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A four-fermion model with additional higher-derivative terms is investigated in an external electro-
magnetic �eld. The e�ective potential in the leading order of large-N expansion is calculated in
external constant magnetic and electric �elds. It is shown that, in contrast to the former results
concerning the universal character of \magnetic catalysis" in dynamical symmetry breaking, in
the present higher-derivative model the magnetic �eld restores chiral symmetry broken initially on
the tree level. Numerical results describing a second-order phase transition that accompanies the
symmetry restoration at the quantum level are presented.

I Introduction

The dynamical symmetry breaking (DSB) issue has at-
tracted a lot of attention since the appearence of the
seminal paper by Nambu and Jona-Lasinio [1]. It is,
in fact, the most economical way to realize the Higgs
mechanism. It has been applied to the study of di�erent
models of modern quantum �eld theory [3], especially
four-fermion ones [1,2], where it is viewed as a low-
energy e�ective action of strong interactions physics [4].

Chiral symmetry (CS) breaking and dynamical
fermion mass generation in four-fermion models have
been investigated in the presence of external �elds: elec-
tromagnetic [5]-[11], gravitational [12] - [14], and their
combination [14], [15]. It has been observed that both
a positive spacetime curvature and an external electric
�eld try to restore chiral symmetry while a magnetic
�eld and negative curvature always break it. Therefore
external �elds have been shown to induce some new

phase transitions and enrich the model phase diagram
essentially.

Higher-derivative extensions of the NJL model have
been discussed recently owing to di�erent reasons.
First, a model with higher-derivative terms in the inter-
action vertex was proposed that exhibits an intersting
equivalence with the sympli�ed theory of electroweak
interactions [16]. These terms of the low-energy e�ec-
tive action were shown to be essential and even unavoid-
able in the strong coupling regime, where a nontriv-
ial phase diagram with a policritical point was shown
to exist [17]. On the other hand, some regularization
schemes based on the introduction of additional higher-
derivative terms into the initial kinetic one were dis-
cussed [18]. Furthemore, gravity e�ects upon the DSB
for the former variant of high-derivative NJL model
were investigated as well [19].

In the present paper we study the DSB in the four-
fermion model with a higher-derivative kinetic term [18]
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in an external electromagnetic �eld. It is of interest to
check up if the \universal rules" concerning magnetic
catalysis of DSB and chiral symmetry restoration un-
der the in
uence of electric �elds work for this more
complicated model.

II E�ective potential of the

higher-derivative model

We are going to investigate a higher-derivative gener-
alization of the NJL-like model in an external constant
electromagnetic �eld with the following action:
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where the covariant derivative D� includes the electromagnetic potential A�:

D� = @� � ieA�: (2)

It should be noted that in our model CS is already broken on the tree level when � 6= 0 in contrast to the original
NJL case. By introducing the auxiliary �elds
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we can rewrite the action as
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Then, the e�ective action in the large-N expansion is given by
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Here we can put � = 0, because the �nal expression will depend on the combination �2 + �2 only.

De�ning the e�ective potential (EP) as Veff = ��eff=N
Z
d4x, for constant con�gurations of � and � we get

Veff =
�2

2�
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By means of the Green function (GF) which obeys the equation
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we obtain the following formula

V 0eff (�) =
�
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To �nd out the GF G(x; x0; �) it is convenient to represent the higher-derivative operator in the form
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Here, we suppose that � � �1=4�. Then we can repre- sent the GF as

G(x; x0; �) = (1 + 4��)
�1=2 fS(x; x0;M1)� S(x; x0;M2)g ;

(11)
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where the functions S(x; x0;Mi) obey the equation:

(i
�D� �Mi)xS(x; x
0;Mi) = Æ(x� x0) (12)

and i = 1; 2. This is exactly the usual GF of massive
fermions in a constant external electromagnetic �eld,
whose proper-time representation is well-known [5]. We
have now derived all the preliminary formulae needed
to construct the EP of our model.

III Dynamical symmetry break-

ing without an external �eld

In the absence of an electromagnetic �eld, the GF (12)
in the proper-time representation has the form [5]:
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where � is an ultraviolet cut-o� parameter. It should
be noted that, in contrast to the paper [18], where
UV divergences have been dealt with by introducing
a cut-o� as a multiplier of the higher-derivative term,
we have to insert in our present model this special pa-
rameter � anyway. The point is that the action of our
model contains only squares of derivatives and this is

not enough in order to regularize one-loop Feynman
graphs in a four-dimensional spacetime. Meanwhile the
kinetic term of the model studied in [18] contains a cu-
bic higher-derivative term which provides a complete
regularization of any diagram.

The EP generated by the two functions S(x; x0;Mi)
is the following
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where the multiplier 4 is the dimension of the fermion representation, and the opposite sign of the second integral
should be noted. After a Wick rotation, is ! s, and integration over m, we get a positive expressions for both
terms of EP (14) and no negative modes appear here. Therefore the EP can be written as
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Substituting here the expressions (10) and perfoming the integration over s, we �nally obtain the e�ective potential
(6)
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where we assume that � << �.

