are officially in automation category three as defined by SAE INTERNATIONAL (2019). Even
though its powerful on-board computers in vehicles (VERGE, 2019), Tesla’s cars provided only
in August 2020 the automatic speed adjustments upon traffic sign detection regarding speed limits
(INDEPENDENT, 2020; PCMAG, 2020). Many researchers are developing ADAS solutions that
act in a fully automated way. However, implementing these systems requires robust hardware
(DSPs or GPUs) to optimize the solution’s run-time. This specialized hardware adds more cost to
solution cost, starting at US$59 3 (price per module, low volume purchase), as in Han e Oruklu
1 https://www.nhtsa.gov/
2 https://www.tesla.com/
3 https://www. newegg.com/nvidia-945-13541-0000-000/p/N82E16813190013



Chapter 1. Introduction 18

(2017), Chougule et al. (2018), Baicu et al. (2019). For the automobile industry that relies on
scalability and low production cost, these high input values may be prohibitive to creating a
competitive market.

Resource-constrained devices, i.e., with low storage capacity and computational power,
are increasingly used globally in the Internet of Things (IoT) solutions, such as those developed
by Espressif4 and ARM5. Despite the limited availability of computational resources, approaches
such as Yamada et al. (2020) and Petrova (2017) showed that these significantly reduced cost
devices could be successfully used for computer vision applications. However, given the storage
and processing characteristics, it is not always possible to fully embed complex algorithms in
these devices. Considering the heterogeneity and number of neural model parameters commonly
used in computer vision applications, the required memory size to embed this solution can be
prohibitive. To illustrate this limitation, the popular low-cost IoT platform Espressif ESP32 has
only 320KB of RAM and 4MB of FLASH memory.

1.2 Main Objective

This work aims to develop a Convolutional Neural Network (CNN) compression pipeline
capable of reducing the model size. This achievement would allow a resource-constrained device,
such as Espressif ESP32 or ESP32-S2, to perform vertical traffic signs image classification.
In order to reach this goal, deep learning methods are optimized for memory and processing
limited hardware deployment. The neural network compression is based on knowledge distillation,
pruning, quantization, and optimization of network hyperparameters methods to fit neural model
size to embedded device capabilities. As the automotive industry is quite sensitive to production
costs, a proof-of-concept of a TSDR low-cost platform able to perform at acceptable accuracy and
latency could be a game changer. Some steps are listed in order to meet these work objectives:

1. Create a pipeline flow capable of reducing the size of a neural model to the point where it
can be embedded in a resource-constrained device;

2. Develop a model with acceptable inference run-time speed latency to be used in image
detection;

3. Demonstrate that experiments provide accuracy levels similar to traditional implementa-
tions.

4 https://www.espressif.com/
5 https://www.arm.com/
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1.3 Methodology

In many related works described in Chapter 3, we can observe the stages required for a
fully functioning TSDR system. Usually, the steps involved are image acquisition, preprocessing,
segmentation, description, and classification. Some of these papers also describe compression
techniques or methods to speed up the inference of their neural models. However, this work will
focus only on constructing mechanisms for use in the classification stage.

The prototype will be based on the ESP32 microcontroller with restricted resources,
which will be better described in Section 2.3. The idea behind this choice is that the purchase
price is meager, which would reduce the production cost for TSDR systems.

To this end, the methodology for developing the prototype will stick to the following
steps:

1. Identify, through a Systematic Review (SR), the related works that use embedded devices
for traffic sign recognition;

2. Determine which data sets are more popular in the classification of traffic signs or daily
situations referring to the road environment;

3. Verify which metrics are most used to check the efficiency of a given solution;

4. Ensure that a neural model has acceptable accuracy in solving an image classification
problem involving traffic signs;

5. Evaluate the final proposed model to be embedded in a device with memory and processing
constraints if it can still perform inference in real-time6.

1.4 Document Structure

For ease of navigation and a better understanding of this work, we have structured this
document into the following chapters, namely:

• Chapter 2 - Theoretical Foundation: This chapter will address issues and concepts that will
support the understanding of the work in question;

• Chapter 3 - Related Works: Here, the selected papers through a Systematic Review are
presented in order to base the content addressed in this proposal;

• Chapter 4 - Proposed Detection Model: On this chapter is described the proposed
methodology and architecture for building the compression pipeline and neural model;

6 Real-time control systems are closed loop control systems where one has a tight time window to gather data,
process that data, and update the system (CHON, 2008)
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• Chapter 5 - Results: The results obtained at each stage of pipeline implementation and
testing are demonstrated;

• Chapter 6 - Conclusion: The final considerations about the work are presented, including
its contributions, the limitations found, and suggestions for future work.
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2
Basic Concepts

This chapter will address concepts, device architectures and characteristics regarding the
theories and platforms used in this proposed work. Topics such as artificial neural networks, the
quantization of neural models, the framework TensorFlow and the resource-constrained devices
will be detailed using information acquired from related works and various references.

2.1 Artificial Neural Networks - ANN

An Artificial Neural Network (ANN) is a complex structure interconnected by simple
processing elements called neurons, which can perform operations such as parallel calculations
and data processing. They have the ability to store and deal with knowledge representations.
The ANN is similar to the human brain because of its capacity to acquire knowledge from the
environment using a learning process and using it to force the connection between neurons to store
acquired knowledge. These characteristics, added to the ability of generalization, adaptability, and
fault tolerance, allow ANN to solve complex problems more agilely than traditional approaches.
In next subsections we will detail some key points ANN conception.

2.1.1 The Artificial Neuron

A neural network is a massively parallel distributed processor consisting of simple
processing units, which has a natural propensity to store experimental knowledge and make it
available for use (HAYKIN, 2009). Also, according to Haykin (2009), a neuron is an information
processing unit that is fundamental to the operations of an ANN. In 1943, a mathematical
neuron model proposed by Mcculloch e Pitts (1943) was presented and it would become the
most well-accepted standard. Its structure mimics the operation of a biological neuron in a very
simplified way. In Figure 1 it is shown this artificial neuron representation and its further detailed
description.
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Figure 1 – Mathematical model of a neuron.

• 𝑥1 to 𝑥𝑛 are inputs and represent the pulses received by the network;

• Each input signal is multiplied by a weight, which indicates its influence on the network.
These weights are defined by 𝑤1 to 𝑤𝑛;

• The sum of the product of the inputs by their respective weights, represented in Figure 1 by
the

∑
block, depicts the activity level of the neuron;

• Θ represents the firing threshold of the neuron;

• 𝑢 represents the output pulse of the neuron;

• 𝑔 corresponds to the activation function. The activation function corresponds to the neuron’s
decision making, regarding the firing or not of the pulse in its output (SILVA; SPATTI;
FLAUZINO, 2010);

• The output 𝑦 equals the electrical pulses emitted by biological neurons.

This neuron model and its parameters can be mathematically defined by the equations 2.1
and 2.2.

𝑢 =

𝑛∑︁
𝑖=1

𝑤𝑖 ∗ 𝑥𝑖 − 𝜃 (2.1)

𝑦 = 𝑔(𝑢) (2.2)

Although this model has a straightforward representation, the combination of several
neurons (ANN) is capable of performing complex functions. Through values assigned to w, Θ
and setting the activation function (g), the ANN may be able to adapt to different problems.
These parameters adjustments are called ANN training.

As defined in Silva, Spatti e Flauzino (2010), the activation function limits the output of
a neuron over a finite range of values. The main activation functions are the linear function, the
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ramp function, the step function, and the sigmoid function. These definitions are described in
Table 2.

Table 2 – Search strings defined for each repository after initial effectiveness evaluation.

Function Definition
Linear Function 𝑓 (𝑢) = 𝑎 ∗ 𝑢

Ramp Function 𝑓 (𝑢) =


+𝛼, if 𝑢 ≥ +𝛼
𝑢, if |𝑢 | < +𝛼
−𝛼, if 𝑢 ≤ −𝛼

Step Function 𝑓 (𝑢) =
{
+𝛼, if 𝑢 ≥ 0
−𝛼, if 𝑢 < 0

Sigmoid Function 𝑓 (𝑢) = 1
1+𝑒−𝑢/𝑇

Its ability to learn from a data set is the most appreciated characteristic of an ANN. As
described by Silva, Spatti e Flauzino (2010), training an ANN consists of applying well-defined
steps and adjusting parameters, intending to generalize the results given by its outputs. A
well-designed set of these steps is called the learning algorithm, which aims to train the ANN.
The ANN training is an iterative process, performing parameters adjustments based on input data
and network’s desired goal. Ongsulee (2017) classifies learning methods as follows:

• Supervised Learning: this method is executed by providing a set of previously labeled
data whose goal is to find a function that can predict the unknown labeling. The algorithm
should take care observing the examples of the input and associate a label. defining the
probability that an input 𝑥 belongs to a class 𝑦;

• Unsupervised Learning: in this model, the algorithm should predict similarities between
objects without the aid of labels. This way, the algorithm should explore all the input
data and find recognizable structures. Some techniques that help in this task are K-Means
Clustering and Singular Value Decomposition;

• Semi-supervised Learning: : is used for the same applications as supervised learning.
However, it uses both classified and unclassified data for training and is useful when the
cost associated with classification is high;

• Reinforcement learning: this is where the algorithm learns to achieve a goal in an
uncertain environment. The program uses trial and error to maximize a solution to a given
problem. The code receives rewards or penalties for the actions it performs.
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2.1.2 Deep Learning

Goodfellow, Bengio e Courville (2016) report that in recent years the interest in Machine
Learning (ML) has grown a lot. In his article, Dietterich (2003) defines ML as the study of
methods for developing systems in which the computer no longer follows a set of instructions
imperatively defined by the programmer but can learn through past knowing how to perform a
designated task.

Deep Learning can be understood as a method set that allows a machine receives data
and automatically extract necessary representations for classification or detection tasks LeCun,
Bengio e Hinton (2015). A traditional ANN has only 2 or 3 hidden layers, whereas a deep ANN
can have hundreds. A deep ANN is much more difficult to train than a simple ANN, but for a
more complex set of input data, a deep ANN has a higher efficiency (NIELSEN, 2018). In Deep
Learning, learning is end-to-end learning from the raw input data. Its main advantage is that the
learning of a deep network improves as the input data grows, while in other algorithms, it is
stabilized (MATLAB, 2021). Deep Learning techniques are responsible for significant advances
in the computer vision area. Among these techniques, the most relevant and studied are the
Convolutional Neural Networks (CNNs).

2.1.3 Convolutional Neural Networks

A Convolutional Neural Network, also known by the abbreviations ConvNet or CNN,
are neural networks that employ a mathematical operation known as a convolution in order to
extract information. The CNN is a feedforward class of Artificial Neural Networks widely used in
pattern recognition area (LI et al., 2018). In addition, CNN uses the backpropagation algorithm
during training. This algorithm is formed by two stages. In the first stage, called forward pass) the
inputs was passed through the network and the output is the calculated probabilities in relation to
the expected classes. The second step is the backward pass, were the gradient of error function
is calculated with respect to the neural network’s weights. ConvNets were developed based on
ocular biology, starting with the pioneering study by Hubel e Wiesel (1962) that evaluated cat
visual cortex structures.

2.1.3.1 Convolution

Recently, much has been heard about convolution operations in Machine Learning
(SINDAGI; PATEL, 2018) (ZHANG et al., 2019). Many possibilities have emerged with this use,
such as in image classification or feature extraction tasks.

In its most general form, convolution is a mathematical operation, like summation, that
operates between two signals to obtain the third signal as response. Goodfellow, Bengio e
Courville (2016) define the discrete convolution operation calculus for any one-dimensional
input 𝑥 and a filter 𝑤 as:
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𝑠(𝑡) = (𝑥 ∗ 𝑤) (𝑡) =
∞∑︁

𝑎=−∞
𝑥(𝑎)𝑤(𝑡 − 𝑎) (2.3)

Thus, considering Equation 2.3, for each time portion 𝑡, the signal 𝑠 receives the result of
the summation of a signal 𝑥 multiplied by a weighting factor 𝑤, where the parameter 𝑎 refers to
the intervals of the input signal dimension. Goodfellow, Bengio e Courville (2016) define based
on Equation 2.3 and 2.4, where they use multidimensional input signals such as images.

𝑠(𝑖, 𝑗) = (𝐼 ∗ 𝐾) (𝑖, 𝑗) =
∑︁
𝑀

∑︁
𝑁

𝐼 (𝑚, 𝑛)𝐾 (𝑖 − 𝑚, 𝑗 − 𝑛) (2.4)

𝐼 is the input image,𝐾 is the filter, and𝑀𝑥𝑁 is the input signal matrix. One last adjustment
is still made in Equation 2.4 to make it more convenient for implementation in software since the
neural network libraries use the cross-correlation operation, which is the same as convolution
but keeps the kernel. Therefore, Goodfellow, Bengio e Courville (2016) rewrite the equation as
follows:

𝑠(𝑖, 𝑗) = (𝐾 ∗ 𝐼) (𝑖, 𝑗) =
∑︁
𝑀

∑︁
𝑁

𝐼 (𝑖 + 𝑚, 𝑗 + 𝑛)𝐾 (𝑚, 𝑛) (2.5)

A CNN is a Deep Learning model capable of capturing an input image, assigning
importance, such as weights and features, to various aspects and objects in the image, and
differentiating between them (ACADEMY, 2019a). The convolutional layer is responsible
for extracting the so-called features from the input. This extraction takes place by applying
convolutional filters and traversing the input data in width, height, and depth. The convolutional
layer has a set of feature maps generated from convolutions on the input data or from another map.
The local receptive area is the input region where the filters are applied (ACADEMY, 2019a). A
Convolutional Network employs three primary operations: local receptive fields, shared weights,
and pooling.

An example of the convolution operation on an RGB image 𝑥 can be seen in Figure 2. In
this image, it can be verified the application of the convolutional filter𝑊0 on all image channels
𝑥. For the filter, also known as the kernel, to move across the entire image, a parameter called
stride (step) is introduced. The stride is the number of steps used by moving the filter through
the input image. The results obtained by filter application on the image are summed to the bias
parameter. In the end, a value is assigned in the resulting output.

2.1.3.2 Pooling

The objective of the pooling layer is to progressively reduce the input data volume,
reducing the number of parameters and the need for additional operations performed on the
network (KARPATHY, 2016). According to Goodfellow, Bengio e Courville (2016), the pooling
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Figure 2 – Example of a convolutional operation.

Source: KARPATHY (2016)

function replaces the network output at a given location with a summary statistic of the nearest
outputs, i.e., in general, it serves to simplify the information provided by the immediately
preceding layer. The most widely used method for pooling is Max Pooling, but there are other
methods known as Average Pooling, and L2-norm Pooling (KARPATHY, 2016). In the Max
Pooling technique, the most significant value read by a filter is passed to the output. As with the
convolution layer, the pooling operation also has the parameters stride and size of the kernel. In
Figure 3 we can observe the pooling operation being performed on an image, using a kernel of
dimension 2x2 and the step size (stride) set to 2.

2.1.3.3 Fully Connected Layer

The fully connected layer is responsible for performing the object classification. Also
known as a dense layer or fully connected, it works as a multilayer neural network of architecture
feedforward, like MLP, which is responsible for interpreting the features extracted by the initial
layers (EBERMAM; KROHLING, 2018). Usually, the previous layer is a flatten layer, responsible
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Figure 3 – Example of a Max Pooling operation.

Source: KARPATHY (2016)

for flattening all the feature maps from the last pooling layer that have more than one dimension,
relocating them into a one-dimensional vector to connect them to the final part of the (EBERMAM;
KROHLING, 2018) network. The output of this layer is 𝑁 neurons, where 𝑁 is the number of
classes in the data set that the model needs to classify (ALVES, 2018).

2.1.3.4 Performance Metrics

In evaluating classification models, the basic concept is the notion of failure. If applying
the classification model to a selected case leads to the prediction of a different class than the actual
examples, then there is a classification error. If any error is equally important, then the number of
errors in the observed set can be a working indicator of a classifier (NOVAKOVIĆ et al., 2017).
This approach relies on accuracy as a metric for evaluating the quality of a classification model.

Kohavi, R. and Provost (1998) defined a confusion matrix as a way to evaluate the
system’s performance, displaying the predicted classifications and the classifications obtained by
the model. The confusion matrix will show the following frequencies:

• True Positive (TP): occurs when in the actual set data, the object we are looking to predict
is correctly classified;

• False Positive - FP): occurs when in the actual set data, the object we are looking to predict
is classified incorrectly;

• True Negative (TN): occurs when in the actual set data, the object we are not seeking to
classify is correctly predicted;

• False Negative (FN): occurs when in the actual set data, the object we are not seeking to
classify is incorrectly predicted.

This is the starting point of information gathering for defining the following metrics:
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• Accuracy: is a way of measuring how often an algorithm classifies a set of data correctly.
The number of true positives (TP) and true negatives (TN) divided by the number of true
positives, true negatives, false positives (FP), and false negatives (FN) defines the accuracy
calculation.

𝐴𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (2.6)

• Recall: the recall defines the proportion of real positives that have been correctly identified.
Furthermore, recall is considered primary in traffic sign recognition since the goal is to
identify all real positives. The mathematically form to recall is established as follows:

𝑅𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.7)

• Precision: the precision is defined as the fraction of relevant instances among all retrieved
instances. In some cases, accuracy is not a good indicator of model performance. One such
scenario is when the dataset is unbalanced. At this point, even if the model predicts all
instances as the most frequent class, the model would still get a high accuracy rate. To
combat this, we use the precision metric. Precision is defined as follows:

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2.8)

• F1-Score: the F1-Score measure combines precision and recovery into a single measure. It
is a harmonic mean of recall and precision. The advantage of this harmonic measure is that
to increase the value of F1-Score, it is necessary that both (recall and precision) increase,
unlike the arithmetic mean:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (2.9)

• Root Mean Squared Error: is the measure that calculates the root mean square of the
errors between observed (real) values and predictions (hypotheses). RMSE is defined as
follows:

𝑅𝑀𝑆𝐸 =

√√√
1
𝑛

𝑛∑︁
𝑗=1

(
𝑦 𝑗 − 𝑦̂ 𝑗

)2 (2.10)
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2.1.3.5 Training and Network Parameters

For training, we used the Tensorflow framework (ABADI et al., 2016) and Google Colab
(GOOGLE, 2020) because this combination allows us to build and train machine learning models
using intuitive high-level APIs (such as Keras (KERAS, 2020)) and free powerful cloud services.

Batch Size: This parameter defines the total number of instances used for a training
epoch (an epoch is one such pass of the entire dataset). This parameter can be set in three different
ways: (i) batch gradient descent, where the batch size is set to the total number of instances in the
training dataset; (ii) Stochastic Gradient Descent (SGD), where the batch size is an equal one,
therefore the gradient and the parameters of the neural network are refreshed after each epoch;
and (iii) mini-batch gradient descent, where the batch size is more significant than one, but less
than which the total instances of the training dataset.

