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Resumo

Esta monografia tem como objetivo a demonstração do Teorema de Gromov dos Grupos de Cresci-
mento Polinomial, que caracteriza grupos de crescimento polinomial como aqueles que têm subgru-
pos nilpotentes de ı́ndice finito. Para tal, introduzimos os conceitos essenciais para a compreensão
da demonstração, como espaços métricos, espaços topológicos, variedades e grupos. Também desen-
volvemos a teoria da distância e da convergência de Gromov-Hausdorff, ferramentas da Geometria
Métrica que utilizamos para estudar grupos como objetos geométricos. Finalmente, estudamos o
crescimento de grupos e as principais propriedades dos grupos de crescimento polinomial, culmi-
nando em uma demonstração do Teorema de Gromov.



Abstract

This undergraduate thesis aims to present a proof of Gromov’s Theorem on Groups of Polynomial
Growth, which characterizes groups of polynomial growth as those that have nilpotent subgroups
of finite index. For such, we introduce basic concepts that are essential in understanding the proof,
namely metric spaces, topological spaces, manifolds, and groups. We also explore the theory of the
Gromov-Hausdorff distance and convergence, which are tools from Metric Geometry that prove to
be useful in the study of groups as geometric objects. Lastly, we examine group growth and the
essential properties of groups of polynomial growth, culminating in a proof of Gromov’s Theorem.
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1 INTRODUCTION

1 Introduction

This text aims to serve as a gentle introduction to Geometric Group Theory. Specifically, we offer
the needed background to tackle what is now a classic result: Gromov’s Theorem on Groups of
Polynomial Growth. The growth function of a finitely generated group G associated with a finite
generated set S (we assume that the set is symmetric, i.e., x ∈ S ⇐⇒ x−1 ∈ S) is defined by
taking n ∈ N to the number bS(n) of elements of G that can be written as a string of, at most,
n elements of S. A group is said to be of polynomial growth when bS(n) is bounded above by a
polynomial function of n.

The study of the asymptotic behaviour of the growth function can be traced back to Albert
Schwarz in [Sch55] (unfortunately, only available in Russian), and was rediscovered in the west by
John Milnor in [Mil68]. Early motivation came due to results regarding the growth function of the
fundamental groups of Riemannian manifolds (see Proposition 4.11, for instance).

It is possible to show that the growth function of a finitely generated group grows, at most,
exponentially (see Corollary 4.21). It was also known since the late 1960s [Wol68] that finitely
generated nilpotent groups G are groups of polynomial growth, and that if H ⊂ G is a subgroup of
finite index generated by some finite R ⊂ H, then bS and bR are equivalent in their growth. Indeed,
all known groups of polynomial growth were examples of these two facts: They were groups that
had a nilpotent group of finite index (and were aptly named almost nilpotent groups).

Some early results characterized some classes of groups as either polynomial or exponential:
It was shown, for instance, by Joseph Wolf in [Wol68], that finitely generated solvable groups are
either of exponential growth or are almost nilpotent. Jacques Tits [Tit72] proved that finitely
generated subgroups of Lie groups that have finitely many components must have exponential
growth or have a solvable subgroup of finite index. Together, these results imply that, for finitely
generated subgroups of Lie groups that have finitely many components, having polynomial growth
is equivalent to being almost nilpotent. Two questions remained unanswered through the 1970s:
Whether there exists a group of neither polynomial nor exponential growth, and whether there
exists a group of polynomial growth without a nilpotent group of finite index.

The solution to the first question was given by Rostislav Grigorchuk in [Gri85]: Yes, there are
groups that are of intermediate growth, i.e., neither exponential nor polynomial, today known as
the Grigorchuk groups. The answer of the second question, offered by Mikhael Gromov in [Gro81],
was a negative: All groups of polynomial growth are almost nilpotent. This is Gromov’s Theorem
on Groups of Polynomial Growth (Theorem 4.36), and it is our objective to acquire the tools
necessary to prove it.

Gromov’s remarkable proof was geometric in nature. If we define the norm |g| of every element
g ∈ G (with respect to a finite generating set S ⊂ G) as the length of the shortest string of elements
of S that is equal to g, then the function d : G×G→ R defined as d(g, h) = |g−1h| turns G into a
metric space. Note that bS(n) is precisely the cardinality of the closed ball with radius n centered
at the identity. The group operation h 7→ gh for any g ∈ G defines an isometry of the space to
itself.

Therefore, we can study groups as geometric objects in their own right. The fundamental
observation is that one can associate to every group of polynomial growth G a very nice (connected,
locally path connected, locally compact, homogeneous, finite dimensional) space YG. Consider, for
instance, the group Z2 and the set of generators S = {(1, 0), (0, 1), (−1, 0), (0,−1)}. The group
norm induced by this generating set is precisely the sum metric d((a, b), (a′, b′)) = |a−a′|+ |b− b′|.

Consider shrinking Z2 towards the origin, obtaining finer and finer grids of points (more for-
mally, defining a sequence of metrics dn on Z2 as d((a, b), (a′, b′)) = εn(|a − a′| + |b − b′|), where
lim
n→∞

εn = 0). We obtain a sequence of spaces that start to become almost indistinguishable to

the plane R2, which is the very nice space we want to associate Z2 to. A form of distance be-
tween metric spaces originally defined by David Edwards in [Edw75], and today known as the
Gromov-Hausdorff distance, can be used to make this idea precise.

This distance will be our objective of study in Section 3. In particular, we obtain a condition
(Proposition 3.35) for an isometry from G to itself to be associated with an isometry from YG to
itself. The group operation then induces an action of G on YG. It turns out that the group of
isometries of YG can receive the structure of a Lie group. The less general version of the result
regarding subgroups of Lie groups can then be leveraged into a proof of Gromov’s Theorem.
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2 SPACES AND THEIR SYMMETRIES

2 Spaces and their symmetries

In this section, we are going to introduce the geometrical concepts we are going to work with.
We begin with metric spaces and their basic properties. In particular, we explore the Hausdorff
distance, a historical predecessor of the Gromov-Hausdorff distance that is defined only for subsets
of a fixed metric space. This distance is very well behaved in the set of all closed, bounded subsets
of a metric space, where it is a true metric. We also give a brief overview of the Hausdorff measure
and dimension, two other concepts introduced by Felix Hausdorff that are going to be vital in the
proof of Gromov’s Theorem.

In the sequence, we lay the essential definitions of topological spaces and manifolds. We also
discuss groups, giving special attention to some useful results involving finitely generated groups.
In particular we prove the theorem of classification of finitely generated abelian groups. Finally,
we introduce topological and Lie groups. We provide a proof that the group of isometries of a
metric space is a topological group and also comment on conditions that ensure that a topological
group has a compatible smooth structure that makes it into a Lie group.

2.1 Metric spaces

Definition 2.1. A metric space on a set X is an ordered pair (X, d), where d : X ×X → R≥0 is
a function satisfying the following (where a, b and c are arbitrary elements of X)

1. d(a, b) = 0 ⇐⇒ a = b (Positivity);

2. d(a, b) = d(b, a) (Symmetry);

3. d(a, c) ≤ d(a, b) + d(c, d) (Triangle inequality).

Spaces that fail axiom 1 but satisfy the weaker condition d(a, a) = 0 are often called pseudo-
metric spaces.

Remark 2.2. Let (X, d) be a pseudometric space. Define a relation on X as a ∼ b ⇐⇒ d(a, b) = 0.
This can be shown to be an equivalence relation. We can also show that d will have this nice
property

(a1 ∼ a2 and b1 ∼ b2) =⇒ d(a1, b1) = d(a2, b2)

Thus there is a function d∼ : X/∼ → R≥0 that satisfies d∼([a]∼, [b]∼) = d(a, b). The pair
(X/∼, d∼) forms a metric space.