The gap equation

V 0eff (�) = 0 (17)

can be found directly and CS turns out to be broken for
any value of the coupling constant and � > 0, because

V 0eff (0) =
1

4�2�3
���2�2 + 1� 
 + ln

�
�2�2

��
(18)

is always negative (see Fig. 1). This is an absolutely
natural result because the higher-derivative term in the
action (1) is noninvariant under chiral transformations,
both of continuous and discrete type. It causes the pres-
ence of a bare current mass which is preserved even in
the limit � ! 0 when M2

2 ! 1=�2 being non-zero in all
cases.
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Figure 1. Plot of the derivative v � V 0
eff(0)=�

3 of the ef-
fective potential for � = 0 versus the dimensionless variable
x � �2�2. The fact that this derivative is always negative
proves that chiral symmetry is always broken as well.

IV Symmetry restoration un-

der the in
uence of external

constant magnetic or elec-

tric �elds

The GF in an external constant magnetic �eld is given
by [5, 10]:
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Then, we can write the EP
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The most reliable method to deal with the divergences is the cut-o� scheme. We can make the following trick: to
write the integral in the EP in the form
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and to calculate the last one by keeping � �nite, while the �rst integral is �nite already, so that we can set 1=�2 = 0
at the lower limit. Then it appears to be possible to calculate it like a limit �! �1, by using the formula
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Substituting the expressions for M2
1 and M2

2 , we obtain the following formula for the EP
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To see if there are any possibilities for restoration of the chiral symmetry in this model, one should calculate the
derivative V 0eff (�) at the origin � = 0:
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It should be noted that this formula does not reproduce
Eq. (18) in the limit B ! 0, due to the circumstance
that it was actually calculated as the zero-order term
in the power expansion on the dimensionless parameter
�2=eB. Thus, one has to keep eB �nite here.

As is clear from Fig. 2, there is a rather big area
of values of the magnetic �eld strength and the cut-
o� parameter where the derivative V 0eff (0) is positive.

That indicates the CS restoration on the quantum level.
The corresponding numerical analysis proves in fact
that this rerstoration occurs continuously with mag-
netic �eld strength growth. This means that there is a
second-order phase transition as shown in Fig. 3. The
same type of phase transition induced by a change of
the nonlinearity parameter � is depicted in Fig. 4.
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Figure 2. Plot of the derivative value V 0
eff (0)=�

3 of the ef-
fective potential as a function of the two variables x and
y � eB�2. When the magnetic �eld is non-zero and for a
reasonable rang of values of x, a domain is formed where
the derivative of the potential is positive, signaling a phase
transition accompanied by chiral symmetry restoration.

For the case of an external constant electric �eld,
the EP has almost the same form:
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or, after substitution of the expressions for M1; M2,
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This expression has an imaginary part de�ning a parti-
cle creation velocity, and strictly speaking the vacuum
becomes unstable [20]. However, for some small values
of the electric �eld strength, when particle creation is
still exponentially depressed, we can perform an anal-

ysis of the DSB phenomenon using the real part of the
EP.

To estimate if symmetry restoration takes place in
an external electric �eld, we can use again the value of
the derivative of the EP at the origin:
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Performing now a numerical analysis of the same
fashion as in previous section, we may get qualitatively
the same results. There are regions where CS is restored
due to the electrical �eld e�ect. Being the procedure
very similar, we do not present here explicit �gures of
that analysis for the sake of concissness.
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Figure 3. Plot of the e�ective potential V (s) � [Veff (�)�
Veff (0)]=�

4 as a function of s � �=�, for a particular value
of x = :15 and three di�erent values of y = :05; :15; :3, show-
ing that the phase transition takes place.
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Figure 4. Plot of the potential V (s) but now for a particular
value of y = :1 and several values of x = :1; :2; :3.

V Conclusions

We have studied in this paper the in
uence of magnetic
and electric external �elds on the CS restoration in a
higher-derivative NJL-like model, where this symmetry
is broken already in the absence of external �elds. It
has been shown that a domain of parameter values ex-
ists within the range of validity of our approximation
where the external magnetic or electric �elds restore
chiral symmetry, at least at the quantum level. This is
in contrast to the magnetic catalysis phenomenon oc-
curing in the usual NJL model.

Fortunately the phase transition accompanying this
symmetry restoration is a second order one and its con-
tinuous character reasures us on the correctness of our
approximation. In fact, within the broken phase, for ev-
ery value of � there is some vicinity of the origin where
�min << �, in accordance with the restrictions under
which we have obtained the formula for the e�ective
potential.

It should also be noted that it is not diÆcult to
extend our model (and our calculational scheme) to in-
clude other higher derivative terms in the kinetic piece
of the Lagrangian. In particular, one can consider a
Lagrangian with a term of fourth order.
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