Learning rate and loss function: Deep learning neural networks are trained using the
stochastic gradient descent algorithm. This algorithm is an optimization code that estimates the
error gradient for the current model state, using instances from the training and validation dataset.
That allows the update of the weights of the model using backpropagation of errors calculated by
the algorithm. We seek to minimize errors between actual and predicted values when training
a neural network. We use a loss function to help a neural network improve its weight. That is
applied through a loss function. Mathematically, if the loss function is 𝐸 (𝑋;𝑊, 𝑏), our goal is
to minimize 𝐸 . Considering the vanilla SGD, 𝑋 is input to the neural network,𝑊 is the model
weight parameter, and 𝑏 is the bias value (Konar; Khandelwal; Tripathi, 2020a). The 𝑖 − 𝑡ℎ model
weight is updated using Equation 2.11.

𝑊𝑖+1 = 𝑊𝑖 − 𝜂
(
𝜕𝐸

𝜕𝑊𝑖

)
(2.11)

Here, 𝜂 is called the learning rate. The learning rate determines how quickly or slowly
we want to update the parameters of the neural network. There are different ways to choose the
initial learning rate. The approach chosen for this work was the step decay learning rate. We start
with a relatively high learning rate in this technique and then gradually decrease it during the
training (Konar; Khandelwal; Tripathi, 2020b).

Underfitting occurs when the neural model is not able to reduce training error. That
means that our model is too simple to generalize the dataset characteristics. In contrast, when the
model is more complex, it may adapt excessively to the training dataset. However, it does not
generalize well to the new data. When this occurs, we call it overfitting.

Momentum: The momentum in neural networks is a coefficient applied to Equation 2.11
to increase the training speed. As discussed above, if the learning rate is too high, the model
will experience many oscillations and can not converge correctly. To mitigate this problem, we
introduce the momentum term here 𝑀 .
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𝑀 =

(
𝜆 ∗𝑊 𝑡−1

𝑖

)
(2.12)

In the Equation 2.12, 𝜆 is the momentum factor, and𝑊 𝑡−1
𝑖

is the 𝑖 − 𝑡ℎ weight increment
at the previous iteration. This term quantifies the importance of weight variance of the previous
epoch of training. In the equation 2.13 we describe the vanilla SGD with the addiction of the
momentum term.

𝑊𝑖+1 = 𝑊𝑖 − 𝜂
(
𝜕𝐸

𝜕𝑊𝑖

)
+ 𝑀 (2.13)

L2 Regularization (Weight decay): The regularization process introduces a new term
to prevent overfitting. It helps to avoid the linear models overfitting with the training dataset
penalizing the extreme weight values. In this work, we utilize the L2 Regularization. In equation
2.14 we can see the expression for L2 Regularization.

𝐿2 = 𝛼
1
2
∥W∥2

2 (2.14)

Batch Normalization: The Batch Normalization (BN) layer reduces Covariate Shift.
This shift is the change in network activation distributions due to a change in network parameters
during training. We know that the network training converges faster if its inputs are whitened, i.e.,
linearly transformed to have zero means and unit variances, and decorrelated (IOFFE; SZEGEDY,
2015). Then, to increase neural network stability, BN normalizes the output of a previous
activation layer. Usually, inputs to neural networks are normalized to either the range of [0, 1] or
[-1, 1] or mean=0 and variance=1, the latter is called Whitening (IOFFE; SZEGEDY, 2015). The
practical effects of BN are: (i) reduces the training time because of less Covariate Shift (less
exploding/vanishing gradients); (ii) reduces the demand for regularization, e.g., dropout, because
the means and variances are calculated over batches, and therefore every normalized value
depends on the current batch, e.g., the network can no longer memorize values and their correct
answers); and (iii) because of less occurrence of exploding or vanishing gradients, the network
allows higher learning rates. Given as input, values of 𝑥 over a mini-batch 𝐵 = {𝑥1, ..., 𝑚}, a
batch normalization calculate the mean Equation 2.15 and variance Equation 2.16 of the layers
input, as follows.

𝜇𝐵 =
1
𝑚

𝑚∑︁
𝑖=1

𝑥𝑖 (2.15)

𝜎2
𝐵 =

1
𝑚

𝑚∑︁
𝑖=1

(𝑥𝑖 − 𝜇𝐵)2 (2.16)

According to the following equation, the layer input is normalized in sequence using the
previously calculated batch parameters.
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𝑥𝑖 =
𝑥𝑖 − 𝜇𝐵√︃
𝜎2
𝐵
+ 𝜀

(2.17)

And finally, scale and shift to obtain the output value 𝑦𝑖 of the layer, as follows.

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽 (2.18)

The values 𝛾 and 𝛽 are learned during training along with the original parameters of the
network.

Optimizer: The optimizers are algorithms used to change the attributes of a neural
network, such as weights or learning rate, which reduce the losses. We utilize the optimizer
RMSprop (Root Mean Square Backpropagation) for that work. The RMSprop techniques proposed
it (HINTON; SRIVASTAVA; SWERSKY, 2012) is a gradient-based optimization based on the
Rprop (Resilient Backpropagation) algorithm. RMSprop deals with the gradient’s tendency to
either vanish or explodes as the data propagates through the backpropagation function. This
occurs because the magnitude of gradients can differ for different weights and change during
learning, becoming very difficult to choose a single global learning rate. The RMSprop uses the
moving average of squared gradients and adjusts the weight updates by this magnitude. We have
the following Equation 2.11 to define these concepts.

𝑊𝑖+1 = 𝑊𝑖 −
𝜂

√
𝑣𝑖 + 𝜀

· 𝜕𝐸
𝜕𝑊𝑖

(2.19)

Where 𝑣𝑡 is given by:

𝑣𝑖 = 𝛽𝑣𝑖−1 + (1 − 𝛽)
[
𝜕𝐸

𝜕𝑊𝑖

]2
(2.20)

The 𝛽 corresponds to the exponential moving average weight (decay rate).

2.1.4 Quantized Neural Networks

Quantized Neural Networks (QNN) are net with values of weights and activations
expressed with reduced accuracy compared to traditional neural networks. Quantization of
weights in networks has become an efficient approach for reducing computational costs with
minimal impact on the final accuracy of the model. Complex networks have millions of parameters
that are typically unsuitable for edge devices implementation. In addition, quantization allows for
a significant reduction in power consumption (Wang et al., 2016). The model quantization process
works by mapping the 32-bit floating-point values to numbers with 8-bit precision (IEEE-754,
2019). In addition to reducing the final size of the model, quantization can speed up inference
time by up to 3 times (HUBARA et al., 2016).
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A requirement for the quantization scheme is that the mapping between real numbers and
integers is performed by an affine function (JACOB; CHEN, ). Ensuring the mapping occurs
correctly in both directions, from fixed-point to floating point and back again. It is also necessary
that the real value 0 is faithfully representable. Making it possible to fill with zeros in the
input matrix, for example, in convolution or pooling layers. Therefore, the quantization scheme
generally allows a shift and scaling from the straight line of real numbers to a straight line of
quantized values. As described in (JACOB; CHEN, ) and transcribed here in Equation 2.21, we
have:

𝑟 = 𝑆 × (𝑞 − 𝑍) (2.21)

The above equation maps an integer 𝑞 to a real number 𝑟. 𝑆 and 𝑍 are quantization
parameters for all values within an activation matrix and all weight matrices. Also, according to
the work of (JACOB; CHEN, ), the constant 𝑆 (from Scale - Scale) is an arbitrary positive real
number and usually represented as a floating point value, like the real value 𝑟. The constant 𝑍
(Zero point) is the same type as the quantized values 𝑞 and is the value corresponding to the real
zero value. This allows us to meet the need for a quantized value representing the value 0.

A common approach to quantizing a network is to perform training first, using floating-
point values, and then perform quantization of the weights in the resulting model. However,
this approach significantly drops in accuracy for small models. To resolve accuracy drops,
quantization-aware training has been proposed. The effects of quantization are emulated in the
foward propagation step, allowing for simulation inference in a quantized way. As explained in
(JACOB; CHEN, ), weights are quantized before being convolved with the input, and activations
are quantized at points where they would be during inference.

2.1.5 Bayesian Optimization

Hyperparameters are important for machine learning algorithms since they directly control
the behaviors of training algorithms and significantly affect the performance of machine learning
models (WU et al., 2019). These parameters cannot be learned during neural network training and
must be provided by the model’s designer in question. However, depending on the dimensionality
of the model, this can be a costly task. Bayesian Optimization (BO) is useful in this domain
where human expertise could not contribute to better accuracy. Bayesian optimization includes
preliminary information about the function to be optimized and updates posterior information,
which helps reduce loss and maximize the model’s accuracy. (VICTORIA; MARAGATHAM,
2020). BO is an approach that uses the Bayes Theorem to direct the search to find the minimum
or maximum of an objective function. This theorem states that the posterior probability of a
model 𝑀 gave evidence 𝐸 is proportional to the likelihood of 𝐸 given 𝑀 multiplied by the prior
probability of 𝑀 (KRAMER; CIAURRI; KOZIEL, 2011), as follows in Equation 2.22.
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𝑃(𝑀 |𝐸) = 𝑃(𝐸 |𝑀)𝑃(𝑀)
𝑃(𝑀) (2.22)

Bayesian Optimization is a strategy to find the extreme of a function that may not have a
closed expression but can obtain observations in samples. This method is advantageous when the
cost of function evaluation is high, is no access to its derivatives, and (or) when the problem
is not convex (BROCHU; CORA; FREITAS, 2010). Thus Bayesian Optimization procedure
consists of updating the posterior distribution and maximizing the acquisition function. The
acquisition function uses a Gaussian Processes hedge where after each action selection, the
algorithm receives a reward for each action and updates the gain vector (FIRDAUS; NUGROHO;
SOESANTI, 2021).

2.1.6 Teacher–Student Knowledge Distillation

Knowledge distillation refers to model compression by teaching a smaller network,
step by step, exactly what to do using a bigger already trained network (GOU et al., 2021).
This is quite useful for devices that have limited computing resources which poses several
challenges to implement deep neural networks. For instance, nearly 84.04 million parameters
are generated to train a VGG16 model on a 256 × 256 image. If the 8-byte floating point data
type is used to define every parameter, the size of this model will be 84.04 M * 8B = 640 MB,
and its computational complexity up to approximately 10 GFLOPs, which is far beyond the
capabilities of these resource-constrained devices (SEPAHVAND; ABDALI-MOHAMMADI;
TAHERKORDI, 2022). The existing mainstream knowledge distillation methods can be classified
into two categories. In the first category, the student network is optimized using the classified
soft labels and genuine labels generated by the teacher network (HINTON et al., 2015). The
second method uses the middle layer characteristics of the teacher network to guide the student
network (ROMERO et al., 2014). Hinton et al. (2015) also introduces a new parameter called the
smoothing coefficient or temperature. This coefficient is incorporated in the Softmax function,
and its purpose is to control the entropy of the probabilistic distribution used by the student
model, thus preserving not only the information of a given class but of all the others, briefly
described as follows:

• A low temperature (below 1) makes the model more confident;

• A high temperature (above 1) makes the model less confident.

Given the logits 𝑧 from a network, the class probability 𝑝𝑖 of an image is calculated as:

𝑝𝑖 =
exp 𝑧𝑖

𝑝∑
𝑗 exp 𝑧𝑖

𝑝

(2.23)
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As in equation 2.23, 𝑝 is the temperature parameter. When 𝑝 = 1, we get the standard
softmax function. As 𝑝 increases, the probability distribution produced by the softmax function
becomes softer, providing more information as to which classes the teacher found more similar
to the predicted class (WANG; YOON, 2020).

2.1.7 Kullback–Leibler Divergence

The Kullback–Leibler divergence (KLD) shown in Equation 2.24 is widely used to
measure the similarity between two distributions and plays an essential role in many applications
(JI et al., 2022).

𝐷𝐾𝐿 (𝑃 | |𝑄) =
∫

𝑝(𝑥) log
𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥 (2.24)

2.1.8 Pruning

As discussed in 2.1.6, the high predictive performance of CNNs comes at the expense of
high computational storage and processing values. Reducing the computational requirements of
a neural model becomes critical for wider applicability (YEOM et al., 2021). The central idea
of the pruning algorithm in neural networks is to eliminate unimportant or redundant weights
or neurons that could be eliminated, thus reducing the network’s size and keeping its original
performance as much as possible. Pruning also helps in the process of avoiding overfitting a
neural network (SRIVASTAVA et al., 2014). Two categories divide network pruning algorithms:
unstructured and structured. Unstructured pruning is fine-grained, and its purpose is to cut off the
unimportant weight connections in the pre-trained neural network. This result in sparse CNNs
with irregularities, which usually require special software and hardware accelerators to speed up
the inference speed (LIU et al., 2021). In contrast, structured pruning is coarse-grained and can
altogether remove unimportant filters (LIU et al., 2021).

2.2 TensorFlow

The open source deep learning framework TensorFlow1 is developed by Google. Its
front-end supports multiple development languages such as Python, C++ and Java, while its
back-end is written in C++ and CUDA (Zeng; Gong; Zhang, 2019). TensorFlow is a compelling
and widely used platform. It provides various tools that facilitate the implementation of a model
for Machine Learning applications in different areas. This framework is cross-platform and can be
used on many different operating systems such as Windows, macOS and Linux. All computation
involved in TensorFlow is expressed as a directed graph, where all computations are converted
into nodes in this directed graph and the edges represent the flow of data between nodes in the
1 TensorFlow: https://www.tensorflow.org/
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graph (Zeng; Gong; Zhang, 2019). This tool is one of the most widely used machine learning
systems operating at a large scale on heterogeneous systems.

Also available in this framework is the TensorFlow Lite package, which allows the
implementation of ML models for resource-constrained devices such as Raspberry Pi, mobile
devices and MCUs. TensorFlow Lite allows a pre-trained neural model to be converted and
embedded in an edge device or a smartphone also. The basic implementation flow follows these
steps:

1. Select and train a neural model for the desired task in the usual way. At this point, you can
set the quantization-aware training, thus improving the optimization procedure;

2. Using the converter of the Tensor Flow platform, convert the trained model into a TFL
readable version. The model generated after conversion has higher efficiency in terms of
space occupied and, depending on the desired target device, in terms of accuracy;

3. As the model is finalized, it is possible to use optimization techniques such as quantization
or weight pruning, reducing the computation requirement and making the neural model
more agile during inference.

4. At the end, a tflite file containing the model ready to be implemented in the final device
will be generated.

2.3 Espressif ESP32

Due to semiconductor industry increasingly competitive and complexity challenges,
processor manufacturers are massively investing in a more compact, multi-purpose devices. One
of these companies is Espressif. It is aims to occupy this vital slice of this cost-effective market.
For that, Espressif developed a high performance MCU, entitled Espressif ESP322. With prices
starting at US$ 4.083, the ESP32 is a dual-core XTensa LX6 processor, operating at 160 or 240
MHz, using Harvard architecture and integrated wireless peripherals (Wi-Fi and Bluetooth).

The ESP32 is used in several IoT platforms, such as the ESP32 KITs4 and SparkFun
Thing 5. Its Instruction Set Architecture (ISA) defines the operations that a processor or other
peripherals support. It also provides a list of mnemonics that represent the machine codes used
by the architecture. The XTensa implements a 24-bit ISA that, in turn, performs 32-bit operations
(or 64-bit, provided FLIX mode6. It allows the XTensa processor to execute instructions in
multiple forms, such as Very Long Instruction Width (VLIW) operations, the width of the
2 Espressif: https://www.espressif.com/en/prod cts/socs/esp32
3 Prices searched in https://www.digikey.com/
4 Espressif Kits: https://www.espressif.com/en/products/devkits
5 Sparkfun: https://www.sparkfun.com/products/13907
6 Flexible Length Instruction eXtensions
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instructions was chosen by the manufacturer with space-saving storage in mind. The XTensa
ISA is organized as a basic instruction set with several additional packages that extend optional
functionality, allowing the developer to maximize the solution’s efficiency by including only the
functionality needed for the project. An example of these additional packages is the MAC16
and Floating-Point Coprocessor options. MAC16 adds 40-bit accumulators and four 32-bit
registers for use in multiplication functions. The Floating-Point Coprocessor option adds logic
and structural components needed for floating-point operations following the standard defined
by IEEE 754. The ISA default of XTensa is divided into ten categories: load, store, memory
ordering, jump/call, conditional branch, move, arithmetic, bitwise logical, shift and processor
control.

2.3.1 ESP32-S2

ESP32-S2 family is a highly-integrated, low-power, 2.4 GHz Wi-Fi System-on-Chip (SoC)
solution. With its state-of-the-art, this SoC is an good choice for a wide variety of application
scenarios relating to Internet of Things (IoT), wearable electronics and smart home (ESPRESSIF,
2020). At the core of this chip is an Xtensa® 32-bit LX7 CPU that operates at up to 240 MHz.
The chip supports application development, without the need for a host MCU. The on-chip
memory includes 320 KB SRAM and 128 KB ROM (ESPRESSIF, 2020).

2.4 GTSRB

The German Traffic Sign Recognition Benchmark (GTSRB) (HOUBEN et al., 2013a) is a
multi-class, single-image classification challenge held at the 2011 International Joint Conference
on Neural Networks (IJCNN). This dataset has more than 50 thousand images, distributed in 43
classes (traffic signs). The GTSRB consists of colored images with resolutions from 15x15 to
250x250 pixels in PPM format (Portable PixMap).

Table 3 – Dataset images distribution.

Dataset No. of images
Training 35209

Validation 4000
Testing 12630
Total 51839

The images of benchmark dataset have been selected from sequences recorded near
Bochum, Germany, on several tours in spring and autumn 2010, capturing different scenarios
during daytime and dusk featuring (HOUBEN et al., 2013a). All images in the dataset are
converted to RGB color space. The dataset is divided into six subsets: speed limit, other
prohibitory, derestriction, mandatory, danger, and unique signs. Figure 4 shows some images that
make up this dataset.
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Figure 4 – Some instances from the GTSRB training dataset.

The dataset authors used a Prosilica GC 1380CH camera with automatic exposure control
and captured all images with a resolution of 1360x1024 pixels. These initial images received a
preliminary manual annotation with data about the bounding boxes delimiting the area where the
traffic signs appear.

2.5 CoreMark

It is a simple CPU benchmark developed in 2009 at EEMBC, and designed to test the
core functionality of a processor. The objective of EEMBC is make it CoreMark an industry
standard, replacing the Dhrystone benchmark.

To test the MCUs, Coremark uses implementations of the following algorithms: list
processing (find and sort), common matrix manipulation, state machine (determine if an input
stream contains valid numbers), and CRC (Cyclic Redundancy Check) (EEMBC, 2020). To ensure
compilers cannot pre-compute the results at compile time, every operation in the benchmark
derives a value that is not available at compile time. Furthermore, all code used within the timed
portion of the benchmark is part of the benchmark itself (GALON; LEVY, 2008).

As a result of the evaluation, CoreMark produces a single score that allows for between
platform comparisons (EMBC, 2021). The CoreMark/MHz metric indicates the performance of
a single thread by the processor’s clock frequency. To obtain the metric, we divide the CoreMark
(single-core) benchmark score by the clock frequency used for the benchmark test. In Table 4 we
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can see the CoreMark benchmark results7 for some microcontrollers used in surveyed papers.