Example 2.3. Let X be the set of all real-valued Lebesgue-integrable functions on the Rn. Define
a pseudometric on X by d(f, g) =

∫
|f − g|. It is a standard exercise of measure theory to show

that d(f, g) = 0 ⇐⇒ f = g (almost everywhere). Thus applying Remark 2.2 on this space will
result on the L1 Lebesgue space.

Remark 2.4. Let (X, d) be a metric space and f : S → X be any function. There is a natural
pseudometric df on S induced by f : Given a, b ∈ S define df (a, b) = d(f(a), f(b)). It will satisfy
all axioms except for positivity, since f(a) = f(b) is a possibility. This is an actual metric if and
only if f is injective.

In particular, any subset of a metric space can be seen with the metric space as induced by the
inclusion function, which is always injective.

Remark 2.5. Let (X, d) be a metric space and S a set that contains X. It is possible to endow
S with a metric that agrees with d when restricted to X. Let x0 ∈ X be an arbitrary but fixed
point.

Provide S \X with the following metric (which we call the discrete metric):

d(a, b) =

{
0, if a = b

1, if a ̸= b

By having two metrics, one defined on X and another defined on S \X, we must choose a value
of d(a, b) when a ∈ X and b /∈ X. The reader may check that the following is an adequate choice:

d(a, b) = d(a, x0) + 1.
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2.1 Metric spaces 2 SPACES AND THEIR SYMMETRIES

Example 2.6. Let V be a real vector space. A norm | − | : V → R on V induces a metric, defined
as d(a, b) = |a− b|. In particular, an inner product ⟨−,−⟩ : V ×V → R induces a norm v 7→ ⟨v, v⟩,
which in turns induces a metric. The usual inner product on Rn induces the Euclidean metric.

Example 2.7 (The Product Metric). Let (X, dX), (Y, dY ) be two metric spaces. The set X × Y
can be endowed with the following metric:

d((a1, b1), (a2, b2)) = max{d(a1, a2), d(b1, b2)}

This metric, when given to R2 = R × R, does not agree with the Euclidean metric (although,
as we will see later on, a metric on a set induces a topology on it. The product metric and the
Euclidean metric induce identical topologies on R2).

Here are some definitions we will need:

Definition 2.8. In what follows (X, dX) and (Y, dY ) are metric spaces:

1. A sequence {xn}∞n=1 taking points in X is said to converge to x ∈ X if lim
n→∞

d(xn, x) = 0 as

a sequence of real numbers. Then x is called the limit of the sequence, which is unique if it
exists. We use the notation lim

n→∞
xn = x,

2. The closure of a subset S ⊂ X is the set S ⊂ X of all the points of X that are limits of
sequences that are entirely contained in S. We say that S is closed if S = S.

3. A subset S ⊂ X is called dense in X if S = X.

4. A metric space is called separable if it has a countable, dense subset.

5. A function f : X → Y is continuous if for every convergent sequence {xn}∞n=1 taking points

in X we have lim
n→∞

f(xn) = f
(
lim
n→∞

xn

)
.

6. A function f : X → Y is uniformly continuous if for all sequences {xn}∞n=1, {x′n}∞n=1 such
that lim

n→∞
d(xn, x

′
n) = 0 we have lim

n→∞
d(f(xn), f(x

′
n)) = 0.

7. A function f : X → Y is an isometry if d(f(x), f(x′)) = d(x, x′) for every x, x′ ∈ X (note
that isometries are uniformly continuous).

8. A metric space X is called homogeneous if for all x1, x2 ∈ X there is a bijective isometry
f : X → X with f(x1) = x2.

9. A sequence {xn}∞n=1 is a Cauchy sequence if of every ε > 0 there is some n0 ∈ N such that
d(xn, xn′) < ε if n, n′ > n0 (note that convergent sequences are Cauchy).

10. A metric space is complete if all of its Cauchy sequences are convergent.

11. A metric space X is bounded if the image of the metric function d is bounded as a subset of
R. In this case its supremum is called the diameter of X, which is denoted diam(X).

12. Let S ⊂ X be any subset and x ∈ X. We define the distance between S and x as d(S, x) =
inf{d(s, x) : s ∈ S}.

13. Let S ⊂ X and r > 0. We define the open and closed r-neighbourhood of S respectively as
Br(S) = {x ∈ X : d(S, x) < r} and Br(S) = {x ∈ X : d(S, x) ≤ r}. If S = {s} is a
singleton, we use Br(s) and Br(s) and call these the open and closed balls centered at s with
a radius r.

14. A subset of X is called open if it is an union of open balls. A subset of S ⊂ X is called closed
if X \ S is open.

15. Let ε > 0. A subset S ⊂ X is a ε-net if Bε(S) = X.

16. A metric space is totally bounded if it admits a finite ε-net for every ε > 0. Totally bounded
spaces are separable.

17. A metric space is compact if it is complete and totally bounded.
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2.1 Metric spaces 2 SPACES AND THEIR SYMMETRIES

18. A metric space is proper if all of its closed balls are compact. All proper spaces are complete.

Remark 2.9. A metric, as a function between metric spaces d : X ×X → R (where the metric on
X ×X is as in Example 2.7) is always continuous.

Remark 2.10. Useful examples of ε-net in a metric space X are the maximal ε-separated sets. A
ε-separated set is a subset S ⊂ X such that d(s1, s2) ≥ ε for all s1, s2 ∈ S. A maximal ε-separated
set is a ε-separated set S such that if S ⊊ S′ ⊂ X, then S′ is not ε-separated. Such a set will
always be a ε-net: if there is some x ∈ X with d(x, s) > ε for all s ∈ S, then S ∪ {x} will be
ε-separated, contradicting the maximally.

Assuming Zorn’s Lemma, all metric spaces have such a set: The set P of all ε-separated sets
of X is a partially ordered set under inclusion. If P ′ ⊂ P is totally ordered subset, then the union
of all elements of P ′ will be an upper bound to P ′ with respect to inclusion while remaining a
ε-separated set.

Remark 2.11. Compact subsets of a metric space are closed and bounded, while the contrary
implication holds if and only if the space is proper.

A technique of manipulating sequences in totally bounded spaces that will come up later is
employed in the proof of the following Proposition:

Proposition 2.12. A space X is totally bounded if and only if every sequence admits a Cauchy
subsequence.

Proof. Assume X is totally bounded and let {xn}∞n=1 be any sequence. For all n ∈ {1, 2, . . .}, let
Sn be a finite 1/n-net of X. Note that there is some s1 ∈ S1 such that infinitely many terms of
{xn}∞n=1 are contained in B1(s1), simply because there are infinitely many terms in the sequence
and each Sn is finite (and a net). Let {x1n}∞n=1 be the subsequence of all terms of the original
sequence that are contained in this closed ball.

