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Atrial natriuretic peptide and feeding
activity patterns in rats
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Abstract

This review presents historical data about atrial natriuretic peptide
(ANP) from its discovery as an atrial natriuretic factor (ANF) to its role
as an atrial natriuretic hormone (ANH). As a hormone, ANP can
interact with the hypothalamic-pituitary-adrenal axis (HPA-A) and is
related to feeding activity patterns in the rat. Food restriction proved to
be an interesting model to investigate this relationship. The role of
ANP must be understood within a context of peripheral and central
interactions involving different peptides and pathways.
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A factor, at the beginning

The discovery of a natriuretic factor from
cardiac atria (1,2) led to further characteriza-
tion of a complex natriuretic hormonal sys-
tem, including a 126-amino acid prohormone
synthesized within myocytes of the heart and
stored in granules for release into the circu-
lation. This hormonal system includes sev-
eral peptides such as the prohormone pro-
atrial natriuretic factor (ANF) 1-30, a long-
acting sodium stimulator, pro-ANF 31-67, a
vasodilator, pro-ANF 79-98, a kaliuretic
stimulator, and pro-ANF 99-126. Each of
these peptides has blood pressure-lowering,
diuretic, natriuretic, and/or kaliuretic prop-
erties in both humans and animals. When
released into the circulation, these peptides
circulate as a 28-amino acid C-terminus (i.e,
ANF) of this prohormone and as a 98-amino
acid N-terminus which is proteolytically

cleaved into pro-atrial natriuretic peptide
(ANP) 31-67 and pro-ANF 1-30. The pep-
tides enhance the particulate form of the
enzyme guanylate cyclase increasing the in-
tracellular messenger cGMP that has been
shown to be the final mediator of the ob-
served vasodilatation and natriuresis sec-
ondary to atrial natriuretic peptides (3,4). A
single ANF gene has been identified in all
mammalian species examined to date. In
man this gene is located on chromosome 1,
band p36, and is one of a syntenic group that
is present on chromosome 4 of the mouse.
The gene consists of three exons separated
by two introns. More recently, brain natri-
uretic peptide (BNP) and C-type natriuretic
peptide (CNP) and at least three subtypes of
receptors were identified (5). In this review
we will use the name ANP although the term
atrial natriuretic hormone (ANH) would be
more appropriate.
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Atrial, but not only atrial

ANP has been identified in many differ-
ent tissues and may have several important
physiological functions other than natriure-
sis and vasodilation. In brain it exists as
amino-terminally truncated form. Two sys-
tems are involved in the secretion of ANP:
peripheral ANP (heart and plasma) and cen-
tral ANP (paraventricular, periventricular,
arcuate, and pre-optical-medial nuclei and
other sites) (6). Despite the blood-brain bar-
rier, these systems communicate through the
circumventricular organs, the organum
vasculosum lamina terminalis and the or-
ganum subfornicalis (7-9). They are con-
nected by neuronal synapses (9-14), or by
discharge of peptides such as vasopressin
(15), endothelin (11) and oxytocin (16) from
the hypothalamus. Therefore, ANP may par-
ticipate in the control of different functions
such as the reduction of the activity of the
renin-angiotensin-aldosterone system and in-
hibition of salt and water intake in the rat
(17,18). Nevertheless, ANP originating from
the paraventricular nucleus (PVN) is respon-
sible for 87 to 92% of the content of ANP in
the median eminence and is involved in the
regulation of the function of the anterior
pituitary (19). Several experiments using
immunoneutralization techniques have dem-
onstrated that ANP, in addition to participat-
ing in the control of LH and prolactin secre-
tion (20,21), may be a factor inhibiting corti-
cotropin release (21-24).

Natriuretic, but where?

ANP was discovered on the basis of its
pharmacological properties of producing di-
uresis and natriuresis, although at the pe-
riphery its vasodilating action is probably
more important. Transgenic mice with ANP
levels 2- to 10-fold the normal values exhibit
essentially normal fluid and electrolyte ho-
meostasis, a fact that argues against a funda-
mental role of peripheral ANP in water and

sodium metabolism. However, the mice with
the highest ANP levels were significantly
hypotensive indicating that these pharmaco-
logic renal effects of the peptide are less
important than its hemodynamic actions (4).
On the other hand, in rats or in humans, high
ANP concentrations are hypotensive even
when they are lower than natural concentra-
tions in the pituitary portal system, and are
able to inhibit ACTH secretion in vitro (25).
Nevertheless, under appropriate conditions,
the antagonism between the natriuretic pep-
tide system and the renin-angiotensin system
can promote natriuresis. For instance, ANP
inhibition of stress-induced vasopressin re-
lease may increase renal water loss and the
diminished ACTH release induced by ANP
may lead to a reduction in aldosterone secre-
tion, thereby diminishing the stress-induced
sodium retention (26), a mechanism demon-
strating the central natriuretic action of
ANP.