Table 4 – This table lists some of the scores for registered MCUs at EEMBC database.

Processor MHz Cores CoreMark CoreMark/MHz
NVIDIA Tegra X1 1900 4 30638.54 16.13
Espressif ESP32 160 2 660.70 4.13

Xilinx XC7Z020 ARM Cortex-A9 800 1 2930.40 3.66
Espressif ESP32 S2 240 1 472.81 1.97
Atmel ATmega2560 8 1 4.25 0.53

7 EEMBC CoreMark: https://www.eembc.org/coremark/scores.php
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3
Related Works

In order to retrieve related works contributions and results to this proposed work, we will
use experimental research method to conduct tests and investigate the acquired information. The
purpose of this methodology is to establish a model that can be used as an example and applied
in future studies.

3.1 Systematic Review

As a first step, a Systematic Review was conducted, inspired by the method presented by
Kitchenham (2012), whose objective is to identify, analyze and interpret all available evidence on
a research question in an unbiased and replicable manner. The following will discuss drafting the
research questions, defining the search strategy, and selecting inclusion and exclusion criteria.

3.1.1 Methodology

Defining the problem, objective and hypothesis was the initial step to elaborating the
systematic mapping for TSDR studies search. The next step in constructing methodology is
preparing the research questions that will guide the study. It is defined as the keywords that will
help in the characterization of the investigated theme and later will compose the search strings in
the sequence the search bases will be selected and finally select the located studies by the defined
selection criteria.

3.1.1.1 Research Questions

The purpose of the research questions is to obtain relevant data regarding the topic selected
for study in the Systematic Review after selecting relevant studies. Preliminary, considering the
objective of the work, we defined the research questions described in Table 5.
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Table 5 – State of the Art Research Questions.

Question Expected data

Q1) What hardware types are TSDR systems
used?

It is hoped to collect information regarding
the devices used in capturing, detecting, and

recognizing a road sign.

Q2) What machine learning techniques do
the TSDR/ADAS studies use?

The expected of this question is to gather data
regarding the machine learning techniques

used in TSDR/ADAS applications.
Q3) What are the metrics considered in

evaluating the performance of the systems
used in the localized work?

The objective is to collect information about
the performance evaluation metrics used in

the localized papers.

Q4) Which researchers use hardware
acceleration (GPU, TSU, or FPGA)?

The objective is to gather information about
which studies have used machine learning

models with some hardware-based
acceleration solution

Q5) What data sets do the studies use? It is hoped to obtain information about the
datasets used by the studies located.

Q6) What research uses compression
techniques to reduce the size of neural

networks?

The objective is to identify which studies use
some compression technique for neural
networks to enable data reduction and

performance increment.
Source: The Author

3.1.1.2 Sources Used

The following factors defined the selection of the repositories used to fulfill the research
questions:

1. The availability of studies written in English;

2. Bases registered in the CAPES platform;

3. Sources that have greater involvement with the research theme;

4. Possibility of querying for the search terms in specific areas.

In the list of selection criteria for search sources, Item 4 was applied to ensure that search
engines always scour the same point of interest in the works, avoiding a cluttered search. Using
the criteria defined above, the following repositories were selected for the present work: IEEE
Xplore1, ACM Digital Library2 and Elsevier Scopus3.
1 IEEE Xplore: https://ieeexplore.ieee.org/Xplore/home.jsp
2 ACM Digital Library: https://dl.acm.org/
3 Elsevier Scopus: https://www.scopus.com/
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3.1.1.3 Search Strings

After formulating the research questions and choosing the search sources, it is necessary
to define studies selection strategy. The systematic review publication’s final list is populated
based on this strategy. Knowing that the process of defining the search string is iterative and
involves much experimentation and verification, the following step-by-step was defined:

1. Perform preliminary searches in order to identify potentially relevant studies.

2. Evaluate the main keywords of these studies.

3. Define an initial search string based on the verified keywords, evaluate possible derivations,
and gauge the effectiveness of each one.

4. Verify that the relevant primary studies, previously verified, were returned in the searches.

Based on the research questions raised and also considering preliminary research carried
out as a way of initial marking, the following keywords were defined: traffic sign recognition,
traffic sign detection, traffic sign tracking, traffic sign detection recognition, TSDR, traffic sign
detection, and recognition, ADAS, advanced driver assistance systems and road sign detection.

After the initial evaluation of the search strings defined using the keywords chosen above
and selecting those whose results eliminated as many unwanted results as possible, we arrived at
the strings set out in Table 6.

3.1.1.4 Selection Criteria

We apply the selection criteria (inclusion and exclusion) in each publication from chosen
research sources to qualify for the final primary studies list. As follows, we define the inclusion
criteria (IC) and the exclusion criteria (EC) :

IC1) Only publications developed from 2016 on-wards will be selected;

IC2) Studies that implement TSDR/ADAS solutions on embedded systems or in embedded
systems using acceleration or compression methods will be included;

IC3) The datasets used in the implementations, training, validations, or testing of the
proposed solutions must be open source;

IC4) Works should have results of quantitative evaluations of the proposed solution;

EC1) Publications that do not meet the inclusion criteria will not be used;

EC2) Duplicate publications will not be included;

EC3) Works that do not provide sufficient information for comparison purposes will not
be considered;
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Table 6 – Strings of search defined for each repository after initial effectiveness evaluation.

Source Search Strings

IEEE Xplore

("Abstract": "traffic sign recognition" OR "Abstract": "traffic
sign detection" OR "Abstract":"traffic sign detection

recognition" OR "Abstract":"TSDR" OR "Abstract":"traffic
sign tracking" OR "Abstract":"adas" OR

"Abstract":"advanced drive assistance systems" OR
"Abstract": "traffic sign detection and recognition")

ACM Digital Library

[Abstract: "traffic sign recognition"] OR [Abstract: "traffic
sign detection"] OR [Abstract: "traffic sign detection

recognition"] OR [Abstract: "tsdr"] OR [Abstract: "traffic
sign tracking"] OR [Abstract: "adas"] OR [Abstract:

"advanced drive assistance systems"]

Scopus

ABS("traffic sign recognition" OR "traffic sign detection"
OR "traffic sign detection recognition" OR "TSDR" OR
"traffic sign tracking" OR "adas" OR "advanced drive

assistance systems" OR "traffic sign detection and
recognition")

Source: The Author

EC4) Publications with purely theoretical content will not be selected;

EC5) Works are written in languages other than English or Portuguese will not be
considered;

EC6) Will not be considered publications that do not apply machine learning-based
solutions.

3.1.2 Selecting Studies

With the selection of the primary studies finalized, we define the information that will be
extracted from each publication as follows:

• Type of hardware used;

• Techniques or algorithms implemented for the detection and recognition of traffic signs;

• Metrics considered to evaluate each proposed solution;

• Type of solution used for data acceleration or compression, if any;

• Dataset chosen for the tests.
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3.1.3 Results

We will now discuss the results obtained during the Systematic Review. Later, we will
also discuss the answers to the research questions. In Table 7 are number of publications located
by repository applying the search strings defined in the sub-section 3.1.1.3. In the original Scopus
search string, we embed four additional filters. This change aims to remove results referring to
unrelated areas and book chapters. All searches occurred in the time range starting in the year
2015 through the year 2020. The search in repositories occurred on January 6, 2020.

Table 7 – The quantitative result obtained from applying the search strings.

Source Results
IEEE Xplore 1923

ACM Digital Library 113

Scopus 4465

Total 6501
Source: The Author

The next step after the initial survey is the application of the selection criteria defined in
the Section 3.1.1.4. In Figure 5 we can verify the number of results obtained after applying the
search strings in each repository. In this step, we established 2016 as the initial year for search in
repositories. As can be seen, the ACM Digital Library source was the one that returned the minor
results, providing only 3.17% of the publications evaluated. After selecting the primary studies,
we apply the inclusion and exclusion criteria. For this, we analyzed the paper titles, abstracts, and
the entire content.

Figure 5 – Results distribution after applying the search strings for each repository.

IEEE Xplore
43.81% ACM Digital Library 3.17%

Scopus
53.02%

Source: The Author.
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Figure 6 illustrates the distribution of accepted and rejected studies after selection. At
this stage, the studies considered rejected correspond to duplicate studies or studies that at some
point met some exclusion criteria. The studies considered accepted those that passed the selection
based on the inclusion criteria. In the end, only 19 studies remained, corresponding to less than
1% of the total number of primary studies.

Figure 6 – Distribution of the results obtained after applying the inclusion and exclusion criteria.

Accepteds 0.8%
Rejecteds

99.2%

Source: The Author.

3.1.4 Analysis

After the selection of the studies is finalized, applying the data extraction protocol begins
so that the answers to the found research questions. Figure 7 displays the hardware distribution
used to embed the proposed solution in each study. Overall, the number of citations of a given
platform is higher than the number of publications found. That occurs because, in some works,
the described proposal uses more than one platform to implement the final solution or makes
comparisons between different hardware. The extensive use of GPU-based solutions, 28.6%, was
already expected since it is possible to implement complex algorithms with reduced inference
time.

The metrics for evaluating the results serve as a reference for comparison between selected
works and also help define the present work’s evaluation method. During evaluation of the SR
studies, the metrics used were: execution time in milliseconds (ms), evaluation capacity of frame
rate (FR), accuracy, precision-recall curve (Area Under the Curve - AUC), latency, GMAC per
second (Billion (Giga) Multiply-And-Accumulate), Joules consumed per processed frame, mAP
(mean Average Precision), Giga FLOPS and model size in bytes.

At Figure 8 is seen that 73.7% of the used classifiers are CNN’s type. The result is
unsurprising since ConvNets have been applied with great success to the detection, segmentation,
and recognition of objects and regions in images (LOPEZ-MONTIEL et al., 2020). Companies
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Figure 7 – Frequency of devices in traffic sign recognition systems.
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such as Mobileye4 and NVIDIA are using such CNN-based methods in their upcoming vision
systems cars (LECUN; BENGIO; HINTON, 2015).

Figure 8 – Frequency of classifiers in selected works.

CNN

SSD

Faster R-CNN

Cascade

FPN

Yolo

14

4

2

1

1

1

Source: The Author

Figure 9 presents the distribution of the datasets used by the selected publications. As can
be observed, the most used dataset is the GTSDB (HOUBEN et al., 2013b) with six occurrences,
then we have the GTSRB (STALLKAMP et al., 2012) base with four occurrences. Although the
CIFAR-10 (KRIZHEVSKY; NAIR; HINTON, a) and the road environment have no connection,
three related papers use this dataset. KITTI is a dataset assembled from the Annieway platform
(FRITSCH; KUEHNL; GEIGER, 2013). The primary aim is to serve as a computer vision
benchmark, and two located studies use them. The BTSR (Timofte; Zimmermann; Van Gool,
2009), BDD100K5 (YU et al., 2020), Cityscapes (CORDTS et al., 2016), BTSD (TIMOFTE;
ZIMMERMANN; GOOL, 2009) and Pascal VOC (EVERINGHAM et al., 2015) had only 1
occurrence each. From the point of view of hardware acceleration, only one study used it. Three
4 Mobileye: https://www.mobileye.com/
5 A Diverse Driving Dataset for Heterogeneous Multitask Learning: https://www.bdd100k.com/
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works presented solutions for the compression of neural networks for allocation in embedded
devices.

Figure 9 – Frequency of datasets in selected works.
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3.1.5 Analysis of Selected Publications

In this subsection, we will analyze each paper related to traffic sign detection techniques
using machine learning algorithms and ported to embedded systems. We will present a brief
introduction to the content and a general description of each proposed work. These papers met
the Inclusion Criteria defined in subsection 3.1.1.4.

3.1.5.1 Optimization for object detector using the deep residual network on embedded
board

Lee et al. (2016) proposed optimizing a neural model for road object detection in terms of
processing time and memory consumption. They implemented a Single-Shot Multibox Detector
(SSD) object detector, a VGGNet-based neural network, and a multi-box classifier, using feature
maps at various scales.

The authors worked on reducing the complexity of the VGGNet network so that they
obtained a neural model with five times fewer parameters and three times less memory consumption
compared to the original model. They got this using a smaller residual network that performs
fewer computations per interaction, achieving a higher inference speed than the standard VGGNet
network. Lee et al. (2016) embedded the proposed model in a NVIDIA dev board Jetson TX1
which has a 1024 GFLOPs Maxwell GPU integrated with an ARM Cortex-A57. On this testbed,
the proposed model achieved a mark of 0.094 seconds for each inference with an average accuracy
of up to 85%, ten times faster than the original VGGNet model. The dataset chosen by the authors
was KITTI.
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3.1.5.2 Traffic sign recognition based on the NVIDIA Jetson TX1 embedded system using
convolutional neural networks

Han e Oruklu (2017) used the NVIDIA Jetson TX1 with a USB camera to implement a
TSR system based on the OpenCV4 Tegra and Theano libraries. The authors perform traffic sign
detection in this work by applying shape, and color-based segmentation since traffic signs have
well-defined colors and shapes.

Given any RGB image, applies normalization in the picture, and using morphological
filters, the pixels sets that may contain occurrences of traffic signs are selected. In sequence,
color detection removes speckles and any image noise. After delimiting the Region of Interest
(ROI), the CNN receives this slice containing the candidate blobs for the classification step. The
neural model proposed in this paper is based on the LeNet network, using 40-by-40 pixel color
images as input. Han e Oruklu (2017) use a set of three convolutional layers intercalated with
three max-pooling layers. The authors used three fully connected layers, the first two applying
the activation function tanh and the output layer using the function softmax. The GTSRB dataset
has been used to train the proposed neural model,

The proposed system used accuracy as the standard metric. In tests using the GTSRB and
the neural model defined in the paper, the authors achieved an accuracy of 96.2%. The embedded
system took an average of 0.67 seconds to process a single image with 1360x800 resolution.

3.1.5.3 An FPGA-Based Hardware Accelerator for Traffic Sign Detection

The system proposed by Shi et al. (2017) used a Xilinx ZC706 FPGA as a hardware
acceleration medium for traffic sign detection. The architecture defined by the authors was
implemented in four main blocks: an accelerator for the detection, the CPU, a DMA bus, and
external DRAM memory. The accelerator, CPU, and DMA are all on the Xilinx chip. The DRAM
exists to store the video frames and transfer them to the accelerator for detection. The authors use
three-stage cascaded classifiers for the classification step.

Shi et al. (2017) design aims to facilitate and accelerate the feature extraction and object
detection steps. To this end, the proposed approach takes advantage of the critical property that
several image blocks processed by a classifier often overlap. Therefore, several identical pixels
can be used by feature extraction for these image blocks. Between the second and third stages,
the authors inserted data buffers. The objective is to avoid unnecessary workload in the last stage
of the cascade classifier. To reduce power consumption, they implemented an adaptive workload
distribution. The implementation uses a priority comparator, which determines the "priority" of
different processing units; a multiplexer, responsible for managing the control signals; and two
buffer trackers, which monitor the read and write signals of a buffer, thus tracking the available
memory space.

In the experiment, cascaded classifiers use three datasets to train the STOP traffic
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sign to recognize: BTSD, GTSRB, and GTSDB. Once trained, the classifiers achieved a true
detection rate of 99.80% and a false detection rate of 0.013%. Compared to CPU and GPU
implementations, the authors’ model achieves 17.25 times and 5.61 times more processing speed,
respectively. Comparing the energy efficiency of these three implementations, the proposed
hardware accelerator reduces power consumption by 252.44 times compared to the CPU
implementation and 42.68 times compared to the implementation on a GPU. The accelerator
achieves throughput of 126 FPS with energy efficiency of 0.041 Joules/frame.

3.1.5.4 FPGA-based convolution neural network for traffic sign recognition

The authors Yao et al. (2017) propose a CNN-based topology suitable for implementation
in FPGA. In addition, optimization strategies were applied to improve the utilization of the
neural network parameters, thus reducing the complexity of the network. The four strategies
were: compression of the convolutional layer parameters, replacement of the fully connected
layer, use of the MLP (Multilayer Perceptron) model for the convolutional layer, and carry gate.

Adjustments in AlexNet original kernel size allowed to reduce the number of parameters
by 58.7%. Regarding the fully connected layer, the authors replaced it with a layer called "Global
Parameterization," located after the last convolution layer, and the number of feature maps is
equal to the number of categories (classes). A feature layer value equals the sum of products of
all features and the weight in the corresponding feature map. Unlike the fully connected layer,
the element in this layer is connected to one instead of all feature maps, causing the number of
parameters to decrease substantially. The MLP convolution layer combines a standard convolution
layer and two convolution layers whose size of kernel is 1 × 1. MLP convolution layer can
introduce a more nonlinear relationship into the network than the traditional convolution layer.
With this, the flexibility and accuracy of the model can be increased. In addition, DSP in FPGA
may quickly generate the 1 x 1 convolution results, making implementing MLP convolution layers
more efficient. The carry gate can give the network a better descriptive capability, increasing the
module accuracy. They work as shortcut connections between the input and output of a given
layer.

In work the GTSRB dataset and the framework Caffe6 were used. The accuracy rate on
training and testing was 99.7 percent and 98.1 percent, respectively. Compared to the original
AlexNet model, the workload was 61.4% lower, and the final model has only 4.7 million
parameters, 12.5% less than the original model.

3.1.5.5 Simultaneous Traffic Sign Detection and Boundary Estimation Using Convolutional
Neural Network

Lee e Kim (2018) proposed a novel and efficient method for traffic sign detection. Using
convolutional neural networks, this work not only predicts the class but also accurately estimates
6 Caffe - Deep learning framework: https://caffe.berkeleyvision.org/
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the boundaries of the detected object, making the proposed model quite robust on images with
occlusion and objects of small size.

Based on the SSD framework, the proposed method performs the predictions on multi-
level feature maps. The evolution over the other methods is that instead of predicting the bounding
box (bounding box that indicates the location of the detected object in the image), the article’s
network performs pose estimation. An input image is passed and processed on an initial CNN
(e.g., VGG16 or Inception V2), extracting feature maps using a series of convolutions, nonlinear
activations, and clustering operations. Then, from the obtained feature maps, a class’s 2D poses
and shape probabilities are estimated by two separate convolutional layers, i.e., a pose regression
layer and a shape classification layer, combined with successive operations that convert the
convolution outputs to 2D pose values and class probabilities, respectively. The proposed network
was trained on an NVIDIA Xavier and implemented on a Qualcomm Snapdragon 820A (an
automotive processor with Adreno GPU). The dataset used was the GTSDB used framework
Caffe.

Because it needs information regarding the positioning of a bounding polygon around the
object for training, the method cannot have its accuracy compared to "ordinary" datasets. Using
the VGG16 network for the basic block of the proposed method, the authors used the Average
box Overlap (AO) and the Area Under precision-recall Curve (AUC) as metrics to evaluate the
efficiency of the model on the GTSDB. Considering the AO metric, the model obtained the
best results compared to the methods, wgyHIT501 (WANG et al., 2013), visics(MATHIAS et
al., 2013), LITS1(LIANG et al., 2013), and BolognaCVLab(SALTI et al., 2013). The authors
used the dataset SDTS with 6324 annotated traffic signs for accuracy evaluation. The mAP is
calculated for each IoU (Intersection over Union) value. IoU is the intersection value between the
calculated and standard bounding boxes. To be considered a positive prediction, the IoU value
must be greater than 0.5. Using VGG16 e Inception V2 nets in this dataset with 0.5 and 0.7 IoU
values, the model obtained the mAP above 0.8.