Inductively, let {xmn }∞n=1 be a subsequence of {xm−1
n }∞n=1 such that all terms are contained in

a ball of radius 1
i centered at some si ∈ Si, for all i ∈ {1, 2, . . . ,m}. Then there are only finitely

many sets B1/m(sm)∩B1/m+1(s) for s ∈ Sm+1 and one of them must contain infinitely many terms
of {xmn }∞n=1. Construct {xm+1

n }∞n=1 accordingly. The sequence {xnn}∞n=1 is the needed Cauchy
subsequence.1

Conversely let X be a space that is not totally bounded, that is, there is some ε > 0 such
that no finite subset S ⊂ X satisfies Bε(S) = X. Let x1 ∈ X be any point. There must be some

x2 ∈ X \ Bε(x1). Having constructed a finite sequence x1, . . . , xN such that xn /∈
n−1⋃
m=1

Bε(xm),

chose xN+1 similarly. The resulting sequence {xn}∞n=1 cannot contain a Cauchy sequence, since
d(xn, xn+1) > ε. ■

2.1.1 Continuous extension and complete metric spaces

A classic problem of metric topology is to extend a continuous function f : X ′ → Y defined on a
subset X ′ ⊂ X of a metric space into a continuous function f : X → Y defined on the whole space.
This is not always possible: choose your favourite continuous function f : R \ {0} → R such that
lim
x→0

f(x) doesn’t exist. This limit will also fail to exist on any function defined on the entire line

that agrees with f .
Indeed this will characterize the problem of extending continuous functions defined on dense

subsets: a continuous function f : X ′ → Y defined on a dense subsetX ′ ⊂ X will have a continuous
extension on X if and only for all a ∈ X and every sequence {an}∞n=1 such that lim

n→∞
an = a, the

limit lim
n→∞

f(an) exists. This should also show that in this case the continuous extension will be

unique, since limits are unique.

Proposition 2.13. An uniformly continuous function f : X ′ → Y defined on a dense subset
X ′ ⊂ X, taking values on a complete metric space Y can be extended uniquely to a continuous
function f : X → Y . This extension will also be uniformly continuous.

1Here we proved the existence of a sequence of sequences, each having some needed property, and then constructed
a new sequence by taking the first term of the first sequence, the second term of the second sequence, and so on,
resulting in a sequence that has all of the infinitely many needed properties. This is known as the diagonal principle
(or Cantor’s diagonal argument, after Georg Cantor’s proof of the non-countability of the real numbers).
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2.1 Metric spaces 2 SPACES AND THEIR SYMMETRIES

Proof. For every x ∈ X, let {xn}∞n=1 be a sequence of points in X ′ that converges to x. The
sequence {f(xn)}∞n=1 is Cauchy and must have a limit y ∈ Y due to completeness. Define f(x) = y.
Continuity on X holds by construction, while uniqueness follows from the uniqueness of limits.

To show that f is uniformly continuous, choose sequences {an}∞n=1 and {bn}∞n=1 taking values
on X, such that lim

n→∞
d(an, bn) = 0. Each pair an, bn can be seen as the limits of respective

sequences {amn }∞m=1, {bmn }∞m=1, both taking values on X ′. Due to the continuity of the metric, we
have

0 = lim
n→∞

d(an, bn) = lim
n→∞

d( lim
m→∞

amn , lim
m→∞

bmn ) = lim
n→∞

d(ann, b
n
n).

In turn, the uniform continuity of f on X ′ implies

0 = lim
n→∞

d(f(ann), f(b
n
n)) = lim

n→∞
d( lim

m→∞
f(amn ), lim

m→∞
f(bmn )).

Finally, due to the continuity of f on X,

0 = lim
n→∞

d( lim
m→∞

f(amn ), lim
m→∞

f(bmn )) = lim
n→∞

d(f(an), f(bn)).

Thus, we have uniform continuity. ■

In particular we have the following

Corollary 2.14. An isometry f : X ′ → Y ′ between dense subsets X ′ ⊂ X, Y ′ ⊂ Y of metric
spaces X,Y can be extended to a unique continuous function f : X → Y . This extension will also
be an isometry.

Also, by assuming that the domain of f is totally bounded we can weaken the hypothesis of
Proposition 2.13 by using the following result.

Proposition 2.15. Let f : X → Y be a function that takes Cauchy sequences to Cauchy sequences.
If X is totally bounded, then f is uniformly continuous.

Proof. Assume that X is totally bounded but f is not uniformly continuous. There are sequences
{xn}∞n=1 and {x′n}∞n=1 such that lim

n→∞
d(xn, x

′
n) = 0 but for some ε > 0 there are infinitely many

terms of the sequence {d(f(xn), f(x′n))}∞n=1 that are greater than ε. We may pass to a subsequence
and assume that all terms are greater than ε.

Proposition 2.12 tells us that {xn}∞n=1 has a Cauchy subsequence, and we might as well assume
that {xn}∞n=1 is Cauchy. Consider the interwoven sequence {zn}∞n=1 given by (x1, x

′
1, x2, x

′
2, . . .).

Since we have lim
n→∞

d(xn, x
′
n) = 0 it follows that {zn}∞n=1 is also Cauchy. Note that we arrive at a

contradiction if we assume f takes Cauchy sequences to Cauchy sequences, for we have assumed
that the distance between subsequent terms of {f(zn)}∞n=1 is greater than ε. ■

2.1.2 Compact metric spaces

The following facts will prove to be useful:

Lemma 2.16. Let f : X → X be an isometry from a compact metric space into itself. Then it is
necessarily a bijection.

Proof. Injectivity is clear. For surjectivity, suppose there is some x0 ∈ X \ f(X). Since f(X) is
isometric to X, a compact set, it must also be compact (note that isometries preserve the diameters
of sets, which implies that f(X) is bounded. Also, isometries take ε-nets of their domain to ε-nets
of their image, implying that f(X) is totally bounded). Then d(x0, f(X)) = ε is strictly positive
(if it were not, one could build a sequence {yk}∞k=1 of points in f(X) with d(x0, yk) < 1/k. This
would be a Cauchy sequence contained in f(X) that converges in X to x0 instead of a point in
f(X), contradicting completeness). Consider the sequence (xk)

∞
k=1 defined as xk = fk(x0) (that is

the function f applied k times on x0). Let i < j be any natural numbers. We have

d(xi, xj) = d(f i(x0), f
j(x0))

= d(f i(x0), f
i(f j−i(x0)))

= d(x0, f
j−i(x0)) ≥ ε

Therefore we have found a sequence on X with no Cauchy subsequence, contradicting its
compactness. ■

5



2.1 Metric spaces 2 SPACES AND THEIR SYMMETRIES

Proposition 2.17. Let f : X → Y and g : Y → X be isometries between metric spaces. If X is
compact then g is an isometric bijection.2

Proof. The composition g ◦ f is an isometry from a compact metric space into itself and must be
a bijection. Then g is surjective, and so it must be a bijection. ■

2.1.3 The Hausdorff distance

Definition 2.18. Given a metric space (X, d) and two non-empty subsets Y, Z ⊂ X, we define
the (Hausdorff) distance between Y and Z as

dH(Y, Z) = max{sup
a∈Y

d(a, Z), sup
b∈Z

d(b, Y )}.

Here’s an equivalent and perhaps more clarifying definition:

d′H(Y, Z) = inf{r ≥ 0 : Z ⊂ Br(Y ) and Y ⊂ Br(Z)}.

Proposition 2.19. The two definitions above are equivalent

Proof. First note that d′H(Y,Z) can be seen an an infimum of the intersection of two sets, hence

d′H(Y, Z) ≥ max{inf{r ≥ 0 : Z ⊂ Br(Y )}, inf{r > 0 : Y ⊂ Br(Z)}}
We wish to show that inf{r ≥ 0 : Y ⊂ Br(Z)} = supa∈Y d(a, Z). In order to do so, simply note

that

r < d(a, Z) ⇐⇒ a /∈ Br(Z)

That is, {r ≥ 0 : r = d(a, Z) for some a ∈ Y } and {r ≥ 0 : Y ⊂ Br(Z)} are complementary
intervals and thus share a common extremity.