And what else? ANP and the HPA-A

Two lines of research have been exhaus-
tively followed by our group since the early
eighties. First, the investigation involved the
brain ANPergic neuron system and its role as
antagonist of the renin-angiotensin system,
its influence on ANP release including ANP
release induced by volume expansion (9-
14,17-18), and other hormonal effects of the
brain ANP system on LH, prolactin, GH,
TSH, and ACTH secretion (20,24). In paral-
lel, we investigated the circadian rhythmi-
city of the hypothalamic-pituitary-adrenal
axis (HPA-A) in rats with continuous or
restricted access to food (27). It is well known
that rats manifest a circadian peak of plasma
corticosterone and ACTH just before the
onset of predominant food intake (28). We
demonstrated for the first time circadian and
parallel ANP and corticosterone variations
in rats with continuous (peak at 20:00 h) or
restricted access to food from 9:00 to 11:00
h, with a peak at 8:00 h (29). Both lines of
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investigation led to a better understanding of
the relationship between brain and peripher-
al ANP involving neuronal and peptidergic
interactions. The activation of the central
noradrenergic pathway is involved in the
volume expansion-induced ANP release and
the circadian variation of corticosterone and
ANP in rats. High levels of noradrenaline
and elevated numbers of alpha-2-adrenore-
ceptors are found in PVN (30), producing a
large burst of food intake and activity at the
beginning of the dark period simultaneously
with an increase of cardiac rate and pressure
(31). In addition, the central noradrenergic
pathway is activated before feeding time in
food-restricted rats. Food restriction induces
a disruption of activity-rest and sleep-wake
patterns with changes in the hippocampal
content of norepinephrine and serotonin, and
in the cortical content of serotonin (32), and
corticotropin-releasing hormone (CRH)-re-
lated neurotransmitters involved in feeding
behavior (33). Feeding patterns result from a
complex balance between anorectic (CRH,
cholecystokinin (CCK), neurotensin) and
orectic (neuropeptide Y (NPY), pancreatic
polypeptide, galanine) factors, constituting
a complex circuitry. CRH and NPY deserve
additional comments. Food restriction in-
duces an increase of NPY mRNA level in the
arcuate nucleus and reduces the CRH mRNA
level in PVN in a physiological response to
restore food intake (34). Dallman et al. (35)
suggested that the NPYergic system, the ac-
tivity of which is increased by fasting and
reduced by feeding, by insulin and lack of
glucocorticoids, may mediate the fasting-
induced override of diurnal rhythms in the
HPA-A. We propose that the food-restricted
high corticosterone levels may contribute to
the observed reduction of CRH mRNA
through an action of ANP. In addition, glu-
cocorticoids areable to stimulate ANP secre-
tion or genic activity (36-41). This effect
may be consistent with a possible hypotha-
lamic-cardio-adrenal feedback control mech-
anism (29).

Diurnal ANP variations and
food restriction

Because rats drink when they eat and eat
when they drink, restriction of water or food
effectively restricts consumption of both (35).
To test the hypothesis of food restriction
being a paramount “zeitgeber” for the diur-
nal variation of corticosterone, ACTH and
ANP and to determine the role of water
restriction, we studied these rhythms in wa-
ter-restricted rats (water from 9:00-11:00 h).
Water-restricted rats showed a double corti-
costerone peak at 8:00 and 20:00 h and an
ACTH peak at 8:00 h, and did not show
diurnal variation of ANP. We concluded that
food intake is a more important synchronizer
than water intake for the activity and HPA
rhythmicity. We believe that the effects of
water restriction on corticosterone and ACTH
secretion are mediated by changes in food
intake since there is a spontaneous burst of
feeding in the presence of a water supply.
Water-restricted rats are less active during
the light period than food-restricted rats. In
fact, food-restricted rats with exclusive 0.9%
or 1.5% NaCl intake exhibit more hyperac-
tivity and more intense drink-seeking behav-
ior, thereby abolishing the diurnal circadian
variation in ANP due to a high ANP secre-
tion during this period. Free fed adrenalecto-
mized rats showed no diurnal ANP varia-
tion. This may be attributed to a reduction of
the spontaneous food intake and activity dur-
ing the dark period in comparison to the light
period, due to a reduction in the alpha-2-
adrenoreceptors in PVN, as shown by
Bhakthavatsalam and Leibowitz (42) and
Jhanwar-Uniyal et al. (30). We do not know
whether a stimulating effect of glucocorti-
coids on the genic transcription of ANP con-
tributes to the evening ANP peak and is
eventually suppressed by adrenalectomy
(ADX). We demonstrated that dexametha-
sone (50 µg/kg body weight) administered
intraperitoneally to ADX rats produced a
drastic reduction of ACTH accompanied by
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a pronounced ANP increase within 90 min.
This result suggests that a simultaneous in-
crease in portal ANP content may mediate
the reduction of ACTH hypersecretion in
ADX rats. It is interesting that this feedback
mechanism uses the same type II receptor
that mediates the high food intake occurring
at the onset of darkness, which is abolished
by ADX and restored by corticosterone (43).

ANP, a feeding-related peptide?
Peripheral or central actions?

The interaction between insulin and cor-
ticosteroid serves as a peripheral hormonal
feedback loop that regulates the well-known
NPYergic feeding and fasting system, but if
plasma insulin levels were elevated in an
attempt to increase CNS insulin levels (in
the hope of observing a consequent decrease
in food intake) the resulting hypoglycemia
would elicit an emergency increase in food
intake (44). Similarly, if plasma ANP levels

were increased to the high levels needed to
inhibit the HPA-A, the resulting hypoten-
sion could have a stimulatory effect. There-
fore, central ANP sites (PVN, arcuate
nucleus, perifornical lateral hypothalamus,
AV3V, subfornical organ, supraoptic
nucleus) may act as integrating sites of a
complex system that couples feeding, HPA-
A, physical activities and cardiovascular sta-
tus. Corticosteroids and insulin may act as
peripheral signals, and the locus ceruleus,
nucleus tractus solitarius and dorsomedial
nucleus as intermediate stations. The activa-
tion of noradrenergic and serotonergic path-
ways may be involved, but the nature of
other interactions and peptides deserves fur-
ther study.
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