3.1.5.6 Traffic Sign Recognition with Light Convolutional Networks

In this paper, Wu et al. (2018) designed a light convolutional network (SAFENet) from
a modified VGG network that can be run on an embedded system in real-time using RGB
images converted to grayscale as input. The authors reduced the size of the filters applied in the
convolutional layers to compress the neural network and speed up the inference. The proposed
model has three convolutional blocks, with 32, 64 and 128 filters. On the first and second
pooling layers Wu et al. (2018) added feature maps. Before the fully connected layer, all maps
are concatenated. With these changes, the SAFENet obtained an accuracy of 99.34% and an
inference time of 4.58 ms per image, running on the NVIDIA hardware embedded Jetson TX1.
The dataset used was GTSRB.
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3.1.5.7 Autonomous Embedded System Enabled 3-D Object Detector: (with Point Cloud
and Camera)

Katare e El-Sharkawy (2019) propose an architecture for 3-D object detection from the
LIDAR (Light Detection And Ranging) sensors and cameras installed in a vehicle, connected to
a vehicular embedded system, in this case, NXP’s Bluebox 2.0 platform.

The architecture in question uses Frustum-PointNet (QI et al., 2018) as the base model
for acquiring data from the LIDAR sensor. In addition, the model also contains a Segmentation-
PointNet and a Regressed PointNet. The proposed model uses features extracted from the image
to estimate the position of the 3D bounding boxes, adding a block to explore the global features of
the LIDAR. Thus, the architecture merges a block based on Frustum-Pointnet and a second block
based on the ResNet architecture to evaluate the bound box referring to objects captured by the
sensors. The KITTI dataset used in the work has an instances distribution as follows: 70% for the
training set and 30% for the evaluation set. The final architecture achieved an accuracy of 79.80%
on images considered easy, 65.83% on images of medium difficulty, and 62.71% on complex
images. The data obtained is slightly lower than that of the standard Frustum-PointNet model.

3.1.5.8 ResCoNN: Resource-Efficient FPGA-Accelerated CNN for Traffic Sign Classifica-
tion

Lechner, Jantsch e Dinakarrao (2019) show an efficient CNN (ResCoNN) architecture
using few resources and with a small number of weights (only 60,000 compared to a few million
state-of-the-art CNNs), and employ it in traffic sign detection and classification. For efficiency,
the network takes advantage of binary weights and integer activation rather than employing
complex computations such as batch normalization and exponential linear units. The ResCoNN
model can achieve a classification accuracy of over 96% on real-world images at a frame rate
of 36 FPS on a Zynq SoC (xc7z020clg484-1) with 90% of reduction in the number of weights
compared to state-of-the-art CNNs.

To binarize the weights, the authors followed the strategy presented by Courbariaux et
al. (2016). By using the binary representation [-1,1], the network structure does not need to be
changed, storing the weights still as full precision variables to enable gradient-based weight
optimization, but for the forward and backward propagation steps, the weights are binarized as
follows:

𝑤𝑏 = 𝑠𝑖𝑔𝑛(𝑤) =

+1 if 𝑤 ≥ 0

−1 else
(2)

The dataset used was a modified version of GTSDB, adding some images of the Belgium
Traffic Sign for testing.
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3.1.5.9 Real-Time Object Detection On Low Power Embedded Platforms

Jose et al. (2019) used the TDA2PX System-on-Chip (SoC) and the TIDL (TI Deep
Learning) library in their work. The first strategy of the paper was to explore existing lightweight
sensing networks such as MobiliNets, SqueezeDets, and ShuffleNets. However, these networks
proved slow on the platform, varying latencies from 103.23 ms to 559.18 ms. Therefore, since
much of the complexity of the network is in the initial part due to the large filter sizes, the authors
propose: (i) balancing the spatial dimensions and the depth of the channels through all layers of
the network; (ii) using sparse convolutions, setting the weights to zero below a threshold that is
dynamically determined based on the range of weights; and (iii) using fixed 8-bit representation
quantization.

Comparing the proposed model (HX-LPNet) with the JDetNet model, the proponents
observe a six-fold reduction in required computations. The Dense JDetNet model has parameters
of 3.15 M, while the dense HX-LPNet has only 0.42 M. In the sparse version, HX-LPNet achieved
22.47 FPS on TDA2PX with a latency of only 0.2 ms. The dataset used was the Berkeley
DeepDrive Dataset (BDD100K).

3.1.5.10 Traffic Signs Detection and Recognition System using Deep Learning

William et al. (2019) implements a TSDR system on a Raspberry Pi 3 Model B+ device.
The dataset defined for use by the authors was GTSDB. The images employed are loaded in
RGB mode and then converted to HSV color space. Only then is it then submitted to the neural
network for ROI stipulation. The network proceeds to traffic signal classification with the area
of interest detected. To accomplish this script the authors used the F-RCNN Inception V2 and
Tiny-YOLO v2 models. The F-RCNN consists of a fast R-CNN detector and a Region Proposal
Network (RPN), and then the Non-Maximum Suppression (NMS) is applied to choose the best
region. NMS is a computer vision method that selects a single entity from multiple overlapping
bound boxes using the discard criterion for any entity whose IoU is below 0.5. With this model,
the accuracy obtained was 96%. The second model used was Tiny-Yolo V2, a real-time object
detection model based on the Yolo V2 model, designed to run on handheld devices without
an available GPU. The reduced neural network size goes to the FPS rises from 40 to 244, but
its mAP drops from 48.1 to 23.7. Running on the platform proposed in the article, the authors
obtained with Tiny-Yolo V2 an average accuracy of 73

3.1.5.11 Traffic Sign Identification Using Deep Learning

The focus of this paper aims at selecting a Deep Neural Network (DNN) approach for
traffic sign detection and classification to achieve a balance between accuracy, measured based on
mAP, and execution time, measured in FPS, for a real-time application with a maximum vehicle
speed of 5 miles per hour, which is a requirement of the Intelligent Ground Vehicle Competition7

7 The Annual Intelligent Ground Vehicle Competition: http://www.igvc.org
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(IGVC) competition.

The model proposed by Ravindran et al. (2019) implements the Faster R-CNN Inception
V2 algorithm to detect and classify traffic signs for real-time testing. The paper uses the German
Traffic Sign Detection Benchmark (GTSDB) dataset. The authors use the Data Augmentation
technique to resolve the unbalanced classes problem. In order to raise the accuracy in detecting
sure traffic signs, the authors have implemented cross-referencing of data from an Optical
Character Recognition (OCR) called Tesseract (an artificial recurrent neural network of Long
Short-Term Memory - LSTM), with the data obtained by the neural network classification. By
embedding the Faster R-CNN network with the suggested changes into an NVIDIA Drive PX2
embedded system the authors obtained a mAP of 90.62.

3.1.5.12 Image Classification on NXP i.MX RT1060 using Ultra-thin MobileNet DNN

In Desai, Sinha e El-Sharkawy (2020), the authors used the Design Space Exploration
technique to modify the basic MobileNet V1 model and develop a more space-efficient and faster
inference speed version. The paper proposes seven modifications to the MobileNet V1 baseline.
These are: (i) separable convolution layers; (ii) erasing areas in the images and using random
filling, increasing the generalization ability of the model; (iii) eliminating the layers with the
same output shape in order to reduce the size of the model; (iv) reducing the depth of the last
convolutional block, thereby reducing the number of parameters in this block by 60%; (v) use
of the Swish activation function instead of ReLu, this increases the accuracy concerning the
baseline model; (vi) definition of a width multiplication factor, this factor (value between 0 and
1) works as a reducer of the number of input and output channels making the model smaller
as it approaches zero; (vii) choice of the Nadam optimizer, which combines the effects of the
RMSProp optimizer, the Adam optimizer and Nesterov’s momentum.

The proposed model remained small enough to be embedded in the NXP i.MX RT1060
board and efficient, with the accuracy at 84.32% and only 0.3 million parameters. The size of the
neural model is 3.9 MB. The dataset used in the experiments was CIFAR-10.

3.1.5.13 Real-time Implementation of RMNv2 Classifier in NXP Bluebox 2.0 and NXP
i.MX RT1060

Using the Reduced Mobilinet V2 (RMNv2) model trained to the CIFAR-10 dataset and
only 4.3 MB in size, the authors Ayi e El-Sharkawy (2020) successfully implemented an image
classifier at the NXP i.MX RT1060 embedded board and the NXP Bluebox 2.0. Implementing
the RMNv2 classifier on the NXP i.MX RT1060 involved two steps: first, converting the RMVv2
model to the TensorFlow Lite model and deploying that TensorFlow Lite model on the board.
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3.1.5.14 Convolutional Neural Network based Traffic-Sign Classifier Optimized for Edge
Inference

Shabarinath e Muralidhar (2020) propose a VGGNet-based CNN architecture for traffic
signal image classification using the GTSDB dataset on an FPGA. The base model consists of
3 convolutional blocks, each consisting of two convolutional layers with the ReLu activation
function, followed by a pooling layer. In the end, three fully connected layers perform the
classification work. In this dataset, it was possible to obtain an accuracy of 98% in the tests. The
paper addresses some image preprocessing problems related to traffic sign images. The trained
model is optimized using combined 50% pruning of the weights with post-training quantization
techniques. The pruned model reached an accuracy loss of less than 1% after retraining. This
optimization reduces the memory consumption of the model so that it can be embedded on the
FPGA platform. For the base model, the test accuracy was 98%, the base model with pruning had
an accuracy of 97.5%, and the model with pruning and quantization had an accuracy of 96.5% in
the tests performed. Using the techniques mentioned above, the number of weights needed in the
forward pass of the optimized model was reduced by approximately 69%, to 40805 weights.

3.1.5.15 A Light Weight Multi-Head SSD Model For ADAS Applications

In Lai et al. (2020) a lightweight Single Shot Detector (SSD) type detector is proposed
for the task of recognizing moving objects, such as vehicles, pedestrians, and bicycles). The
standard SSD method has two components, a backbone and a head. The backbone is a pre-trained
image classification network as a feature extractor, with the fully connected layer removed. The
head is one or a convolutional layer set added to this backbone. Its outputs are interpreted to be
the bounding boxes and object classes.

In this method, more heads are added to the SSD model to fill the gaps between adjacent
anchors, populating the corners of the grid cells with more anchors. To implement this, the
authors added 3x3 convolutional layers in the feature detector head to generate mixed features.
This change combines the information from adjacent cells to obtain the mixed features at the
corner positions. It is correct to say that adding multiple heads increases the computational cost,
but the gains are also significant. One change also made was to modify the original cross-entropy
loss function to a focal loss function. Due to a slight class disproportion in the training dataset,
the authors implemented that, inducing poor detection.

The two embedded platforms used to evaluate the concept developed in the Lai et al.
(2020) paper were: the iCatch Inc. V37 and the TDA2X. Both platforms have accelerators.
Evaluating images with 512x256 resolution, the iCatch V37 reached a speed of 30 FPS. TDA2X,
on the other hand, was able to analyze images at 27 FPS. At this exact resolution, the mAP
reached 74.35%, and the total network parameters were 4.62 million. The datasets used were:
Cityscapes, CreDa, and VOC 2007.
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3.1.5.16 Traffic Signs Recognition System with Convolution Neural Networks

Using a convolutional neural network embedded in a Raspberry Pi 3 and the dataset
BTSD, Sisido et al. (2018) obtained an accuracy of 96% on the task of detecting traffic signs.
A webcam was attached to the Raspberry Pi 3 and assembled on a robotic platform that would
traverse a field with the posted traffic signs. The approximate processing and inference time was
4.9 seconds.

3.1.5.17 Real-Time Traffic Sign Recognition using Deep Network for Embedded Platforms

In Nagpal et al. (2019), the authors implemented a two-stage neural network for traffic
sign detection. The first stage is responsible for detecting the location of the traffic sign in a given
image. The detector was pre-trained on the Pascal VOC dataset. Then it underwent training on
BTSDB and GTSRB, ensuring the model has good generalization. To train the classifier Nagpal
et al. (2019) use the GTSRB dataset with the data augmentation technique. The advantages of
this approach are: (i) since the first stage was trained with segmentation and classification data
from multiple datasets, it becomes a robust segmenter and avoids the need for retraining for
other environments; (ii) it offers a computational advantage, since it is not necessary to apply, for
example, the use of all the bound boxes present in the SSD (more than 8 thousand possibilities),
since, as the localizer received classification data in training, its output will be more refined; (iii)
by separating the classifier from the detector complexity, it is possible to apply binarization more
easily.

Nagpal et al. (2019) selected the local distillation method to reduce the network size
without affecting accuracy. After this step, they prune the model. Finally, fixed-point quantization
is applied to the model, making it possible to embed the network in a constrained device. The
authors evaluated the model on the NVIDIA Tegra X2, Snapdragon 820A, and the Texas TDA2X.
Implemented on the NVIDIA Tegra X2, the pruned-only model achieves an execution time of 42
ms per inference. On the TDA2X, the pruned and quantized model was shipped, achieving 49.5
ms in inference execution. On the Snapdragon 820A, also using the pruned and quantized model,
it reached 48.5 ms in execution time.

3.1.5.18 Squeeze-and-Excitation SqueezeNext: An Efficient DNN for Hardware Deploy-
ment

Convolutional neural networks are being used in autonomous driving vehicles or ADAS
systems and have succeeded. Chappa e El-Sharkawy (2020) have proposed an architecture
based on SqueezeNet, Mobilenet, and SqueezeNext. The architecture contains basic blocks
organized in a 4-stage configuration called bottleneck modules, a compression and excitation
block (Squeeze-and-Excitation - SE), a medium pooling layer, a fully connected layer, and a
spatial resolution layer. This paper implement Nesterov momentum and learning rate decay with
the SGD optimizer. To reduce the computational cost of the network, two multiplication factors,
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Resolution Multiplier (RM) and Width Multiplier (WM) were defined to reduce the internal
representation of each layer. RM is applied to the input image and WM to the layers to reduce the
number of total parameters. Evaluating the architecture on the CIFAR-10 dataset, we observed
an accuracy of 92.60% using WM = 2 (model with 6.59MB) and 86.71% with WM = 0.5 (model
with 0.595MB). The inference time starts from 21 seconds (WM=2) and drops to 10 seconds
(WM=0.5).

3.1.5.19 Mobilenet-SSDv2: An Improved Object Detection Model for Embedded Systems

Chiu et al. (2020) propose a lightweight object detection model developed from the
MobileNet V2 network. To improve the accuracy of the object detection network model, the
inverse residual module technology in Mobilenet-v2 and FPN architecture was employed to
improve the performance of the proposed object detector, named Mobilenet-SSDv2. Experimental
results show that the proposed Mobilenet-SSDv2 detector achieves an accuracy rate of 75.9%
mAP on the Pascal VOC test suite and a processing speed of 19 FPS running on the NVIDIA
Jetson AGX Xavier platform. Moreover, the memory usage of the proposed detector is only 32
MB, which is helpful in implementing ADAS on embedded devices.

3.1.6 Comparative Analysis

The works assessed during Systematic Review were summarized and can be seen in
Table 8. Unlike the publicationsresco verified during the SR, the present work intends to use
low-cost and resource-constrained hardware and apply compression and quantization techniques
to improve efficiency during neural network inference.
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4
Network Compression Pipeline

According to the information provided in Chapter 3, several works evaluate the use of
neural networks for traffic sign recognition and the subsequent embedding of these neural models
into embedded devices with considerable results, such as Lee et al. (2016) and Chiu et al. (2020).
However, none of these selected works use a resource-constrained device for this task. Aware of
this, this present work proposes the implementation of an optimized neural network for use in
low-end devices.

4.1 Methodology and Proposed Pipeline

Regarding development and experimentation environment, we chose the TensorFlow
library as the official library for the development of our work because it is open source and
has extensive documentation regarding its use. Also due to be open source and supported on
Google Colab1 which is an environment that allows anyone to write and execute arbitrary Python
code from the browser and is especially suited for machine learning. This choice was made
because of the possibility of using state-of-the-art hardware for training our neural networks. The
programming language used in the pipeline was Python2 version 3.7. The available hardware for
running the model in the Google Colab is a Tesla P100 GPU with the respective driver version
460.32.03 and 16 GB of RAM available, running TensorFlow framework version 2.8.2. In the
environment for programming and installing the model on embedded device, we use the IDE
Visual Studio Code (VSCode) in version 1.69.2. As an extension of VSCode, the PlatformIO
plugin provide us an integrated, user-friendly, and extensible development environment for
embedded devices. This extension creates an Arduino-like environment that will facilitate the
programming of our functions. Within PlatformIO, we use version 4.0.0 of the Espressif ESP32
1 Google Colab: https://colab.research.google.com/
2 Python: https://www.python.org/
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platform and 5.1.0 version for Espressif ESP32-S2. All experiments run on our architecture used
the GTSRB dataset.

Due to the number of operations, part of the CNN models inference execution time is
in the convolutional layers, which is closely linked to the complexity of the neural model. The
ESP32 device has too low RAM and FLASH storage capacity to support a robust neural model
such as VGG or AlexNet. Such models have millions of parameters, making them impossible
to implement on a resource-constrained edge device. Aware of this, our approach involves
developing a neural model capable of performing image recognition tasks with sufficient accuracy.
The model must have a small parameter set and allows embedded in resource-constrained edge
devices.

The proposed pipeline consists of eight stages. In the first stage of the pipeline, a neural
model is developed to effectively detect the images from the GTSRB dataset. A convolutional
network model, even with few layers, performs thousands or millions of multiplication and
accumulation operations, which can be time consuming depending on the hardware employed.
As already mentioned, the operational complexity is on the convolutional layers. To speed up the
inference process, it is desirable to reduce the complexity of the neural network if it does not
affect the performance metrics. The success of a machine learning model depends closely on the
choice of desired hyperparameters (hparams). Generally speaking, some hparams of the neural
network have a direct bearing on the final volume of the model. To increase the assertiveness in
choosing the hyperparameters of our neural model, we use Bayesian Optimization. This way, we
reduce the time spent in search and choosing these parameters. The use of Bayesian optimization
for an optimized search of hparams is the second stage in our pipeline. In this phase, we will
search for the best hyperparameters used by the student and teacher models.