We have shown that d′H(Y, Z) ≥ dH(Y,Z). To show the inverse inequality, let s = dH(Y,Z)+ ε
for some ε > 0. That is, for each a ∈ Y and b ∈ Z we have d(a, Z) ≤ s and d(b, Y ) ≤ s. Then

s ∈ {r ≥ 0 : Z ⊂ Br(Y ) and Y ⊂ Br(Z)}. If we set ε =
d′
H(Y,Z)−dH(Y,Z)

2 , assuming it is a positive
number, we would arrive at the following contradiction:

s = dH(Y, Z) +
d′H(Y, Z)− dH(Y,Z)

2
=
d′H(Y,Z) + dH(Y, Z)

2
<
d′H(Y,Z) + d′H(Y,Z)

2

■

The second definition is useful because it allows us to easily show that the Hausdorff distance
is a (potentially infinite) pseudometric. It is clearly symmetric and non-negative, leaving us with
the task of proving the triangle inequality.

Proposition 2.20. For any Y,Z,C subsets of X we have

dH(Y,C) ≤ dH(Y,Z) + dH(Z,C)

Proof. First, note that r-neighbourhoods display a similar property:

Br(Bs(Y )) ⊂ Br+s(Y )

The first set is the collection of points x ∈ X such that d(x, x′) ≤ r for some x′ ∈ Bs(Y ),
which in turn satisfies d(x′, a) ≤ s for some a ∈ Y . Thus d(x, a) ≤ d(x, x′) + d(x′, a) ≤ r + s and
x ∈ Br+s(Y ).

Thus we can apply this observation to the second definition of the Hausdorff distance. Let
r = dH(Y,Z)+ε and s = dH(Z,C)+ε. By definition we have Z ⊂ Br(Y ), Y ⊂ Br(Z), C ⊂ Bs(Z)
and Z ⊂ Bs(C).

By combining Y ⊂ Br(Z) and Z ⊂ Bs(C) we have Y ⊂ Br(Bs(C)) ⊂ Br+s(C). Analogously
we obtain C ⊂ Bs(Br(Y )) ⊂ Bs+r(Y ). Thus, dH(Y,C) ≤ dH(Y, Z) + dH(Z,C) + 2ε for arbitrary
ε. ■

2This is a neat metric analogue of the Schröder–Bernstein Theorem for sets, the principle that states that if A
and B are sets and there are injective functions A → B and B → A, then there must be a bijection between A and B.
Proposition 2.17 is not true if we do not require X to be compact: Consider the inclusion f : [0, 1]∪ [2,∞) → [0,∞)
and g : [0,∞) → [0, 1] ∪ [2,∞) given by g(x) = x+ 2, which are isometries.
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2.1 Metric spaces 2 SPACES AND THEIR SYMMETRIES

Two similar curves in the plane. The width of the blue and red bands gives an estimate of the
Hausdorff distance between the curves.

It may not come as a surprise that the Hausdorff metric behaves even better when restricted
to closed and bounded sets, compacts in particular:

• For any bounded subsets Y, Z ⊂ X the distance dH(Y,Z) must always be finite: The value of
supa∈Y d(a, Z) = supa∈Y infb∈Z d(a, b) is bounded above by supa∈Y,b∈Z d(a, b). By fixing any
a′ ∈ Y and b′ ∈ Z, we get d(a, b) < d(a, a′)+d(a′, b′)+d(b′, b) < diam(Y )+d(a′, b′)+diam(Z).

• For any subset Y ⊂ X we must have dH(Y, Y ) = 0: for any, we have a ∈ Y d(a, Y ) = 0,
since a ∈ Y . Also, by definition, d(a′, Y ) = 0 for any a′ ∈ Y .

• Any closed subsets Y,Z ⊂ with dH(Y,Z) = 0 are equal. For, assuming Y ̸⊂ Z, there must
be a ∈ Y such that d(a, Z) > 0 (Otherwise, a ∈ Z). Since d(Y,Z) ≥ d(a, Z), we arrive at a
contradiction.

Thus we then have the Hausdorff Space of a metric space:

Theorem 2.21. The set of all closed and bounded subsets of a metric space is a metric space with
respect to the Hausdorff metric.

2.1.4 Measures and dimension

We wish to generalize the notions of lengths, areas and volumes to general metric spaces. A
difficulty lies in the fact that whatever generalization we choose will be deeply tied to the concept of
dimension. To see that, recall the usual definition of the length of a curve in R2, by approximating a
curve by polygonal paths, whose length we can calculate directly. The approximate length obtained
this way increases (more accurately, is non-decreasing) as we choose finer and finer approximations
and, for nice enough curves, approaches a limit, which we call its length.

Alternatively, we could achieve the same result by covering the curve by disks. Assuming that
a given approximation of the curve by a polygonal path is fine enough, the section of the curve
contained between any two adjacent vertices of the polygon will be entirely contained within the
disk that has the corresponding edge as its diameter. Then by adding the diameters of all the disks
we recover the estimate for the length. We obtain progressively better approximations by covering
the curve by disks of progressively smaller radii, which is analogous to choosing finer polygonal
approximations. This is something we could easily generalize to metric spaces.

7
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Consider, though, what would happen once we attempted to measure the length of an open
region of the plane of area A using this method: Since the area of a disk of diameter D is pro-
portional to D2, the minimum number N of disks with diameter not greater then D required to
cover the region will be bounded below by a multiple of A

D2 . Adding the diameters of the N disks

we get something that grows at least as quickly as N ·D ≥ A
D2 ·D = A

D when D approaches zero.
That is, the one dimensional size of an open region of the plane is always infinite.

This does gives us a clue as to how to put areas in terms of covers and diameters: Instead of
adding the diameters of all the disks we might want to add something proportional to the square
of each diameter, assuring that the total sum does not increase asymptotically when D → 0. Note
that the same argument as above shows that if we define areas in this way, curves that have positive
lengths will have no area.

Definition 2.22. Let X be a metric space and α a non-negative real number. We define an
auxiliary quantity

Hα
δ (X) = inf

{ ∞∑
i=1

[diam(Si)]
α

: X =

∞⋃
i=1

Si, diam(Si) ≤ δ

}
Where we use the non-standard conventions that 00 = 1 (for when α = 0 and each diam(Si) = 0)

and that inf ∅ = ∞ (for when X admits no appropriate countable cover). We allow Hα
δ to take

values on the extended number line R ∪ {∞} or [0,∞].
We define the α-dimensional measure of X as

Hα(X) = lim
δ→0

Hα
δ (X),

where again we allow the limit to assume the value ∞.

Remark 2.23. The α-dimensional measure of any subset S of a metric space X is not greater than

the α-dimensional measure of X, for if X =
∞⋃
i=1

Si and diam(Si) ≤ δ, then S =
∞⋃
i=1

(Si ∩ S) and

diam(Si ∩ S) ≤ δ.

Remark 2.24. The α-dimensional measure of two isometric spaces is equal for all α ≥ 0. Indeed,

if f : X → Y is an isometry, then X =
∞⋃
i=1

Si and diam(Si) ≤ δ if and only if Y =
∞⋃
i=1

f(Si)

and diam(f(Si)) ≤ δ, which implies Hα
δ (X) ≥ Hα

δ (Y ) and thus Hα(X) ≥ Hα(Y ). The opposite
inequality follows from symmetry.

Remark 2.25. If X =
∞⋃
j=1

Xj , then Hα(X) ≤
∞∑
j=1

Hα(Xj). For, if each Xj =
∞⋃
i=1

Si,j with each

diam(Si,j) ≤ δ, then X =
∞⋃
i=1

∞⋃
j=1

Si, which implies Hα
δ (X) ≤

∞∑
j=1

Hα
δ (Xj).

Note that we had no particular reason to restrict α to be an integer. In fact, many interesting
spaces have a positive α-dimensional measure for fractional α.

Example 2.26. Consider the Cantor set: define C0 = [0, 1] ⊂ R and Cn = 1/3Cn−1∪ (2/3+ 1/3Cn−1)

for all n ∈ {1, 2, . . .}. The Cantor set is defined as the intersection C =
∞⋂

n=0
Cn. Note that each Cn

is composed of 2n intervals of length 1/3n, which forms a finite cover of C. Thus, Hα
1/3n(C) ≤

(
2
3α

)n
for all n ∈ {0, 1, . . .}, which implies that Hα(C) = 0 for all α > log3(2).

We now formalize the discussion in the beginning of this subsection about curves having no
area and open regions of the plane have infinite length:
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Proposition 2.27. Let X be a metric space. There is a unique number d ∈ [0,∞] such that
Hα(X) = ∞ for all α < d and Hα(X) = 0 for all α > d.

Proof. The set {α ∈ [0,∞) : Hα(X) ̸= ∞} is bounded below so it has an infimum d ∈ [0,∞]
(since we have set inf ∅ = ∞). Of course, Hα(X) = ∞ for all α < d. If d = ∞, we are done.
Otherwise, let α > d. By the definition of inf, there is some β ∈ (d, α) such that Hβ(X) =M ̸= ∞.

Let ε > 0. By the definition of Hβ , there is some δ0 > 0 such that for all δ ∈ (0, δ0) we have

Hβ
δ (X) < M + ε. By the definition of Hβ

δ , there is some cover {Si}∞i=1 of X with diam(Si) < δ
such that

∞∑
i=1

[diam(Si)]
β
< Hβ

δ (X) + ε < M + 2ε

By considering that β < α, we can see that:

∞∑
i=1

[diam(Si)]
β ≤

∞∑
i=1

[diam(Si)]
α
=

∞∑
i=1

[diam(Si)]
β
[diam(Si)]

α−β

<

∞∑
i=1

[diam(Si)]
β
δα−β

= δα−β
∞∑
i=1

[diam(Si)]
β

< δα−β(M + 2ε)

Since both ε and δ are arbitrary (δ only needs to be in (0, δ0)) the cover can be chosen such
that this sum becomes arbitrarily small. Thus Hβ(X) = 0. ■

We can then unequivocally define the dimension of any metric space:

Definition 2.28. Let X be a metric space. The number d from Proposition 2.27 is called the
Hausdorff dimension of X, or dim(X).

Example 2.29. The Hausdorff dimension of n-dimensional Euclidean space is n (even for R0, if we
define it as a one point space).

Example 2.30. Example 2.26 shows that the Hausdorff dimension of the Cantor set is not greater
than log3(2). It is possible show that it is precisely log3(2).

These are fundamental properties of the dimension:

Remark 2.31. Let X be a metric space and let {Si}∞i=1 be a cover of X by subsets. We have

dim(X) = sup{dim(Si) : i ∈ {1, 2, . . .}}

Indeed, from Remark 2.25, we know that

dim(X) = sup{α ≥ 0 : Hα(X) = 0} ≤ sup{dim(Si) : i ∈ {1, 2, . . .}}

But Remark 2.23 implies that dim(X) ≥ dim(Si).

Remark 2.32. Isometric metric spaces have the same dimension, which follows directly from the
definition and from Remark 2.24.

Corollary 2.33. Let X be a homogeneous, separable metric space. Suppose there is an open set
U ⊂ X such that dim(U) = d. Then dim(X) = d.

Proof. Let B ⊂ U be an open ball of radius ε centered at some x ∈ U . Let {xi}∞i=1 a countable and
dense subset of X. There is a family of isometries fi : X → X such that fi(x) = xi. The sets fi(U)
all have the same dimension, by Remark 2.32, and cover all of X, since each one of them contains
a ball of radius ε centered around some xi, and thus the result follows from Remark 2.31. ■
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2.2 Topological spaces 2 SPACES AND THEIR SYMMETRIES

2.2 Topological spaces

Let us discuss open and closed subsets of metric spaces. Open subsets have the familiar properties
of open subsets of R: The intersection of two open subsets is again open and the union of any
family of open subsets is again open. The empty set and the entire metric space are both open.

Also similarly to subsets of the line, the complement of a subset is open if and only if the subset
is closed. Note that by De Morgan’s laws we infer that the intersection of any family of closed
subsets is closed and the union of two closed subsets is closed. These are the features of metric
spaces that we generalize into topological spaces:

Definition 2.34. Let X be any set. A set τ of subsets of X is called a topology on X if it satisfies
the following set identities:

1. The empty set and X are in τ .

2. Any union of elements of τ is in τ .

3. The intersection of two elements of τ is in τ .

In such case the pair (X, τ) is called a topological space and an element of τ is called an open
subset of X with respect to this topology. The complement of any open subset is called a closed
subset.

Of course, metric spaces are topological spaces and the two definitions of closed and open sets
are consistent.

Example 2.35. The set of all open sets of a metric space forms a topology.

Example 2.36. Let X be any set. We may always endow it with a topology, known as the discrete
topology. Let τ be the set of all subsets of X (equivalently, let τ be the topology on X such that
all unitary sets be open). Also equivalently, this is the topology induced on X by the metric

d(a, b) =

{
1 if a ̸= b

0 if a = b.

Example 2.37. Let (X, τ) be a topological space. Any subset S ⊂ X can be made a topological
space, endowed with the topology {A ∩ S : A ∈ τ}, known as the subspace topology or the
induced topology. Whenever we refer to some subset of a topological space, it may be assumed
that it carries the subspace topology.

Below are some basic definitions regarding topological spaces we are going to need:

Definition 2.38. In what follows (X, τ) and (Y, υ) are topological spaces.

1. The closure S of a subset S ⊂ X is the intersection of all closed subsets of X that contain
X (for metric spaces, this is equivalent to the definition given previously).

2. A subset S ⊂ X is called dense in X if S = X.

3. A function f : X → Y is continuous w.r.t. τ and υ if for all S ∈ υ we have f−1(S) ∈ τ . For
topological spaces that are metric, this is equivalent to the definition given before.

4. A continuous function f : X → Y is a homeomorphism if it is a bijection and its inverse
f−1 : Y → X is continuous. In this case X and Y are homeomorphic to each other (this is
an equivalence relation).

5. If a property of a topological space is shared by all topological spaces homeomorphic to it, we
call this property a topological property, or a topological invariant. Properties 6 to 12 below
are all examples of topological invariants.

6. The minimal cardinal number c such that X admits a dense subset with cardinality c is called
the density of X. A topological space is called separable if it has the density #N, i.e., has a
countable, dense subset.

7. We say that (X, τ) is a Hausdorff space if for all a, b ∈ X there are two disjoint open sets
A,B ∈ τ such that a ∈ B and b ∈ B (note that every metric space is Hausdorff).
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8. A topological space is called connected if it has exactly two subsets that are both open and
closed: The empty set and the entire space. The maximal (w.r.t. inclusion) connected subsets
of a topological space are called its connected components

9. X is called path connected if for all a, b ∈ X there is a continuous function f : [0, 1] → X
(where [0, 1] is given the usual metric topology as a subset of R) such that f(0) = a and
f(1) = b.

10. X is called locally connected (resp. locally path connected) if for all a ∈ X and open set
A ⊂ X, there is an open set B ⊂ A such that x ∈ B and B is connected (resp. path
connected).

11. X is called compact if for all families {Aλ}λ∈L with each Aλ ∈ τ and X =
⋃

λ∈L

Aλ we have a

finite subset L′ ⊂ L with X =
⋃

λ∈L′
Aλ. For metric spaces, this is equivalent to the previous

definition.