Figure 10 – Distribution of instances over classes number in the GTSRB dataset.
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After selecting the parameters that will make up the student and teacher models, we
subject the GTSRB dataset to a Data Augmentation (DA) procedure. Figure 10 displays the
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distribution of the number of instances over classes in the GTSRB dataset. In the image, we can
observe the unbalanced data. This leads to lower generality for the network due to a few samples
for some classes and may result in possible overfitting during neural network training. The Data
Augmentations technique uses simple transformations such as horizontal flipping, color space
augmentations, and random cropping. These transformations encode many invariances in images
used in recognition tasks. In our work, we used the TensorFlow Image Data Generator3 (IDG)
class. It provides various augmentation techniques like standardization, rotation, shifts, flips, and
brightness. The Image Data Generator class ensures that the model receives new variations of the
images at each epoch. In Figure 11, we can see some samples of the new images generated by
the data augmentation technique. The configuration chosen for the DA consists of rotating the
images up to thirty degrees to the left or right, shifting the source image to 20% on the x or y
axis, using blur filters, and random adjustments to the brightness. At each training epoch, the DA
generates 128 new images, corresponding to 11.53% of the images used.

(a) (b) (c)

Figure 11 – (a) Image with blur applied by DA, (b) Image with rotation applied by DA, and (c)
Image with brightness adjustment applied by DA

After dataset is balanced, we will move on to the teacher model training stage (stage
three of the pipeline). The teacher model should be robust enough and have good accuracy
and precision metrics since its weights will be distilled to the student model. For this purpose,
we use the Knowledge Distillation technique, also known as the Teacher/Student Model. The
main objective is to construct a small neural model (student) from knowledge of one or several
models with more considerable capabilities (teacher). At the end of the Knowledge Distillation
procedure, a pruning operation is applied to the output model from the previous step to reduce
the final model’s size further. From pruning, the quantization operation is applied to the model.
As discussed in Shabarinath e Muralidhar (2020), quantization of a neural network allows for a
reduction in computational cost and neural network volume, coupled with minimal impact on
final accuracy. Figure 12 shows the complete proposed pipeline.

After training the baseline model (teacher model) and model compression steps (
knowledge distillation, pruning, and quantization), we embed the neural network on the desired
3 IDG: https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
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Figure 12 – Proposed pipeline for compressing a neural network for a resource-constrained
device.
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Source: The Author.

hardware, in our case, the ESP32. As a result of the compression pipeline, two files representing
the final neural model are generated: a tflite file, a Flatbuffer4 containing the model run data;
and a "cc" file, the model information in vector form (c-hex array) obtained from the hex dump
of the tflite file. Ultimately, we run the model by providing the necessary test images through
the hardware’s serial port. Then we collect the pertinent information to compose the evaluation
metrics. To validate the results of the experiments, we will use the measures of accuracy, F1-Score,
loss, recall, and precision as metrics for validating the final neural network. Furthermore, to
evaluate the inference speed, we will use the frame rate metric (FPS) and the execution time of
each convolutional layer.

4.2 Proposed CNN Architecture

This work uses the architecture based on the LeNet version presented by Lecun et al.
(1998). The CNN was developed using three convolutional sets: one convolutional layer, each
with a batch normalization layer, an activation layer and a max pooling layer. After convolutional
block, we have flatten layers and one fully connected layer does the classification work of all
dataset classes. The input layer of the convolutional set has an input resolution of 32 x 32 pixels.
This format was chosen because it is close to some selected works Hosseini et al. (2017), Jang
et al. (2016), Wang, Wang e Zhou (2019) that showed a good trade-off between number of
parameters and accuracy. Moreover, the choice of architecture was also guided by the preliminary
results obtained in the work of Silva et al. (2021) which reached a maximum accuracy of 99.31%
in the training set. Also, the accuracy achieved was 93.73% in the validation set and the test traffic
signs were predicted with 91.41% of accuracy, indicating that model was properly trained. The
best loss values obtained were 0.3737 during training and 0.5574 for the validation set. Figure 13
shows a diagram with the convolutional neural network proposed as the basis for the experiments.
4 FlatBuffers: https://google.github.io/flatbuffers/
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Figure 13 – Diagram of the baseline neural network proposed by this work.

Source: The Author.

In this proposed work it is used the Softmax activation function in the last layer and the
ReLU function in the convolutional layers, as in Kumar Reddy, Srinivasa Rao e Raju (2018).
ReLU, short for Rectified Linear Unit, produces results in the range [0,∞). The Softmax function
is usually used in the output layer because it produces probabilistic values for each attribute. The
optimization algorithm chosen for the work was Root Mean Square Propagation (RMSProp),
proposed by Hinton, Srivastava e Swersky (2012). RMSProp is a method used for optimization
with an adaptive learning pace. This algorithm divides the learning rate by an exponentially
decreasing mean of the square of the gradients, addressing the vanishing gradient problem
(RUDER, 2016). In Tables 9 and 10, rho and momentum are parameters of optimizer RMSProp.
The regularization process introduces a new way to prevent overfitting. It helps to avoid the linear
models overfitting with the training dataset penalizing the extreme weight values. In this work,
we chose L2 Regularization at the convolutional and dense layers. We use a normal distribution
of tensors to reduce variability during kernel initialization resulting in more constant model
evaluations. The same is applied to the bias initializers. This setting is valid for all convolutional
layers of the teacher and student models. As mentioned in section 2.4, the GTSRB dataset
contains images of varying resolutions containing three color channels (RGB). Thus, the 32x32
dimension was chosen for the input layer of the convolutional network since our initial work took
place in the CIFAR-105 dataset.

The hyperparameters, such as learning rate, convolutional filters, rho, or regularization,
are selected by the BO step. As the library chosen for this work was TensorFlow, we used the
Keras Tuner to apply the BO. The choice of the search space is a subjective task. Bayesian
optimization can optimize any number and type of hyperparameters, but observations are costly,
so we limit the dimensionality and size of the search space. For that, we defined a range of
hyperparameters and let the optimization algorithm choose the best set for our two neural models:
Student Model and Teacher Model. In the initial model search, we defined the baseline structure
5 The CIFAR-10 dataset: https://www.cs.toronto.edu/ kriz/cifar.html
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Table 9 – Hyperparameters (h-params) values choose by the Bayesian Optimization for the
Student Model.

H-Params Min. Value Max. Value Best Value
Conv0 Filters 12 14 12

Conv0 L2 Regularization 1e-5 1e-3 4e-05
Conv1 Filters 12 16 16

Conv1 L2 Regularization 1e-5 1e-3 1e-05
Conv2 Filters 4 8 8

Conv2 L2 Regularization 1e-5 1e-3 1e-05
L2 Regularizarion Dense 1e-4 1e-3 1e-4

Rho 0.7 0.9 0.8
Momentum 0.7 0.9 0.7

Learning Rate 1e-5 1e-2 1.04e-3

as in Tables 9 and 10, which was information from previous training of the neural model based
on the work of Joshi et al. (2019).

The metric chosen for selecting the best model using BO was validation accuracy. The
best set of BO hyperparameters built a student model with a 92.96% validation accuracy. To the
teacher net, the best metric was 98.69%. The search for the best BO hyperparameters took 100
trials. Each trial runs a given neural model with a set of hyperparameters from a space of 15
epochs.

Table 10 – Hyperparameters (h-params) values choose by the Bayesian Optimization for the
Teacher Model.

H-Params Min. Value Max. Value Best Value
Conv0 Filters 16 32 32

Conv0 L2 Regularization 1e-5 1e-3 1e-5
Conv1 Filters 32 64 64

Conv1 L2 Regularization 1e-5 1e-3 1e-05
Conv2 Filters 16 32 24

Conv2 L2 Regularization 1e-5 1e-3 1e-3
L2 Regularizarion Dense 1e-5 1e-3 1e-3

Rho 0.8 0.95 0.95
Momentum 0.7 0.9 0.0

Learning Rate 1e-5 1e-2 8.27e-05

4.3 Pipeline Experiment

As already discussed, the GTSRB dataset was chosen for already being a widely used
dataset and having several experiments with quantitative and qualitative results that would serve
as a basis for comparisons. The dataset has more than 50,000 images, distributed in 43 possible
classes (traffic signs). The GTSRB is composed of color images with resolutions from 15x15 to
250x250 pixels in PPM format.
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Table 11 – Distribution of the images from the experiment dataset.

Dataset No. of images
Training 35209

Validation 4000
Tests 12630
Total 51839

Source: The Author

The images in the GTSRB dataset were resized to images with a resolution of 32 x 32
pixels, like the CIFAR-10/100 dataset (KRIZHEVSKY; NAIR; HINTON, b). In models that seek
data generalization, the use of a dataset is required for training, validation, and testing. Therefore,
after loading the data, the instances were divided into sets according to Table 11. The image
normalization is applied to all images by dividing each position of the image array by 255. This
step adapts the input data to the dynamic range of the activation functions of a neural network.

4.3.1 Knowledge Distillation

In this section, we describe the step-by-step process involved in defining the models
mechanisms, training, testing, validation, and analysis of the teacher and student nets. The
hyperparameters for the proposed models in this pipeline stage were selected as in Section 4.2.
The declared layers structure for the teacher and student models can be seen in Appendices B and
C.

Teacher Model: the proposed teacher net was trained with the learning rate (𝑙𝑟) set
dynamically through a callback function passed to the fit function. The learning rate update
scheme of the learning rate updates can be seen in Equation 4.1. The training lasted 250 epochs
(𝐸) as the batch size was set to 32. With this, in each epoch, 1100 images were used for training.
Using the environment described at the beginning of the chapter and the parameters mentioned
above, the time required for training was 1 hour and 31 minutes. Each training epoch took
approximately 22 seconds to run.

𝑙𝑟 =



lr, if 𝐸 <= 120

lr∗0.1, if 120 < 𝐸 <= 200

lr∗0.01, if 200 < 𝐸 < 220

lr∗0.001, if 𝐸 > 220

(4.1)

As an evaluation model metric, we monitor the accuracy of the model on the validation
set data. At each training epoch, a check function evaluates the current validation accuracy metric
and compares them to the best previous value. If the net performs better in this epoch, we save
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this model in a ckpt file (Training Checkpoint6) for future use. The accuracy, loss, F1-Score,
precision, and recall metrics obtained after training, on validation, and the test set can be seen in
the following table. In terms of RMSE, the baseline model achieves the lowest value.

Table 12 – Results obtained using the Teacher baseline neural model (without quantization) run
in the Google Colab environment.

Metric Train Validation Test
Accuracy 99.12% 99.62% 95.56%

Loss 0.1244 0.1058 0.2707
F1-Score 98.86% 99.54% 97.06%
Precision 99.46% 99.72% 94.46%

Recall 98.70% 99.40% 93.39%
RMSE 0.0330 0.0255 0.0408

Source: The Author

Considering the test accuracy of the model and compared to the results of the International
Joint Conference on Neural Networks (IJCNN) 20117, the benchmark event where the GTSRB
was used, the performance of the professor model would be placed within the TOP100 registered
networks in the first phase. When the teacher model training stage was completed, we begin the
knowledge distillation phase for the student model. The objective of this phase is to create a
reduced model in terms o parameters and maintain the teacher model accuracy.

Student Model: Using a custom class called Distiller (see in Appendix A), we override
the train_step, test_step, and compile() methods inherited from the Model class. In the train_step
method, we perform a forward pass of both the teacher and student. Afterward, calculate the loss
with the weighting of the student_loss and distillation_loss by 𝑎𝑙 𝑝ℎ𝑎 and 1− 𝑎𝑙 𝑝ℎ𝑎, respectively.
In the end, the code executes a backward pass. Distillation loss is the calculation of the loss
function versus the teacher’s soft targets, using the same value of 𝑇 to calculate the Softmax in the
student logits. On the other hand, student loss is the standard loss between the class probabilities
predicted by the student model and the teacher’s hard targets (ground truth) and soft targets. In
this stage, we introduce the weight parameter 𝑎𝑙 𝑝ℎ𝑎. In the distillation process, we have two
models and two different objective functions, Loss1 and Loss2. Loss1 is the cross entropy loss
(CE) of the two Softmax temperatures for both teacher 𝑞 and student 𝑝 with temperature 𝑇 > 1
multiplied by the weight parameter 𝑎𝑙 𝑝ℎ𝑎.

𝑞𝑖 =
exp ( 𝑧𝑖

𝑇
)∑

𝑗 exp ( 𝑧 𝑗
𝑇
)

(4.2)

𝑝𝑖 =
exp ( 𝑣𝑖

𝑇
)∑

𝑗 exp ( 𝑣 𝑗
𝑇
)

(4.3)

6 Checkpoints files capture the value of all parameters used by a model at a point in time (TENSORFLOW, 2022c).
7 Results for IJCNN 2011 competition (1st stage): https://benchmark.ini.rub.de/gtsrb_results_ijcnn.html
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𝐿𝑜𝑠𝑠1 = 𝛼 ∗ 𝐶𝐸 (𝑞𝑖, 𝑝𝑖) (4.4)

Loss2 is the CE loss of the correct labels and the student hard targets with 𝑇 = 1. Loss2
pays little attention 1 − 𝑎𝑙 𝑝ℎ𝑎 to the hard targets (student_pred) made by the student model to
match the easy targets q of the teacher model. So we have the following equations:

𝑠𝑡𝑢𝑑𝑒𝑛𝑡_𝑝𝑟𝑒𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥

(
exp ( 𝑣𝑖

𝑇
)∑

𝑗 exp ( 𝑣 𝑗
𝑇
)

)
(4.5)

𝐿𝑜𝑠𝑠2 = (1 − 𝛼) ∗ 𝐶𝐸 (𝑠𝑡𝑢𝑑𝑒𝑛𝑡_𝑝𝑟𝑒𝑑, 𝑦_𝑡𝑟𝑢𝑒) (4.6)

The distillation loss function used by the distillation process, different from the teacher
model, was the Kullback-Leibler divergence. It quantifies how much a probability distribution
diverges from another distribution (KIM et al., 2021). It is used because of the need to control
the smoothness of the soft objectives through the temperature hyperparameter (𝑇). The objective
of the student model will be the distillation loss which is the sum of Loss1 and Loss2.

Table 13 – Results obtained using the student neural model in distillation run in the Google Colab
environment (𝑎𝑙 𝑝ℎ𝑎 = 0.1 and 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 10).

Metric Train Validation Test
Accuracy 95.83% 93.37% 84.60%

Loss 0.1276 0.0901 0.9646
F1-Score 94.34% 91.97% 77.35%
Precision 97.28% 94.96% 87.78%

Recall 83.04% 83.04% 83.04%
RMSE 0.0602 0.0629 0.0791

Source: The Author

The student model has 3,323 parameters, 13.3% of the total parameters of the teacher
model (24,939 parameters). During training, the proposed model reached the optimum value for
validation accuracy of 93.37%. The values of the other metrics can be seen in Table 13. These
metrics were obtained using the alpha values at 0.1 and the temperature set to 10. Due to the
small size of the student model, the options to avoid overfitting the model was insufficient. In this
way, we can verify this behavior in the plot of Figure 14. This can be validated by checking the
metrics on the test set in Table 13.

To solve this problem of overfitting in student model, we raised the temperature to 20
while maintaining the same value for the alpha coefficient. Hinton, Vinyals e Dean (2015) used
in their work temperature values ranging from 1 to 20 and empirically observed that when the
student model is much smaller relative to the teacher model, the lower temperatures work better.
This makes sense since as the Softmax temperature increases, the resulting label distribution is
smoother, becoming more information-rich.
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Figure 14 – Accuracy curve of the student model after training at 250 epochs.

Source: The author

Thus the student model, which, because it is very small, cannot fully generalize the data,
is favored with the "heated" labels. This way, the temperature elevation improved the network
performance, allowing a concise generalization, and increasing the gain in the test metrics and the
validation precision, as seen in Table 14. Temperature values above 20 brought inconsistencies
in the metrics of the proposed student model. In Figure 15 we visualize the plot for validation
accuracy metrics after temperature adjustment in the distillation procedure.

Table 14 – Results obtained using the student neural model in distillation run in the Google Colab
environment (𝑎𝑙 𝑝ℎ𝑎 = 0.1 and 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 20).

Metric Train Validation Test
Accuracy 96.04% 93.35% 86.15%

Loss 0.1378 0.2535 0.6890
F1-Score 94.59% 90.98% 78.26%
Precision 97.37% 94.83% 88.88%

Recall 94.74% 92.20% 84.88%
RMSE 0.0456 0.0536 0.0762

Source: The author

After training a scratch student model, we obtain the metrics that can be seen in Table
15. We observe from the data that the knowledge distillation process improved the performance
of the student model compared to the net trained from scratch. The scratch student model has
the same structure as the distilled student model, except for the weights. Then its layers and
hyperparameters were organized as described in Appendix C.
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Figure 15 – Accuracy curve of the student model with the temperature adjusted.

Source: The author

Table 15 – Results obtained using the student baseline model without distillation.

Metric Train Validation Test
Accuracy 93.12% 91.10% 83.16%

Loss 0.4502 0.5464 0.9599
F1-Score 90.73% 88.45% 75.91%
Precision 95.50% 93.80% 87.32%

Recall 91.05% 88.85% 80.89%
RMSE 0.0462 0.0543 0.0753

Source: The author

4.3.2 Pruning

In our work, we use the magnitude-based weight pruning technique. This is one of the
most common methods of pruning (ZHU; GUPTA, 2017). For this, TensorFlow/Keras itself
provides an API. The input model at this stage will be created at the distillation stage. The chosen
pruning technique gradually excludes the weights of the layers during the training process to
achieve the network’s sparseness. Sparse models are easier to compact, and we can ignore the
zeros during inference to improve latency and reduce the model size. In the pruning stage, new
training will be necessary. For this, the weights and parameters of the distilled student model will
be loaded into the scratch student model. The exported distilled model has layers and functions
inherent to the knowledge transfer process, and the TensorFlow API does not recognize this as a
readable pattern for the default load act. In the pruning step, we continue to use as optimizers the
RMSProp, batch size, and training epochs defined just like the student model. Since pruning
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will be performed on the already trained student model, we chose to start the procedure at the
twentieth epoch of the pruning process training. This is configured through the begin_step (𝑡0)
parameter. The final pruning step called end_step (𝑡 𝑓 ) is calculated according to Equation 4.7.
Where 𝐼𝑠 is the number of images in the set for validation, 𝐵𝑠 is the batch size, and 𝐸 is the
number of epochs.

𝑡 𝑓 = ⌈(𝐼𝑠/𝐵𝑠) ∗ 𝐸⌉ (4.7)

The pruning mechanism used in the API consists in evaluating the weights after each
iteration of the training instead of abruptly pruning all unused weights. In this way, starting
pruning after some epochs have elapsed and stipulated a pruning frequency (Δ𝑡), every 20 epochs
in our case, allows the model to recover in terms of accuracy. The desired final sparsity (𝑠 𝑓 ) for
this model is 30%. The pruning step was set to occur every 20 epochs with an initial sparsity
(𝑠𝑖) of 10%. The algorithm that defines the desired sparsity for a given pruning step 𝑡 of pruning
defined for this work was Polynomial Decay. Equation 4.8 defines how Polynomial Decay works,
where 𝑛, defined in Equation 4.9, is the number of pruning steps needed.