12. X is called locally compact if for all a ∈ X there is an open subset A ⊂ X and compact
subset K ⊂ X with a ∈ A ⊂ K.

Example 2.39. Let X be any set. On the opposite direction to Example 2.36, we may give it the
set {∅, X} as a topology. This is very much not a Hausdorff space, since all points belong to the
same open set and to none other. This is the only example we will give of a topology that does
not come from an underlying metric.

Often a topology on a set is not defined directly, but from a special collection of open sets
called a basis:

Definition 2.40. Let (X, τ) be a topological space. A subset B ⊂ τ is called a basis for this
topology if it satisfies

1. Every element of X belongs to an element of B.

2. For every B1, B2 ∈ B and a ∈ B1 ∩B2 there is some B3 ∈ B such that a ∈ B3 ⊂ B1 ∩B2.

Conversely, if X is any set and B is a set of subset of X satisfying 1. and 2., then the set of all
subset of X that can be built from an union of elements of B is a topology and is called the topology
generated by B. In this case, B is a basis for this topology.

The minimum cardinal number c such that a topological space (X, τ) admits a basis of cardi-
nality c is called its weight. A topological space is called second countable if its weight is #N, i.e.,
if it has a countable basis.

Bases themselves are often not constructed directly but formed from smaller sets called sub-
bases. A subbasis S of (X, τ) is any subset of τ such that the set of all finite intersections of
elements of S is a basis for X. If X is any set and S is a collection of its subsets we can con-
struct the minimal topology on X that contains S as the collection of all arbitrary unions of finite
intersections of elements of S. Then S is a subbasis of this topology, which we call the topology
generated by S.

Since homeomorphisms take bases of a topological space to bases of the image, the weight is also
a topological invariant. Second countability is (assuming the axiom of choice) a stronger property
than separability: Take a countable basis and from each set in the basis take one element, making
a countable set of points. Given some point in the second countable space and open set containing
it, there is a basis element containing the point and contained in the open set. Thus one of the
countably many points chosen will intersect the open set.

Example 2.41. LetX be any set, {(Yλ, υλ)} be a family of topological spaces and {fλ : X → Yλ}λ∈L

be a family of functions. In order to fλ to be continuous with respect to some topology τ on X
it is necessary that f−1

λ (B) ∈ τ for all B ∈ υλ. We may endow X with the topology generated by
the set

{f−1
λ (B) : λ ∈ L, B ∈ υλ}

This is called the initial or coarsest topology on X with respect to. {fλ}λ∈L. It is the minimal
topology (w.r.t. inclusion) that makes each fλ continuous.
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Example 2.42. Let {Xλ}λ∈L be a family of topological spaces. The topology usually given to
the Cartesian product X =

∏
λ∈L

Xλ (i.e., to the set of all functions f : L →
⋃

λ∈L

Xλ satisfying

f(λ) ∈ Xλ) is the initial topology w.r.t. to all of the projection maps πλ : X → Xλ defined as
πλ(f) = f(λ). This is called the product topology.

Note that if {Aλ}λ∈L is a collection such that each Aλ is an open subset of Xλ and Aλ = Xλ

for all but finitely many λ ∈ L, then
∏
λ∈L

Aλ is an open subset of X (in fact, subsets of this kind

form a basis for the product topology).

Example 2.43. If {Xn}∞n=1 is a countable collection of second countable spaces, each with a count-

able basis Bn, then the set of all products A1 × . . . × AN ×
∞∏

n=N+1

Xn with each An ∈ Bn is

a countable basis for
∞∏

n=1
Xn. This countable products of second countable spaces are second

countable.

Example 2.44. If each space in {Xλ}λ∈L is a Hausdorff space, then so is X =
∏
λ∈L

Xλ. Given

distinct f1, f2 ∈ X, we have by definition f1(λ
′) ̸= f2(λ

′) for some λ′ ∈ L. We take distinct
open sets Aλ′ , Bλ′ ⊂ Xλ, respectively containing f1(λ

′) and f2(λ
′) and note that the subsets

Aλ ×
∏

λ∈L\{λ′}
Xλ and Aλ ×

∏
λ∈L\{λ′}

Xλ are open, distinct and contain f1 and f2, respectively.

The product topology described above behaves as expected for finite families of topological
spaces. The topological product of two metric spaces has the same topology as the metric prod-
uct described previously. A property of the product topology that we can not neglect (for it
characterizes it) is the following:

Proposition 2.45. Let X =
∏
λ∈L

Xλ be a product of topological spaces and and {fλ}λ∈L be a family

of continuous functions fλ : Y → Xλ for some fixed topological space Y . Then there is exactly one
continuous function f : Y → X such that πλ ◦f = fλ (where πλ : X → Xλ are the projections). In
particular, a function f : Y → X is continuous if and only if each πλ ◦ f : Y → Xλ is continuous.

Proof. There is only one way to define f : As the the function f : Y → X such that f(b)(λ) = fλ(b)
for all b ∈ Y . We must show that it is continuous. We know that X has a basis composed by all
products A =

∏
λ∈L

Aλ, with all Aλ ⊂ Xλ open and only finitely many of them satisfying Aλ ⊊ Xλ.

It then suffices to show that if each Bλ = f−1
λ (Aλ) ⊂ Y is open, then B = f−1(A) must also be

open. The set B is composed of all of the elements b ∈ Y such that fλ(b) ∈ Bλ. Thus B =
⋂

λ∈L

Bλ.

Since we have Bλ = Y for all but finitely many λ ∈ L, we have that B is a finite union of open
subsets of Y and therefore it is itself open. ■

2.2.1 Manifolds

The Euclidean spaces Rn are very nice. They are metric spaces and thus Hausdorff spaces. They
have a countable dense set, namely Qn. They are second countable, as one can check that the set
of all open balls with rational radii and centered at an element of Qn is a basis for its topology.
They are connected and locally path connected. The following class of spaces tries to be very
general, while maintaining these and other nice properties of Rn:

Definition 2.46. A topological space X is called a n-dimensional topological manifold if it is a
second countable Hausdorff space such that every point x ∈ X is contained in some open subset
of X that is homeomorphic to an open subset of Rn.

One usually writes “let Xn be a topological manifold” as short for “let X be a n-dimensional
topological manifold”, even though this convention is a bit confusing.

Proposition 2.47. Let Xm
1 , X

n
2 be two topological manifolds. Then X1 × X2 is a (m + n)-

dimensional topological manifold. If m = n, then X1 ⊔X2 is a n-dimensional topological manifold.

Proof. The product and disjoint union are both Hausdorff and second countable spaces (see Ex-
amples 2.44 and 2.43). If (a, b) ∈ X1 × X2, take U1 ⊂ X1 and and U2 ⊂ X2, open sets that
contain a and b, respectively, and let ϕ1 : U1 → V1 and ϕ2 : U2 → V2 be homeomorphisms with
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V1 ⊂ Rm and V2 ⊂ Rn both open. As we have seen, the product U1 × U2 is open and contains
(a, b) and V1 × V2 ⊂ Rm+n is also open. The function ϕ1 × ϕ2 : U1 × U2 → V1 × V2, defined as
(x1, x2) 7→ (ϕ1(x1), ϕ2(x2)) is the needed homeomorphism.

For the disjoint union it is simpler: Let a ∈ X1⊔X2. We may assume without loss of generality
that a ∈ X1. Then an open set in X1 containing a that is homeomorphic to a subset of Rn is also
homeomorphic to a corresponding open subset of X1 ∪X2 containing a. ■

The definition above is often put in terms of charts and atlases. If X is a n-dimensional
topological manifold and a ∈ X, then there is some open set U ⊂ X containing x, some open
set V ⊂ Rn and some homeomorphism ϕ : U → V . Then ϕ is called a coordinate chart, or a
local coordinate system. The definition really asks for a collection of charts {(Uλ, ϕλ)λ∈L such that
X =

⋃
λ∈L

Uλ. Such collection is called an atlas.

A chart is simply a way to endow each point in U a set of real coordinates, allowing one to
treat this open set as if it where a subset of Rn. The catch is that, unless a single chart covers the
entire manifold, a particular coordinate system surrounding a point can only be used in its domain.
Besides, a single point will typically be contained in the domains of several charts and thus it will
have many representations through coordinates. This leads to the importance of studying change
of coordinates functions.

If ϕ1 : U1 → V1 and ϕ2 : U2 → V2 are two charts and a ∈ U1 ∩ U2 ̸= ∅, the following functions
allow us to go back and forth between the two systems of coordinates:

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2)

ϕ1 ◦ ϕ−1
2 : ϕ2(U2 ∩ U1) → ϕ1(U2 ∩ U1)

These are of course homeomorphisms and are called change of coordinate functions. Further
restrictions can be added to Definition 2.46 by requiring that these functions are as nice as one
would like.

Definition 2.48. Let (X, τ) be a n-dimensional topological manifold. An atlas A = {(Uλ, ϕλ)λ∈L

on X is called smooth if all of its change of coordinates functions are smooth (as in C∞ functions
between open subsets of Rn).

Two smooth atlases A and B on X are called compatible if A ∪ B is again smooth. This is
an equivalence relation on the class of all smooth atlases of X. A particular equivalence class A
with respect to this relation is called a smooth structure on X. We then call the triple (X, τ,A) a
smooth manifold.

If (X, τ,A) and (Y, υ,B) are two smooth manifolds, we say that a function f : X → Y is smooth
at some point a ∈ X if for some (U1, ϕ) ∈ A and (U2, ψ) ∈ B with a ∈ U1 and f(a) ∈ U2 and
f(U1) ⊂ U2 we have that ψ ◦ f ◦ ϕ−1 : ϕ(U1) → ψ(U2) is smooth. We say that f is smooth if it
is smooth at every a ∈ X. Furthermore, f is called a diffeomorphism if it is a bijection and its
inverse is smooth. Then X and Y are said to diffeomorphic smooth manifolds.

2.3 Groups and actions

Definition 2.49. A group structure on a set G is an ordered pair (G, ·), where · : G×G → G is
a function (evaluated as g1 · g2) that satisfies the following properties

1. (g1 · g2) · g3 = g1 · (g2 · g3) for all g1, g2, g3 ∈ G (associativity);

2. There exists e ∈ G such that e · g = g and g · e = g for all g ∈ G (existence of an identity);

3. For all g ∈ G there is some g−1 ∈ G such that g · g−1 = g−1 · g = e (existence of an inverse).

The function · is called the group operation. When the operation is implicit we often call the
set G itself a group. When two groups are being dealt with simultaneously it is common to use the
same symbol for the operation of both groups. It is also common to omit the symbol completely,
writing a · b as ab.

Here are some essential definitions:

Definition 2.50.

13
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1. A function f : G→ H between groups is a group homomorphism when it preserves the group
operation, i.e.,

f(g1 · g2) = f(g1) · f(g2)

Note that homomorphisms can be deduced to take the identity of G to the identity of H.

2. A group homomorphism is called a group isomorphism when it is bijective.

3. A subset H ⊂ G is a subgroup when the restriction of the group operation to H ×H turns
H into a group. Then the inclusion i : H → G is a group homomorphism.

4. If f : G→ H is a homomorphism and eH ∈ H is the identity, then the set f−1(eH) is known
as the kernel of f , or ker f . This is a subgroup of G.

5. A subgroupN ⊂ G is normal if there is some homomorphism f : G→ H such thatN = ker f .

6. The subgroup of G generated by a subset S ⊂ G (denoted ⟨S⟩) is the minimal subgroup of G
with respect to inclusion that contains S. Equivalently, this subgroup consists of all elements
of G that can be written as a finite string s1 · . . . · sn of elements of S and their inverses.

7. A group G is called finitely generated when G = ⟨S⟩ for some finite subset S ⊂ G. A group
is called cyclic if it can be generated by a unitary set.

8. Let H ⊂ G be a subgroup. A left coset of H in G is given for a fixed g ∈ G, defined as
Hg = {hg : h ∈ H}. The corresponding right coset is defined as gH = {gh : h ∈ H}. A
subgroup H is normal if and only if gH = Hg for all g ∈ G.

9. Let H ⊂ G be a subgroup. The cardinality of the set G/H = {Hg : g ∈ G} is called the
index of H in G. It is denoted |G : H|.

10. IfH is normal, we can give G/H a group structure with the operationH(g1)·H(g2) = H(g1g2).
The function π : G→ G/H given by g 7→ Hg is then a surjective group homomorphism, known
as the quotient map, and H is its kernel.

11. The set Z(G) = {z ∈ G : zg = gz ∀g ∈ G} is known as the center of the group. This
is a normal subgroup of G. Note that Z(G) = G if and only if the group operation is
commutative. In this case we say that G is an abelian group.

12. Let g1, g2 ∈ G. The element [g1, g2] = g−1
1 g−1

2 g1g2 is known as the commutator of g1 and g2.
If H1, H2 ⊂ G are two subgroups, their commutator subgroup [H1, H2] ⊂ G is the subgroup
generated by the commutators [g1, g2] with g1 ∈ H1 and g2 ∈ H2. In particular, [G,G]
is called the commutator subgroup of G, and it its always normal. The quotient group
Gab = G

[G,G] is known as the abelianization of G.

13. The derived series of G is the sequence of subgroups {G(i)}∞i=0 with G(0) = G and G(i+1) =
[G(i), G(i)]. A group is called solvable if it has a derived series with G(i) = {e} for all i greater
than some N .

14. The lower central series of G is the sequence of subgroups {Gi}∞i=0 with G0 = G and Gi+1 =
[Gi, G]. A group is called nilpotent if it has a lower central series with Gi = {e} for all i
greater than some N . All nilpotent groups are solvable and all abelian groups are nilpotent.

Example 2.51. The integers Z form a group under addition. All of its subgroups are in the form
nZ = ⟨{n}⟩ for some n ∈ Z, i.e., the set of all multiples of n. The quotients Z

nZ are, up to

isomorphism, all of the cyclic groups (note that Z is isomorphic to Z
0Z ).

Example 2.52. Let S be any set and let e /∈ S some element not in S. Let W (S) be the set of all
functions f : N → (S ∪ {e}) × {1,−1} that satisfy f(n) = (e, 1) for all but finitely many n ∈ N.
One could picture the elements of W (S) as strings f = sε1λ1

sε2λ2
. . . sεkλk

with each sλi
∈ S ∪ {e} and

εi ∈ {1,−1} (that is, f(n) = (sλn
, εn) if n ∈ {1, . . . , k} and f(n) = (e, 1) otherwise).

Define an equivalence relation of W (S) by equating strings that should be equal according to
the group axioms by taking e to be the identity:

sε1λ1
. . . sεiλi

e1s
εi+1

λi+1
. . . sεkλk

= sε1λ1
. . . sεiλi

e−1s
εi+1

λi+1
. . . sεkλk

= sε1λ1
. . . sεiλi

s
εi+1

λi+1
. . . sεkλk

14
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sε1λ1
. . . s

εi−1

λi−1
sεiλi

s−εi
λi

s
εi+2

λi+2
. . . sεkλk

= sε1λ1
. . . s

εi−1

λi−1
e1s

εi+2

λi+2
. . . sεkλk

The quotient set F (S) is then a group under the operation of concatenation of strings. We call this
group the free group over S, or the group of words with letters in S. A group that is isomorphic
to a free group over some set is also called a free group.