𝑠𝑡 = 𝑠 𝑓 −
(
𝑠𝑖 − 𝑠 𝑓

) (
1 − 𝑡 − 𝑡0

𝑛Δ𝑡

) 𝑝
, {𝑡0, 𝑡0 + Δ𝑡, ..., 𝑡0 + 𝑛Δ𝑡} (4.8)

𝑛 = ⌊
𝑡 𝑓 − 𝑡0
Δ𝑡

⌋ (4.9)

Using the logic of the Polynomial Decay equation described above, fewer parameters
are removed relative to the previous step as the pruning steps are incremented. From this point
onward, the model was pruned in a weighted manner prioritizing validation loss and accuracy.

Table 16 – Results obtained after the model pruning phase.

Metric Train Validation Test
Accuracy 96.06% 93.65% 85.98%

Loss 0.2504 0.2691 0.8762
F1-Score 94.39% 91.35% 77.40%
Precision 97.44% 95.27% 88.59%

Recall 91.25% 91.25% 91.25%
RMSE 0.0519 0.0548 0.0788

Source: The Author

4.3.3 Quantization

In addition to the compression steps mentioned above, quantization is particularly
important when embedding neural models in devices with restricted resources. With a leaner
model, the time required to perform inference is reduced. Quantization can be performed in
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two ways: post-training quantization, also known as fall-back quantization; or in Quantization-
Aware Training. In post-training quantization, the conversion is done after the model is trained,
converting all weights and data relevant to the neural network. In Quantization Aware Training,
on the other hand, the model conversion steps are performed in the forward step while the model
is undergoing training. In this way, the degradation due to conversion of numerical types is
reduced while also gaining the inference speed of the final net.

Table 17 – Metrics obtained by the quantized neural model running in the Google Colab
environment.

Metric Train Validation Test
Accuracy 96.24% 93.95% 86.65%

Loss 0.2284 0.3617 0.8549
F1-Score 95.08% 92.03% 79.27%
Precision 98.02% 95.49% 89.95%

Recall 94.59% 92.20% 84.41%
RMSE 0.0491 0.0530 0.0772

Source: The Author

Within the quantization step, we used an optimization strategy based on quantization
of the model weights. By default of this framework, the set of biases and activations will also
be quantized, seeking to reduce the model’s size and latency while minimizing the accuracy
loss. During QAT, the best model from the pruning step, considering the validation accuracy, is
saved to a CKPT file (the standard used by TensorFlow) via a checkpoint function. This best
network will be used in the quantization process. After the quantization-aware training step,
the generated model is loaded into the TensorFlow Lite Converter (TLC). The TLC generates
a tflite file as the output of the conversion. This file contains the model, optimizations, and
parameters needed to run the neural network on MCUs. After exporting the tflite file, we use
xxd8 to create a hex dump of our tflite model into a C source file (c-hex array). This final file
contains the entire model in a hexadecimal distribution and a constant with the model’s size in
bytes. This variable is the arena size and is the space in bytes that will be used to allocate the
input tensors, output tensors, and intermediate vectors during model inference within the chosen
MCU. Quantization-aware training emulates quantization at inference time, creating a model that
TensorFlow’s downstream tools will use to produce truly quantized models, unlike post-training
quantization, which only reduces the precision of the variables used to store net weights and data.
Quantized models use lower precision (e.g., 8 bits instead of 32-bit floating), leading to benefits
during deployment. Regarding the pruned model, quantization improved some metrics (such as
accuracy and precision), as seen in Table 17.

8 The xxd command generates a hexadecimal dump of a given file and vice versa (MERTZ, 2022)
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5
Results

This chapter describes how the compression pipeline proposed in Chapter 4 can be
executed. The following sections describe the final neural network model implementation on
the selected resource-constrained devices and experimental analysis. In a similar way, we will
discuss the results obtained at each step. The ESP32 models used as test-bed in the experiments
can be seen in Table 18.

Table 18 – Hardware used in the experiments.

DevBoard Processor Memory
ESP32 2x LX6 32-bit 240 MHz 320 KB RAM + 4 MB FLASH

ESP32-S2 Single-Core LX7 32-bit 160 MHz 320 KB RAM + 4 MB FLASH
Source: The Author

5.1 Evaluation of the Embedded Model

Visual Studio Code and the PlatformIO1 development plugin were used to evaluate
ESP32 development boards for writing the code and uploading the neural models to the MCU.
For PlatformIO plugin version was 4.0.02 and for testing with the ESP32-S2 version 5.1.03

of SDK. The test environment setup in VSCode was performed as described by Tavares et
al. (2018). The dataset images are sent to the MCU using the development board’s Universal
Asynchronous Receiver/Transmitter (UART) interface. The theoretical maximum transfer speed
using the test-beds serial ports can be up to 2,000,000 bits/s using the USB/serial converters
CH3404 or 921,600 bits/s in CP21025. We mean theoretical because the final throughput depends
1 PlatformIO IDE: https://platformio.org/
2 PIO 4.0.0: https://github.com/platformio/platformio-core/blob/v4.3.4/HISTORY.rst
3 PIO 5.1.0: https://github.com/platformio/platformio-core/blob/v5.2.5/HISTORY.rst
4 CH340 Datasheet: https://cdn.sparkfun.com/datasheets/Dev/Arduino/Other/CH340DS1.PDF
5 CP2102 Datasheet: https://www.silabs.com/documents/public/data-sheets/CP2102-9.pdf
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on elements such as PCB design and quality of electronic components. The ESP32 development
board utilized in the experiments is equipped with a CP2102 controller. In contrast, the ESP32-S2
board has a controller model CH340. This difference in USB/serial converters allowed us to test
the connection stability for each board. It was identified that using the same set of equipment
(notebook, USB port, and cable), the CH340 controller can achieve higher transfer rates in the
tests. So the setting for transfer speeds in the experiments was set to 115,200 bits/s for the ESP32
and 460,800 bits/s for the ESP32-S2.

After following the integration steps described in Tavares et al. (2018) and finalizing the
environment configuration, we started the programming stage of our project in VSCode with
the Arduino6 framework setup and ESP32 development board selected. In the project’s main
function (main.cc), we include the libraries needed to compile the application. This encompasses
the Arduino library and the dependencies needed to run the TensorFlow Lite model as per the
Listing 5.1.

Listing 5.1 – Libraries required for the correct operation of the TensorFlow Lite project.
1 #include "tensorflow/lite/micro/all_ops_resolver.h"
2 #include "tensorflow/lite/micro/micro_error_reporter.h"
3 #include "tensorflow/lite/micro/micro_interpreter.h"
4 #include "tensorflow/lite/schema/schema_generated.h"
5 #include "tensorflow/lite/version.h"
6 #include <Arduino.h>

The all_ops_resolver.h library is responsible for executing the operations used by the model
interpreter, micro_error_reporter.h is invoked when using debugging options, micro_interpreter.h
loads and executes the models, schema_generated.h manages the FlatBuffer file and version.h
provides versioning information for the TensorFlowLite schema (TENSORFLOW, 2022a).

For the model environment to be ready to execute, are required some parameters
initializations. We starting with the TensorFlow Lite debugger declaration, the neural model, and
the interpreter that will load and run the embedded model on the MCU. In addition, the input and
output tensors also need to be initialized. This operation can be checked in the Listing 5.2 snippet.

Listing 5.2 – TensorFlow Lite Base Initialization.
1 tflite::ErrorReporter* error_reporter = nullptr;
2 const tflite::Model* model = nullptr;
3 tflite::MicroInterpreter* interpreter = nullptr;
4 TfLiteTensor* input = nullptr;
5 TfLiteTensor* output = nullptr;

6 Arduino Framework: https://www.arduino.cc/en/Guide/Introduction
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As described in Section 4.1 at the end of each pipeline stage, we export the model in
question to a cc file. This file represents the model that will be embedded into the ESP32 for
inference execution. The structure of this file can be seen in Listing 5.3.

Listing 5.3 – CC-file with the neural model in hexdump format and the variable responsible for
setting the size of this model in the interpreter.

1 unsigned char g_model[] = { 0x1c, 0x00, 0x00, 0x00, 0x54, 0x46,
0x4c, 0x33, 0x14, 0x00, 0x20, 0x00, ... ... ... ... ...
... ... ... ... ... ... ..., 0x20, 0x00, 0x00, 0x00,
0x20, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0xfc, 0xff, 0xff,
0xff, 0x04, 0x00, 0x04, 0x00, 0x04, 0x00, 0x00, 0x00};

2 unsigned int g_model_len = 101556;

Inside it we have two variables: an array of characters g_model and a variable of type
integer g_model_len. Namely:

• g_model: 8-byte aligned hexadecimal vector containing the neural model;

• g_model_len: in-memory length of the respective model.

The memory space selected to allocate the tensors of the model is defined through the
variable kModelArenaSize (see Listing 5.4). The variable kExtraArenaSize assigns additional
space in case the number of tensors changes occur at runtime. Although it sounds counter-intuitive,
the size of the tensor arena remains almost the same for two of four models generated in our
pipeline (distilled and pruned student models).

Listing 5.4 – Part of the code that defines the area that will be used by the model’s tensors.
1 const int kModelArenaSize = 39 * 1024;
2 const int kExtraArenaSize = 32 + 16 + 64;
3 const int kTensorArenaSize = kModelArenaSize + kExtraArenaSize;
4 uint8_t tensor_arena[kTensorArenaSize];

The memory consumed by each embedded model in the dev boards and the tensors arena
can be seen in Table 19. The column Model on MCU displays the model space loaded into
test-beds memory. In the Arena Size column, we see the total size of the tensor arena, that is, the
kTensorArenaSize variable. The model’s length in the embedded device’s memory is obtained by
inspecting the ELF7 file. This inspection can be done via the PlatformIO plugin. In Annex C we
see the return of the inspection, displaying the model and the tensor arena space.

At a first contact at the table above, we can assume that only the knowledge distillation
stage would be required to ship the neural model to our MCU. Although some constrained devices
7 ELF is a format for storing programs or fragments of programs on disk, created as a result of compiling and

linking (OSDEV, 2022).
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Table 19 – Space used by each model file (bytes).

Model File Size Model on MCU Arena Size
Baseline (Teacher) 626.447 101.580 39.936
Student (Distilled) 102.728 16.384 23.552

Student Pruned 102.742 16.384 23.552
Student Quantized 59.289 9.626 17.510

Source: The Author

like the ESP32 and ESP32-S2 have 320 KB of RAM, this space cannot always be fully utilized.
According to Espressif (2022), the ESP32 and ESP32-S2 contain multiple types of RAM:

• DRAM (Data RAM) is memory used to hold data. This is the most common kind of
memory accessed as a heap.;

• IRAM (Instruction RAM) usually holds executable data only. If accessed as generic
memory, all accesses must be 32-bit aligned;

• D/IRAM is RAM that can be used as either Instruction or Data RAM. Which can be used
as either Instruction or Data RAM.

Then checking the memory allocation spaces at startup, we can see a log summary of all
heap addresses at level info, see Listing 5.5. We can check that the device’s memory is segmented,
not allowing these areas to overflow. Besides this, the memory is shared with other processes,
and if there is not enough area in RAM to allocate the model with the other instructions, it will
be moved to FLASH memory, which is slower. In Appendix C, Figure 21, we can see an example
of the distilled model embedded in the ESP32. The section in which the model is configured is
FLASH, even though it is a smaller model. In Figure 22 of the same Appendix, we can see the
quantized model embedded in the ESP32 and allocated in data RAM. The heap sizes allocation
is the same in both devices, ESP32 e ESP32-S2.

Listing 5.5 – Code snippet showing spaces used by the heap
1 I (252) heap_init: Initializing. RAM available for dynamic

allocation:
2 I (259) heap_init: At 3FFAE6E0 len 00001920 (6 KiB): DRAM
3 I (265) heap_init: At 3FFB2EC8 len 0002D138 (180 KiB): DRAM
4 I (272) heap_init: At 3FFE0440 len 00003AE0 (14 KiB): D/IRAM
5 I (278) heap_init: At 3FFE4350 len 0001BCB0 (111 KiB): D/IRAM
6 I (284) heap_init: At 4008944C len 00016BB4 (90 KiB): IRAM

About the size of the tensors arena yet, if this parameter is not large enough, the tensors
allocation in the model will fail. The API documentation does not mention to any method to
calculate the arena size before embedding the model. There is only a method to calculate this
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value after initialization (as per Listing 5.6). This is insufficient since if the loaded model requires
a larger tensor arena, it will fail at MCU startup time. Therefore the size of the tensor arena was
chosen using the experimentation method.

Listing 5.6 – An excerpt of the code responsible for calculating the tensor arena of the model,
located in the header file micro_interpreter.h of the TensorFLow Lite API.

1 size_t arena_used_bytes() const { return allocator_.used_bytes();}

In Espressif development boards, part of the available RAM is allocated for use by the
heaps of devices like Bluetooth and WiFi. Our approach uses the Arduino framework with PIO
instead of the official ESP-IDF8 IDE. Therefore some functionality is unavailable, for example,
the disabling of hardware resources directly that will not be used. This step becomes necessary
to embed the teacher model since the ESP32 and ESP32-S2 does not have enough resources to
receive this net in the factory defaults. To get around these gaps, part of the work was hardcoded.
This means that at times we use fixed values within the source code to enable or disable some
features. Starting with freeing up allocated memory space for functions that will not be used. To
do this, we rewrote the file partitions.csv that contains the device’s partition table. In a simplified
way, we have kept only what is necessary for the correct functioning of the MCU, namely:

• Non-volatile Storage Library (NVS): used to store calibration data for devices. It can
also be used for data from other applications;

• Factory: default application partition. The bootloader will initialize the factory application
execution unless a data/OTA partition exists;

• Physical (PHY): used for storing boot data.

The file responsible for partition table configuration is partitions.csv. It is created at the
time the MCU type is defined in the project. Therefore we set up our partition table to contain
only necessary items described above as factory default formatting, such a as in 5.7.

Listing 5.7 – ESP-IDF Partition Table used in the ESP32 and ESP32-S2 during the experiments.
1 # Name, Type, SubType, Offset, Size, Flags
2 nvs, data, nvs, 0x9000, 0x6000,
3 phy_init , data, phy, 0xf000, 0x1000,
4 factory, app, factory, 0x10000, 1M,

The next step is to deallocate the space used by the heaps from the WiFi and Bluetooth
routines. This can be done by simply making a change in the memory.ld file. The location of the
file can be seen in Annex D. In the CC code inside the memory.ld file (ESP32 or ESP32-S2), we
can check the variable responsible for assigning the size of the dram_0 segment.
8 ESP-IDF: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
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Listing 5.8 – Memory segment used in the ESP32 during the experiments.
1 # Original Declaration
2 dram0_0_seg (RW) : org = 0x3FFB0000 + 0xdb5c, len = 0x2c200 - 0xdb5c
3 # Changed Declaration
4 dram0_0_seg (RW) : org = 0x3FFB0000 + 0xdb5c, len = 0x30D40

As described above, the DRAM segment is responsible for storing non-constant static
data, and the remaining space in this region is used as a heap at runtime. Since we have not loaded
any libraries or enabled WiFi or Bluetooth usage to the ESP32 DevBoard, we will increment
the size of this segment by 0x4B40 bytes (see Listing 5.8). In this way, we could embed the
teacher model on the ESP32 for the experiments. For the ESP32-S2, we follow the same logic.
We change within the respective ld file the line corresponding to the organization and size of the
DRAM segment. We do this by decreasing the size of the originally allocated space by 0x3C00
bytes. As a follows in Listing 5.9. Checking the additional spaces generated in the heaps of both
MCUs, we notice a difference of 0xF40 bytes. This was on purpose since the ESP32-S2’s LX7
MCU may need more free space in the heap due to new features.

Listing 5.9 – Memory segment used in the ESP32-S2 during the experiments.
1 # Original Declaration
2 dram0_0_seg (RW) : org = 0x3FFB0000 + 0x4000, len = 0x2C000
3 # Changed Declaration
4 dram0_0_seg (RW) : org = 0x3FFB0000 + 0x400, len = 0x2FC00

The metrics for evaluating the neural model running on an MCU were the same as
those adopted for the network under development within the Google Colab platform. For the
experiment on the model embedded in the ESP32 and ESP32-S2 boards, we used the test set
consisting of 12630 images of the GTSRB dataset. Before being sent for inference, the images
were normalized at the data reading stage. Each position of the received array was normalized
and stored in the TF Lite input tensor. On the ESP32 DevBoard, the complete inference of the
images using the teacher model was run in 165 minutes and 45.1 seconds. This test does not
consider any code optimization. Running the distilled model on the ESP32 DevBoard gives us 89
minutes and 47.9 seconds runtime. For the pruned network, the execution time was 89 minutes
and 40.7 seconds. Evaluating the quantized model, we verified an increase in execution time,
which was 96 minutes and 46.3 seconds. The time between reading the image via serial, detecting
the instance, and inserting the result into the serial for display on the terminal is 380 milliseconds
for all neural models. Since the objective of this work is to evaluate images, we choose to use the
frame rate metric to verify the image processing capability based on the processing speed of our
convolutional neural network. In Table 20, we have the calculated the frame rate for each model
in our pipeline.
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Table 20 – Frame Rate (FR) and time spent per inference for each pipeline model running in
ESP32.

Model FR Inference Time
Baseline (Teacher) 2.4 407 ms
Student (Distilled) 21.3 47 ms

Student Pruned 21.7 46 ms
Student Quantized 12.5 80 ms

Source: The Author

For the ESP32-S2 test-bed, the inference times were higher, the results are available in
Table 21. Despite being an updated MCU, the LX7 proved slower in performing the inference
task. Its lower processing power verified in our tests can be validated with its lower score on the
CoreMark benchmark. Aware of that, the complete inference of the images using the teacher
model in the ESP32-S2 device was run in 244 minutes and 20.5 seconds. Considering the distilled
model, the dev board executed the test in 74 minutes and 8.4 seconds. For the pruned network,
the execution time was 73 minutes and 23.2 seconds. The quantized model has taken 90 minutes
and 0.1 seconds to execute. The CH340 converter proved to be more stable in preliminary tests,
as described at the beginning of the section. So we used a higher transfer rate in the tests of the
ESP32-S2. The calculated latency for sending the image via serial and the return of the prediction
by the neural model was 113 milliseconds.

Table 21 – Frame Rate (FR) and time spent per inference for each pipeline model running in
ESP32-S2.

Model FR Inference Time
Baseline (Teacher) 0.95 1049 ms
Student (Distilled) 4.2 240 ms

Student Pruned 4.2 234 ms
Student Quantized 12.0 83 ms

Source: The Author

The inference time highlighted in the table is the complete execution time. Comparing
the baseline model and the second stage of the pipeline, we have an execution time reduction of
88.46% for the ESP32 and 77.12% for the ESP32-S2. In the pruning step, the model achieved the
same FPS as the second stage, decreasing the inference time by only 1ms in ESP32 and 6ms
in the ESP32-S2. In the QAT stage, the inference time increased by 73.92% in the ESP32. To
the data obtained from the QAT stage tests in the ESP32-S2, there was a 64.52% reduction in
inference time. Checking the execution time per convolutional layer of each model (see Figure
16 and 17), we notice that the second layer of the baseline model running in the ESP32 was
responsible for 73.5% of the time spent.

As we move down the net layers, the model becomes less computationally expensive.
This is due in part to the number of parameters reduced layer by layer and also to the smaller size
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Figure 16 – Execution time per conv layer at ESP32 experiment.
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of feature maps. However, in the teacher model at the second convolutional layer there is an 86%
increase in the number of parameters, as shown in Table 22.

Figure 17 – Execution time per conv layer at ESP32-S2 experiment.
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Nevertheless, this same behavior was not verified when running the teacher model on the
ESP32-S2. As the neural model is the same for the ESP32 and ESP32-S2 tests, similar behavior
was expected for the second convolutional layer of the professor model on the ESP32-S2, which
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did not occur. It was detected that the version of the PIO plugin used for testing on the ESP32-S2
adds computational complexity to the tests performed on the ESP32, increasing the total inference
time of the baseline model by 422ms. At this point, a separate investigation is suggested as future
work.

Table 22 – Teacher model layers and parameters.

Layer Output Shape Param #
Conv2D (14, 14, 32) 2432

BatchNormalization (14, 14, 32) 128
Activation (14, 14, 32) 0

MaxPooling2D (7, 7, 32) 0
Conv2D (5, 5, 64) 18496

BatchNormalization (5, 5, 64) 256
Activation (5, 5, 64) 0

MaxPooling2D (2, 2, 64) 0
Conv2D (2, 2, 32) 2080

BatchNormalization (2, 2, 32) 128
Activation (2, 2, 32) 0

MaxPooling2D (1, 1, 32) 0
Flatten (32) 0
Dense (43) 1419

Source: The Author

After running the inference on all the dataset test images, we obtained the accuracy
metrics in Table 23. This table shows the results obtained when running in the Google Colab
environment and on both dev boards. The metrics accuracy, recall, and F1-Score of the models
run on the ESP32, and ESP32-S2 consider the weighted average of the results using the support
values, which are the numbers of true instances for each class. The accuracy of the baseline
(teacher net) model running on the ESP32 DevBoard was the best, with 95.18%. The stage that
obtained the best accuracy was pruning, with 85.98%. All classification reports are available in
Appendices D to K.

The models created in the distillation pipeline and the pruning pipeline output obtained
the best classification in inference time (see Table 20). The student model used in the knowledge
distillation step has 3.323 total parameters, 73 of which are untrainable9. According to Tables 19
and 20, did not have its performance substantially improved after the pruning step. Analyzing
the layers and parameters of the pruned model (Table 24, Output Shape𝑏 and Param𝑏 #), it can
be seen that in the pruning step, there was an increase in the number of parameters concerning
the output of the previous model, in this case, the distilled model (Table 24 Output Shape𝑎 and
Param𝑎 #). The pruned model has 6,441 parameters, of which 3,190 are untrainable. Almost
twice as many parameters compared to the distilled net.
9 Untrainable parameters are parameters that cannot be learned from the training data (ACADEMY, 2019b).
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Table 23 – Classification report ESP32 DevBoard.

Model (ESP32) Accuracy Recall F1-Score Precision
Baseline (Teacher) 95.18% 95.18% 95.14% 95.31%
Student (Distilled) 85.48% 85.49% 85.44% 85.73%

Student Pruned 85.98% 85.98% 85.80% 86.19%
Student Quantized 85.91% 85.98% 85.80% 86.19%
Model (ESP32-S2) Accuracy Recall F1-Score Precision
Baseline (Teacher) 93.65% 93.65% 93.64% 93.98%
Student (Distilled) 83.83% 83.94% 83.83% 83.94%

Student Pruned 85.65% 85.65% 85.53% 85.81%
Student Quantized 85.91% 85.91% 85.79% 86.35%

Model (Google Colab) Accuracy Recall F1-Score Precision
Baseline (Teacher) 84.60% 83.04% 77.35% 87.78%
Student (Distilled) 86.15% 84.88% 78.26% 88.88%

Student Pruned 85.98% 91.25% 77.40% 88.59%
Student Quantized 86.65% 84.41% 79.27% 89.95%

Source: The Author

Table 24 – Student and Pruned model layers and parameters.

Layer Output Shape𝑎 Param𝑎 # Output Shape𝑏 Param𝑏 #
Conv2D (14, 14, 12) 912 (14, 14, 12) 1814

BatchNormalization (14, 14, 12) 48 (14, 14, 12) 49
Activation (14, 14, 12) 0 (14, 14, 12) 1

MaxPooling2D (7, 7, 12) 0 (7, 7, 12) 1
Conv2D ( 5, 5, 16) 1744 ( 5, 5, 16) 3474

BatchNormalization (5, 5, 16) 64 (5, 5, 16) 65
Activation (5, 5, 16) 0 (5, 5, 16) 1

MaxPooling2D (2, 2, 16) 0 (2, 2, 16) 1
Conv2D (2, 2, 8) 136 (2, 2, 8) 266

BatchNormalization (2, 2, 8) 32 (2, 2, 8) 33
Activation (2, 2, 8) 0 (2, 2, 8) 1

MaxPooling2D (1, 1, 8) 0 (1, 1, 8) 1
Flatten (8) 0 (8) 0
Dense (43) 387 (43) 733

𝑎 Student model output shape and parameters
𝑏 Pruned model output shape and parameters

Source: The Author

By checking TensorFlow pruning library, we will notice that adding parameters to the
model to be pruned is part of the control and gauging methods the API uses TensorFlow (2022b).
This explains why the parameters of the pruned model are larger than those of the input model.
The pruning could have been more aggressive. However, when the model passed 30% sparsity, it
suffered from a loss of accuracy.

Now we will investigate the possible reasons for the increase in inference time and the no
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reduction in space used after the quantization stage running in ESP32, as seen in Tables 19 and 20.
Using the Netron10 tool, we load the exported baseline model and quantized model to visualize
the neural network saved in these files graphically. Examining the images in Annexs A and B, we
can notice a change at the time before the first convolutional layer of the quantized model is input.
Compared to the baseline model, the QAT method adds one more layer in the format 1x32x32x3.
This is for the QAT implementation. This additional layer allows the quantized model to receive
floating point inputs instead of just uint8. In this way, the quantized model needs to handle an
additional layer whose output is also in 1x32x32x3 format. To exemplify this stretch, we generate
the activation maps referring to the first layer of each model in question. These maps can be seen
in Figure 18. However, for the ESP32-S2 device, the same behavior was not observed, indicating
that the addition of this layer did not add computational complexity to the model compiled for
this platform.

(a) (b) (c)

Figure 18 – (a) Image used to generate the activation map (b) Teacher model activation map (c)
Activation map of quantized model

The first perception in relation to the activation maps of the teacher model and the
quantized model is their resolution. In the teacher model the first activation map has the format
14x14, while in the quantized model the first activation map corresponds to the additional layer
(Quantization Layer) and has the format 32x32. Even if no convolutional operation is performed
in this quantization layer, the network needs to feed this matrix (image) to the next layer. This in
itself already increases the number of operations performed when feeding the input to the neural
network.

The latency between the acquisition of an image and the result return was 460ms on
the quantized set running in the ESP32, and 196 ms for the same set running in the ESP32-S2
(see Table 25). If the neural network is powered by a camera directly connected to the MCU’s
communication bus, the total latency time will be lower.

The comparison of the works discussed in Chapter 3 that used the same metrics and
dataset as ours can be seen in Table 26. The last column of that table concerns the CoreMark/MHz
10 Netron is a viewer for neural network, deep learning, and machine learning models (ROEDER’S, 2022)
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Table 25 – Total spent time in the image recognition in ESP32 and ESP32-S2 for the pipeline
final model.

Board Inference Time
ESP32 460 ms

ESP32-S2 196 ms
Source: The Author

Benchmark score (CMM) obtained by each platform used in the considered works. Regarding
accuracy, our model shows promise. It is necessary to increase the final model’s accuracy by
10% to put it at a level close to state of the art. Looking at inference time, we are second only to
work developed by Lechner, Jantsch e Dinakarrao (2019). The small size of the neural network
makes it capable of being installed in more restricted devices than the ESP32 dev boards, such as
the ARM Cortex-M4 (LAI; SUDA; CHANDRA, 2018).

Table 26 – Results obtained by some of the papers located in the systematic review.

Author(s) Accuracy Inference Time Model Size CMM
Desai, Sinha e El-Sharkawy (2020) 84.32% ≈ 120 ms 3.9 MB 5.03

Lechner, Jantsch e Dinakarrao (2019) 96.53% ≈ 27 ms - 5.92
Yao et al. (2017) 98.10% ≈ 104 ms - 5.92

Proposed Approach (ESP32) 85.91% ≈ 80 ms 59.2 KB 4.13
Proposed Approach (ESP32-S2) 86.65% ≈ 83 ms 59.2 KB 1.97

Source: The Author

Considering the cost of each platform concerning the sale of a thousand units and the
score obtained using the CoreMark/MHz metric (CMM), we agreed on the US$/CMM metric
(US$/CoreMark per MegaHertz), which represents the CoreMark/MHz score for each dollar
invested in the platform. After applying this metric, we arrive at the values seen in Table 27. The
prices quoted in the table were obtained from Digi-Key11.

Table 27 – Value in US$ for each CoreMark/MHz point of the Zynq 7000, NXP i.MX RT1060
and ESP32 FPGA platforms.

Platform Price (US$) US$/CMM
NXP i.MX RT1060 19.71 3.92

FPGA XC7Z020-L1CLG484I 184.60 31.18
FPGA XC7Z020-2CLG400I 167.70 28.33

ESP32 4.08 0.98
ESP32-S2 2.40 1.22

Source: The Author, with prices obtained at Digi-Key virtual store

In this chapter, we discussed about a compress pipeline for embedded neural network
models in edge devices. The proposed technique creates a model to recognize images using
11 Digikey: https://www.digikey.com
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constrained devices performs satisfactorily on ESP32 and ESP32-S2 based boards. In experimental
phase, we detected images with 32 x 32 pixels in less than eighty five milliseconds. The
experimental results have presented promising responses of testing classification accuracy with
the detected objects. On ESP32 and ESP32-S2 we can process twelve frames per second at the
cost of fewer than five dollars. With a reduced cost to this point and with the image processing
capacity achieved in this work, the Espressif ESP32 and ESP32-S2 platforms are a strong
candidates when a project considers economies of scale, such as automotive products. These
results show that the use of constrained edge devices for the implementation of TSDR equipment
is possible. Our work demonstrates that real-time traffic sign detection using such devices is
feasible. Our pipeline needs further improvement, but despite this scenario, its affordability can
be a game changer specially in large scale and ubiquitous systems.
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6
Conclusion

This work focused on proving the ability of the proposed pipeline to efficiently reduce
a convolutional neural network for use in TSDR solutions. In addition to proving the ability
to embed a neural network with good efficiency in a constrained device. The efficiency of the
pipeline was evaluated in terms of the accuracy of the models generated, the size of the final
neural network, and the speed required to perform inference for a given image. To this end, the
experiments sought to assess the metrics generated at each step, from the development of the
neural model, its training and compression in the Google Colab environment, including the
efficiency measures of the model embedded in the ESP32 and ESP32-S2. The metrics selected to
evaluate the efficiency of the work were based on the works discussed in Section 3.

Considering the results obtained and discussed in the previous chapter, we realize that
the pipeline did not prove linear in reducing the size and accelerating inference speed at each
processing stage. It was expected that at the end of the quantization stage, we would obtain a
smaller model than the pruning stage and faster, which has not occurred. However, the pruning
stage did not show an increase in efficiency concerning execution time since there was only a
1ms reduction in the time required to perform inference on an image in the model executed on
the ESP32.

The objective of compressing a neural network and embedding it on a constrained device
has been achieved. The distillation step would be enough to ship a model on an ESP32 or
ESP32-S2. However, it is worth noting that even with the compression at this point, the model
will not necessarily be placed directly into the fast memory of the device. In our case, this only
happened when we reached the quantization step. However, due to the TensorFlow Lite API
quantization mechanisms, the model generated in the last stage of the pipeline was slower than the
one in the previous step, spending a total of 80 ms in the execution of a complete inference against
46 ms for the model obtained in the pruning step, executing on the ESP32 development board.
The inference time considering the pruned and quantized models running on the ESP32-S2 was
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234 ms and 83 ms, respectively. Comparing the metrics of the models executed on the test-beds
with the Google Colab environment, we observe a decrease in accuracy values. Remember that
the metrics shown in Table 23 refer to the test set. The accuracy value between the baseline and
the quantized model running in ESP32 had a 9.27% reduction and 8.26% to the ESP32-S2.

6.1 Challenges and Limitations

When the work was deployed on the free version of Google Colab, it turned out to be
problematic due to the time limit imposed by the platform. The processes involved in the Bayesian
Optimization step by itself overloaded this time, which was approximately 5 hours. This situation
led us to sign up for the Google Colab Pro version.

Another situation that delayed the development schedule was testing with the Sipeed
Maix Bit devboard. This development board has a K210 CPU based on a 64-bit architecture and
dual-core RISC-V running at 400 MHz and also has a KPU (neural network processor) to assist in
the inference of the neural networks (TORRES-SáNCHEZ; ALASTRUEY-BENEDé; TORRES-
MORENO, 2020). Although promising, the manufacturer does not provide the necessary support
for the evolution of the implementations and the platform documentation has lagged behind the
constant updates from other manufacturers. Thus, it was not possible to run our neural model on
this development board as initially planned.

The complexity of parameter adjustment was also an issue in the ESP-IDF, the official
development environment of Espressif, leading us to choose the Arduino IDE environment. The
choice of this framework takes away some of the development options of the ESP32, such as more
efficient control of memory usage and adjustments in memory section allocation, in addition to
not allowing the use of the ESP32-C3, a version of the ESP32 with a RISC-V processor, in a
stable way, which could improve the inference time of the developed neural networks.

6.2 Future Work

In order to continue this work, we suggest a number of improvements and new approaches,
such as the following ideas as possible new directions:

(a) For the teacher model: develop a new, more robust model that can improve the accuracy of
the test dataset while maintaining the same level of accuracy for training and validation.

(b) Evaluate the parameters used in the pruning step. Look for new ways to increase pruning
within the student model and to evaluate the efficiency of this stage. Observe whether
inefficiencies in pruning was due misconfiguration or to limitations of the model format
generated in the previous step.



Chapter 6. Conclusion 87

(c) Analyze the quantization stage and attempt to exclude additional input layer generated
by TensorFlow Lite. Reverse-engineer the firmware ELF file to identify the inference
operations and verify the convolution steps in order to quantify the changes in the assembly
code. The goal here is to understand why QAT increased the inference time when the
opposite was expected.

(d) Investigate the possibility of embedding the neural network into a development board
with a built-in camera, such as ESP32-CAM. In this way, it would be possible to evaluate
the overall latency of the process, taking into account the capture, image pre-processing,
inference and display of the result by the device itself.

(e) Convert some arithmetic operations used within the TensorFlow Lite libraries to assembly-
based versions using Espressif’s DSP library. This is expected to increase the final inference
speed.

(f) Investigate the computational complexity increase between the versions of the PlatformIO
plugin used in the tests. With this, we hope to find the reason for the increase in total
inference time and the divergence in the time to computations performed on convolution
layer two of the teacher model.
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APPENDIX A – Distiller Class

The first part of the Distiller class concerns the declaration of the constructor. At this
point the teacher and student models are entered as parameters.

class Distiller(keras.Model):

def __init__(self, student, teacher):

super(Distiller, self).__init__()

self.teacher = teacher

self.student = student

.

.

.

The compile function defines the loss function, the optimizer and the metrics. The variable
distillation_loss_fn is the loss function Kullback–Leibler divergence that calculates between
soft student predictions and soft teacher predictions. The parameter student_loss_fn is the loss
function of difference between student predictions and ground-truth.

def compile(

self, optimizer,

metrics,

student_loss_fn,

distillation_loss_fn,

alpha,

temperature,

):

super(Distiller, self).compile(optimizer=optimizer,

metrics=metrics)

self.student_loss_fn = student_loss_fn

self.distillation_loss_fn = distillation_loss_fn

self.alpha = alpha

self.temperature = temperature

In the function below we define the training mechanism used for distilling the knowledge
from the teacher model to the student model.
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def train_step(self, data):

x, y = data

teacher_predictions = self.teacher(x, training=False)

with tf.GradientTape() as tape:

student_predictions = self.student(x, training=True)

student_loss = self.student_loss_fn(y, student_predictions)

distillation_loss = self.distillation_loss_fn(

tf.nn.softmax(teacher_predictions /

self.temperature, axis=1),

tf.nn.softmax(student_predictions /

self.temperature, axis=1),

)

loss = self.alpha * student_loss + (1 - self.alpha) *

distillation_loss

trainable_vars = self.student.trainable_variables

gradients = tape.gradient(loss, trainable_vars)

self.optimizer.apply_gradients(zip(gradients, trainable_vars))

self.compiled_metrics.update_state(y, student_predictions)

results = {m.name: m.result() for m in self.metrics}

results.update(

{"student_loss": student_loss,

"distillation_loss": distillation_loss}

)

return results

In the definition below we see the function responsible for the test step of the distilled
model.

def test_step(self, data):

x, y = data

y_prediction = self.student(x, training=False)

student_loss = self.student_loss_fn(y, y_prediction)

self.compiled_metrics.update_state(y, y_prediction)

results = {m.name: m.result() for m in self.metrics}

results.update({"student_loss": student_loss})

return results
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APPENDIX B – Teacher Model Sequential

The following code defines the construction of the teacher model using the TensorFlow
API. As described in Section 4.2, the model is nothing more than a convolutional arrangement.
Thus we will only display one of the arrangements, since between each set of layers only the
hyperparameters are changed.

teacher = models.Sequential()

teacher.add(layers.Conv2D(FILTERS_0, (5, 5), (2, 2),

bias_initializer='random_normal', padding='valid',

kernel_regularizer=regularizers.l2(WEIGHT_DECAY_0),

kernel_initializer='random_normal', input_shape=(32, 32, 3)))

teacher.add(layers.BatchNormalization())

teacher.add(layers.Activation('relu'))

teacher.add(layers.MaxPooling2D((2, 2), padding='valid'))

.

.

.

teacher.add(layers.Flatten())

teacher.add(layers.Dense(43, activation='softmax',

kernel_regularizer=regularizers.l2(WEIGHT_DECAY_DENSE)))
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APPENDIX C – Student Model Sequential

The following code defines the construction of the teacher model using the TensorFlow
API. As described in Section 4.2, the model is nothing more than a convolutional arrangement.
Thus we will only display one of the arrangements, since between each set of layers only the
hyperparameters are changed.

student = models.Sequential()

student.add(layers.Conv2D(STUDENT_FILTERS_0, (5, 5), (2, 2),

bias_initializer='random_normal',

kernel_regularizer=regularizers.l2(STUDENT_WEIGHT_DECAY_0),

kernel_initializer='random_normal', padding='valid', input_shape=(32, 32, 3)))

student.add(layers.BatchNormalization())

student.add(layers.Activation('relu'))

student.add(layers.MaxPooling2D((2, 2), padding='valid'))

.

.

.

student.add(layers.Flatten())

student.add(layers.Dense(43, activation='softmax',

kernel_regularizer=regularizers.l2(STUDENT_WEIGHT_DECAY_DENSE)))
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APPENDIX D – Classification Report -
Teacher Model embeded in ESP32

DevBoard

Classification Report

precision recall f1-score support

0 0.9333 0.9333 0.9333 60

1 0.9658 0.9819 0.9738 720

2 0.9633 0.9787 0.9709 750

3 0.9479 0.9711 0.9594 450

4 0.9772 0.9742 0.9757 660

5 0.9372 0.9476 0.9424 630

6 0.9565 0.8800 0.9167 150

7 0.9608 0.9800 0.9703 450

8 0.9842 0.9689 0.9765 450

9 0.9419 0.9792 0.9602 480

10 0.9954 0.9742 0.9847 660

11 0.9206 0.9381 0.9292 420

12 0.9739 0.9203 0.9463 690

13 0.9930 0.9889 0.9910 720

14 0.9712 1.0000 0.9854 270

15 0.9204 0.9905 0.9541 210

16 1.0000 1.0000 1.0000 150

17 1.0000 0.9083 0.9520 360

18 0.9824 0.8564 0.9151 390

19 1.0000 1.0000 1.0000 60

20 0.7826 1.0000 0.8780 90

21 0.7848 0.6889 0.7337 90

22 0.8016 0.8417 0.8211 120

23 0.8555 0.9867 0.9164 150

24 0.9753 0.8778 0.9240 90

25 0.9607 0.9688 0.9647 480

26 0.9175 0.9889 0.9519 180

27 0.5536 0.5167 0.5345 60



APPENDIX D. Classification Report - Teacher Model embeded in ESP32 DevBoard 104

28 0.9583 0.9200 0.9388 150

29 0.8208 0.9667 0.8878 90

30 0.8862 0.7267 0.7985 150

31 0.9401 0.9889 0.9639 270

32 0.9375 1.0000 0.9677 60

33 0.9043 0.9905 0.9455 210

34 0.9375 1.0000 0.9677 120

35 0.9866 0.9410 0.9633 390

36 0.9375 1.0000 0.9677 120

37 0.9831 0.9667 0.9748 60

38 0.9654 0.9710 0.9682 690

39 0.9524 0.6667 0.7843 90

40 0.7699 0.9667 0.8571 90

41 0.9231 1.0000 0.9600 60

42 0.9211 0.7778 0.8434 90

accuracy 0.9518 12630

macro avg 0.9251 0.9285 0.9244 12630

weighted avg 0.9531 0.9518 0.9514 12630
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APPENDIX E – Classification Report -
Distilled Model embeded in ESP32

DevBoard

Classification Report

precision recall f1-score support

0 0.6800 0.5667 0.6182 60

1 0.8546 0.8819 0.8681 720

2 0.8882 0.9107 0.8993 750

3 0.9020 0.9200 0.9109 450

4 0.9213 0.8697 0.8948 660

5 0.8368 0.8222 0.8295 630

6 0.8571 0.8400 0.8485 150

7 0.9229 0.8244 0.8709 450

8 0.8208 0.8756 0.8473 450

9 0.9343 0.9187 0.9265 480

10 0.9334 0.9348 0.9341 660

11 0.8285 0.8167 0.8225 420

12 0.9398 0.8826 0.9103 690

13 0.9299 0.9583 0.9439 720

14 0.9809 0.9519 0.9662 270

15 0.9143 0.9143 0.9143 210

16 0.8834 0.9600 0.9201 150

17 0.9617 0.9056 0.9328 360

18 0.7357 0.6923 0.7133 390

19 0.6769 0.7333 0.7040 60

20 0.5984 0.8111 0.6887 90

21 0.5775 0.4556 0.5093 90

22 0.8235 0.7000 0.7568 120

23 0.7470 0.8267 0.7848 150

24 0.6170 0.3222 0.4234 90

25 0.8408 0.8583 0.8495 480

26 0.8432 0.8667 0.8548 180

27 0.3429 0.4000 0.3692 60
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28 0.8984 0.7667 0.8273 150

29 0.5455 0.8667 0.6695 90

30 0.4961 0.4200 0.4549 150

31 0.8290 0.9519 0.8862 270

32 0.6829 0.9333 0.7887 60

33 0.8251 0.8762 0.8499 210

34 0.8261 0.9500 0.8837 120

35 0.9301 0.8872 0.9081 390

36 0.7069 0.6833 0.6949 120

37 0.5128 0.6667 0.5797 60

38 0.9034 0.9217 0.9125 690

39 0.6044 0.6111 0.6077 90

40 0.5288 0.6111 0.5670 90

41 0.5536 0.5167 0.5345 60

42 0.8571 0.6667 0.7500 90

accuracy 0.8549 12630

macro avg 0.7789 0.7849 0.7774 12630

weighted avg 0.8573 0.8549 0.8544 12630
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APPENDIX F – Classification Report -
Pruned Model embeded in ESP32

DevBoard

Classification Report

precision recall f1-score support

0 0.8000 0.4667 0.5895 60

1 0.9015 0.8903 0.8959 720

2 0.8612 0.9600 0.9079 750

3 0.8958 0.8978 0.8968 450

4 0.8914 0.9076 0.8994 660

5 0.8781 0.8349 0.8560 630

6 0.9247 0.9000 0.9122 150

7 0.9338 0.8467 0.8881 450

8 0.8556 0.8822 0.8687 450

9 0.9453 0.9354 0.9403 480

10 0.9495 0.9409 0.9452 660

11 0.8357 0.8476 0.8416 420

12 0.9698 0.8841 0.9249 690

13 0.9293 0.9681 0.9483 720

14 0.8824 0.9444 0.9123 270

15 0.8955 0.9381 0.9163 210

16 0.9241 0.9733 0.9481 150

17 0.9717 0.8583 0.9115 360

18 0.7688 0.7077 0.7370 390

19 0.5091 0.4667 0.4870 60

20 0.7100 0.7889 0.7474 90

21 0.5410 0.3667 0.4371 90

22 0.8585 0.7583 0.8053 120

23 0.7127 0.8600 0.7795 150

24 0.7692 0.3333 0.4651 90

25 0.7947 0.8792 0.8348 480

26 0.7396 0.7889 0.7634 180

27 0.3538 0.3833 0.3680 60
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28 0.8077 0.8400 0.8235 150

29 0.5649 0.8222 0.6697 90

30 0.6628 0.3800 0.4831 150

31 0.7917 0.9148 0.8488 270

32 0.8276 0.8000 0.8136 60

33 0.8371 0.8810 0.8585 210

34 0.8273 0.9583 0.8880 120

35 0.9563 0.8410 0.8950 390

36 0.8191 0.6417 0.7196 120

37 0.5000 0.5833 0.5385 60

38 0.8827 0.9377 0.9093 690

39 0.6289 0.6778 0.6524 90

40 0.5000 0.6222 0.5545 90

41 0.4478 0.5000 0.4724 60

42 0.7037 0.6333 0.6667 90

accuracy 0.8598 12630

macro avg 0.7851 0.7731 0.7726 12630

weighted avg 0.8619 0.8598 0.8580 12630
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APPENDIX G – Classification Report -
Quantized Model embeded in ESP32

DevBoard

Classification Report

precision recall f1-score support

0 0.6269 0.7000 0.6614 60

1 0.8858 0.9264 0.9056 720

2 0.8856 0.9493 0.9163 750

3 0.8626 0.9067 0.8841 450

4 0.9249 0.8773 0.9005 660

5 0.8390 0.8603 0.8495 630

6 0.8269 0.8600 0.8431 150

7 0.8889 0.8178 0.8519 450

8 0.8267 0.8800 0.8525 450

9 0.9196 0.9292 0.9244 480

10 0.9641 0.9348 0.9492 660

11 0.8605 0.8810 0.8706 420

12 0.9768 0.7942 0.8761 690

13 0.9348 0.9750 0.9545 720

14 0.8258 0.9481 0.8828 270

15 0.8611 0.8857 0.8732 210

16 0.9250 0.9867 0.9548 150

17 0.9627 0.7889 0.8672 360

18 0.7136 0.7795 0.7451 390

19 0.4828 0.7000 0.5714 60

20 0.6522 0.8333 0.7317 90

21 0.6182 0.3778 0.4690 90

22 0.9263 0.7333 0.8186 120

23 0.7175 0.8467 0.7768 150

24 0.5467 0.4556 0.4970 90

25 0.9413 0.8354 0.8852 480

26 0.8872 0.6556 0.7540 180

27 0.5625 0.4500 0.5000 60
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28 0.7706 0.8733 0.8187 150

29 0.5753 0.9333 0.7119 90

30 0.5895 0.3733 0.4571 150

31 0.7928 0.8926 0.8397 270

32 0.9400 0.7833 0.8545 60

33 0.8826 0.8952 0.8889 210

34 0.8440 0.9917 0.9119 120

35 0.9529 0.8821 0.9161 390

36 0.8235 0.7000 0.7568 120

37 0.7241 0.7000 0.7119 60

38 0.8491 0.9377 0.8912 690

39 0.6122 0.6667 0.6383 90

40 0.5752 0.7222 0.6404 90

41 0.6383 0.5000 0.5607 60

42 0.8358 0.6222 0.7134 90

accuracy 0.8591 12630

macro avg 0.7966 0.7917 0.7879 12630

weighted avg 0.8635 0.8591 0.8579 12630
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APPENDIX H – Classification Report -
Teacher Model embeded in ESP32-S2

DevBoard

Classification Report

precision recall f1-score support

0 0.9423 0.8167 0.8750 60

1 0.9173 0.9861 0.9505 720

2 0.9836 0.9613 0.9724 750

3 0.9196 0.9156 0.9176 450

4 0.9411 0.9682 0.9544 660

5 0.9168 0.9619 0.9388 630

6 0.9710 0.8933 0.9306 150

7 0.9108 0.9756 0.9421 450

8 0.9720 0.9267 0.9488 450

9 0.9720 0.9396 0.9555 480

10 0.9878 0.9803 0.9840 660

11 0.9280 0.8595 0.8925 420

12 0.9889 0.9000 0.9423 690

13 0.9768 0.9958 0.9862 720

14 0.9712 1.0000 0.9854 270

15 0.8991 0.9762 0.9361 210

16 1.0000 1.0000 1.0000 150

17 1.0000 0.8972 0.9458 360

18 0.9563 0.8410 0.8950 390

19 0.9783 0.7500 0.8491 60

20 0.8241 0.9889 0.8990 90

21 0.6774 0.7000 0.6885 90

22 0.9107 0.8500 0.8793 120

23 0.7340 0.9933 0.8442 150

24 0.9167 0.7333 0.8148 90

25 0.9343 0.9187 0.9265 480

26 0.8719 0.9833 0.9243 180



APPENDIX H. Classification Report - Teacher Model embeded in ESP32-S2 DevBoard 112

27 0.6531 0.5333 0.5872 60

28 0.9366 0.8867 0.9110 150

29 0.7391 0.9444 0.8293 90

30 0.6686 0.7533 0.7085 150

31 0.8706 0.9963 0.9292 270

32 0.9600 0.8000 0.8727 60

33 0.8601 0.9952 0.9227 210

34 0.9600 1.0000 0.9796 120

35 0.9667 0.9667 0.9667 390

36 0.9597 0.9917 0.9754 120

37 1.0000 0.9500 0.9744 60

38 0.9955 0.9652 0.9801 690

39 1.0000 0.6667 0.8000 90

40 0.8511 0.8889 0.8696 90

41 0.9524 1.0000 0.9756 60

42 0.9189 0.7556 0.8293 90

accuracy 0.9365 12630

macro avg 0.9138 0.9025 0.9044 12630

weighted avg 0.9398 0.9365 0.9364 12630
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APPENDIX I – Classification Report -
Distilled Model embeded in ESP32-S2

DevBoard

Classification Report

precision recall f1-score support

0 0.6857 0.4000 0.5053 60

1 0.8323 0.9167 0.8724 720

2 0.8466 0.8760 0.8611 750

3 0.8664 0.8356 0.8507 450

4 0.8802 0.8909 0.8855 660

5 0.8295 0.7492 0.7873 630

6 0.7872 0.7400 0.7629 150

7 0.8411 0.7644 0.8009 450

8 0.7817 0.8756 0.8260 450

9 0.9207 0.9187 0.9197 480

10 0.9273 0.9470 0.9370 660

11 0.8687 0.8667 0.8677 420

12 0.9330 0.8884 0.9102 690

13 0.9047 0.9625 0.9327 720

14 0.9358 0.9185 0.9271 270

15 0.9136 0.9571 0.9349 210

16 0.7796 0.9667 0.8631 150

17 0.9636 0.8083 0.8792 360

18 0.8540 0.6897 0.7631 390

19 0.4032 0.4167 0.4098 60

20 0.7701 0.7444 0.7571 90

21 0.3902 0.3556 0.3721 90

22 0.8776 0.7167 0.7890 120

23 0.8047 0.6867 0.7410 150

24 0.4659 0.4556 0.4607 90

25 0.8245 0.8125 0.8185 480

26 0.7857 0.7944 0.7901 180
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27 0.5000 0.3500 0.4118 60

28 0.6450 0.7267 0.6834 150

29 0.7980 0.8778 0.8360 90

30 0.5263 0.6667 0.5882 150

31 0.8084 0.8593 0.8330 270

32 0.7536 0.8667 0.8062 60

33 0.8451 0.9095 0.8761 210

34 0.7803 0.8583 0.8175 120

35 0.9088 0.8436 0.8750 390

36 0.7161 0.9250 0.8073 120

37 0.5000 0.6500 0.5652 60

38 0.8916 0.9536 0.9216 690

39 0.7619 0.5333 0.6275 90

40 0.4444 0.3556 0.3951 90

41 0.5636 0.5167 0.5391 60

42 0.6173 0.5556 0.5848 90

accuracy 0.8383 12630

macro avg 0.7613 0.7536 0.7533 12630

weighted avg 0.8394 0.8383 0.8367 12630
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APPENDIX J – Classification Report -
Pruned Model embeded in ESP32-S2

DevBoard

Classification Report

precision recall f1-score support

0 0.7885 0.6833 0.7321 60

1 0.8760 0.8833 0.8797 720

2 0.8705 0.8960 0.8830 750

3 0.8809 0.8711 0.8760 450

4 0.9439 0.8924 0.9174 660

5 0.7991 0.8333 0.8159 630

6 0.8333 0.8667 0.8497 150

7 0.9102 0.8333 0.8701 450

8 0.8445 0.8689 0.8565 450

9 0.8907 0.9167 0.9035 480

10 0.9243 0.9621 0.9428 660

11 0.8765 0.8619 0.8691 420

12 0.9007 0.9072 0.9040 690

13 0.8783 0.9625 0.9185 720

14 0.9663 0.9556 0.9609 270

15 0.9130 0.9000 0.9065 210

16 0.8726 0.9133 0.8925 150

17 0.9570 0.8028 0.8731 360

18 0.8266 0.6846 0.7489 390

19 0.6290 0.6500 0.6393 60

20 0.5702 0.7222 0.6373 90

21 0.4105 0.4333 0.4216 90

22 0.8378 0.7750 0.8052 120

23 0.6989 0.8200 0.7546 150

24 0.5789 0.3667 0.4490 90

25 0.8347 0.8729 0.8534 480

26 0.7206 0.8167 0.7656 180
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27 0.6620 0.7833 0.7176 60

28 0.8163 0.8000 0.8081 150

29 0.7209 0.6889 0.7045 90

30 0.6250 0.5000 0.5556 150

31 0.8390 0.9074 0.8719 270

32 0.7703 0.9500 0.8507 60

33 0.8468 0.9476 0.8944 210

34 0.7817 0.9250 0.8473 120

35 0.9119 0.9026 0.9072 390

36 0.7320 0.5917 0.6544 120

37 0.6452 0.6667 0.6557 60

38 0.9664 0.9174 0.9413 690

39 0.8654 0.5000 0.6338 90

40 0.5175 0.6556 0.5784 90

41 0.7333 0.7333 0.7333 60

42 0.6933 0.5778 0.6303 90

accuracy 0.8565 12630

macro avg 0.7944 0.7907 0.7886 12630

weighted avg 0.8581 0.8565 0.8553 12630
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APPENDIX K – Classification Report -
Quantized Model embeded in ESP32-S2

DevBoard

Classification Report

precision recall f1-score support

0 0.6269 0.7000 0.6614 60

1 0.8858 0.9264 0.9056 720

2 0.8856 0.9493 0.9163 750

3 0.8626 0.9067 0.8841 450

4 0.9249 0.8773 0.9005 660

5 0.8390 0.8603 0.8495 630

6 0.8269 0.8600 0.8431 150

7 0.8889 0.8178 0.8519 450

8 0.8267 0.8800 0.8525 450

9 0.9196 0.9292 0.9244 480

10 0.9641 0.9348 0.9492 660

11 0.8605 0.8810 0.8706 420

12 0.9768 0.7942 0.8761 690

13 0.9348 0.9750 0.9545 720

14 0.8258 0.9481 0.8828 270

15 0.8611 0.8857 0.8732 210

16 0.9250 0.9867 0.9548 150

17 0.9627 0.7889 0.8672 360

18 0.7136 0.7795 0.7451 390

19 0.4828 0.7000 0.5714 60

20 0.6522 0.8333 0.7317 90

21 0.6182 0.3778 0.4690 90

22 0.9263 0.7333 0.8186 120

23 0.7175 0.8467 0.7768 150

24 0.5467 0.4556 0.4970 90

25 0.9413 0.8354 0.8852 480

26 0.8872 0.6556 0.7540 180
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27 0.5625 0.4500 0.5000 60

28 0.7706 0.8733 0.8187 150

29 0.5753 0.9333 0.7119 90

30 0.5895 0.3733 0.4571 150

31 0.7928 0.8926 0.8397 270

32 0.9400 0.7833 0.8545 60

33 0.8826 0.8952 0.8889 210

34 0.8440 0.9917 0.9119 120

35 0.9529 0.8821 0.9161 390

36 0.8235 0.7000 0.7568 120

37 0.7241 0.7000 0.7119 60

38 0.8491 0.9377 0.8912 690

39 0.6122 0.6667 0.6383 90

40 0.5752 0.7222 0.6404 90

41 0.6383 0.5000 0.5607 60

42 0.8358 0.6222 0.7134 90

accuracy 0.8591 12630

macro avg 0.7966 0.7917 0.7879 12630

weighted avg 0.8635 0.8591 0.8579 12630
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ANNEX A – Teacher model graph -
NETRON.

Figure 19 – Teacher model graph.

Source: The author
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ANNEX B – Quantized model graph -
NETRON.

Figure 20 – Quantized model graph.

Source: The author
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ANNEX C – ELF Inspection Results -
PlatformIO

Figure 21 – Analysis of the ELF file generated from the distilled model showing the space
occupied by the model and the memory segments in which they are located.

Source: The author

Figure 22 – Excerpt from the ELF file inspection performed on PlatformIO.

Source: The author
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ANNEX D – Memory.ld File Location.

Figure 23 – Tree view of the location of the memory.ld file.
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