The group of integers is free, as it is isomorphic to a free group over a set with one element.
Up to isomorphism, this is the only free, abelian group.

We may identify S with strings with only one letter (different from the identity) and under this
identification we have F (S) = ⟨S⟩.
Example 2.53. Let X be a set. The group Sym(X) of all bijections f : X → X is a group under
composition, which is known as the group of permutations, or the symmetric group. When X
has additional structure, some particular subgroups of the group of permutations become very
important:

• When X is a metric space, the subset of Sym(X) consisting of all bijective isometries is a
subgroup.

• When X is a topological space, the subset of Sym(X) consisting of all homeomorphisms is a
subgroup.

• When X is a smooth manifold, the subset of Sym(X) consisting of all diffeomorphisms is a
subgroup.

• When X is a group, the subset of Sym(X) consisting of all isomorphisms is a subgroup.
These are known as automorphisms groups.

Definition 2.54. Let X be a set and let H ⊂ Sym(X) be some subgroup of the group of permu-
tations. An action of a group G on X is a group homomorphism f : G→ H. We may think of an
action as a way to multiply an element of the group by an element of the set, often writing g · a
instead of f(g)(a) when g ∈ G and a ∈ X.

We say that two elements a, b ∈ X share the same orbit with respect to f when there is some
g ∈ G with g · a = b. This is an equivalence relation on X and we then call OG(a), the equivalence
class of a ∈ X, the orbit of a. The set of all equivalence classes X/G the orbit space of X with
respect to f .

We say that an element g ∈ G stabilizes a ∈ X if g ·a = a. The set Ga ⊂ G of all such elements
is called the stabilizer of a, and it is a subgroup of G.

We say that the action f : G → H is transitive if for all a, b ∈ X there is some g ∈ G such
that g · a = b. Note that the orbit space is not very interesting in this case: There is only one
equivalence class.

An action f : G→ H is called faithful if it is injective.

Remark 2.55. Let f be an action of a group G on a set X. For all a ∈ X, there is a natural
bijection between Oa(G) and the set G/Ga (which is not necessarily a group, as Ga is often not
normal). The map ϕ : G → Oa(G) given by g 7→ g · a is not injective in general, but we can
characterize its fibers:

g1 · a = g2 · a ⇐⇒ (g−1
2 g1) · a = a ⇐⇒ g−1

2 g2 ∈ Ga

That is, the partition of G in fibers with respect with ϕ is the same as the partition of G in cosets
of Ga, which means the induced map G/Ga → Oa(G) is a bijection. In particular, the orbit of an
element of X is finite if and only if its stabilizer is a subgroup of finite index in G.

Example 2.56. Let G be a group and H ⊂ G be a subgroup. Let Aut(G) be the group of all
isomorphisms G→ G. The function H → Aut(G) that takes an element of H to the isomorphism
g 7→ hg is an action. The orbit space G/H is the same as the set of left cosets defined previously.
This is an example of an orbit space that inherits a structure from the original space (as long as
H is normal).

Example 2.57. Let G be a group. The action G → Aut(G) that takes an element of g ∈ G to the
automorphism g′ 7→ gg′g−1 is known as conjugation action. It’s kernel is precisely the center of G.
For all g′ ∈ G, its orbit is known in this case as its conjugacy class. Its stabilizer, known as the
centralizer of g′, consists of all g ∈ G such that gg′g−1 = g′, or equivalently, gg′ = g′g: It is the
group of all elements of G that commute with g′.
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Example 2.58. We have defined a metric space X as being homogeneous if for all a, b ∈ X there is
an isometry f : X → X such that f(a) = b. This is precisely the same as saying that the group of
bijective isometries of X acts transitively on the space.

Definition 2.59. Let {Gi}ni=1 be a finite family of groups. A group structure usually given to the
Cartesian product G1 × . . .×Gn is defined by just applying the group operations entrywise:

(g1, . . . , gn) · (g′1, . . . , g′n) := (g1 · g′1, . . . , gn · g′n)

When each of the groups Gi is abelian, the product is often denoted G1 ⊕ . . .⊕Gn and called the
direct sum of the family.

Note that each of the projections πi : G1 × . . . × Gn → Gi defined as (g1, . . . , gn) 7→ gi is a
surjective group homomorphism.

The following results concerning finitely generated groups will be necessary later. In what
follows, the greatest common divisor of a finite set of integers S = {m1, . . . ,mn} is, among all
nonnegative common divisors of all elements of S, the greatest with respect to the partial order of
divisibility, denoted gcd(m1, . . . ,mn). This means, for instance, that gcd(0, . . . , 0) = 0, since zero
is greater than all nonnegative integers with respect to divisibility.

Lemma 2.60. Let G be a finitely generated abelian group with a generating set {s1, . . . , sn}. For
every element in the form m1s1 + . . .mnsn with each mi ∈ {0, 1, . . .} (where misi is just si added
to itself mi times and 0si is the identity), there is a generating set {r1, . . . , rn} with

m1s1 + . . .+mnsn = r1gcd(m1, . . . ,mn)

Proof. Ifm1+. . .+mn = 0 we have 0s1+. . .+0sn = e = s1gcd(0, . . . , 0) and we are done. Otherwise
we may assume that gcd(m1, . . . ,mn) = 1. Let us argue by induction on m = m1 + . . . +mn. If
m = 1 we have m1s1 + . . .misi = ri for some i ∈ {1, . . . , n}, so we obtain the next generating set
by reordering the current.

If m > 1 we have at least two of {m1, . . . ,mn} different from zero. Without loss of generality,
m1 ≥ m2 > 0.

Note that the set {s1, s1 + s2, s3, . . . , sn} generates G. A little number theory shows that

gcd(m1 −m2,m2,m3, . . . ,mn) = gcd(m1,m2,m3, . . . ,mn) = 1.

Also note that

(m1 −m2) +m2 +m3 + . . .mn = m1 +m3 + . . .+mn < m.

Thus we are allowed to use the inductive hypothesis on the generating set {s1, s1 + s2, s3, . . . , sn}
and the natural numbers {m1 −m2,m2,m3, . . . ,mn}. But we also have

(m1 −m2)s1 +m2(s1 + s2) +m3s3 + . . .+mnsn = m1s1 + . . .+mnsn

■

Proposition 2.61. Every finitely generated abelian group is isomorphic to a direct sum of finitely
many cyclic groups.

Proof. First we note that the existence of such isomorphism is equivalent to the existence of a
generating set {s1, . . . , sn} ⊂ G such that for every sequence m1, . . .mn ∈ Z we have

m1s1 + . . .+mnsn = 0 =⇒ m1 = . . .mn = 0,

where again the multiplication of si ∈ G by mi ∈ Z simply means adding si to itself mi times if
mi is positive or adding −s1 to itself mi times otherwise. Now we argue by induction: For every
finitely generated group there is some n ∈ {1, 2, . . .} that is the minimum possible cardinality of
a generating set (by the well-ordering principle). Note that if n = 1 the group is itself cyclic and
thus the first inductive step is complete. Furthermore, among all members of all of the generating
sets with n elements, there is some s ∈ G such that the cardinality of ⟨{s}⟩ is minimal. We may
assume that we are working with a generating set {s1, . . . , sn} with s1 = s.
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By the inductive hypothesis we have that G1 = ⟨{s1}⟩ and G2 = ⟨{s2, . . . , sn}⟩ are both
isomorphic to a direct sum of cyclic groups. We wish then to show that G is isomorphic to
G1 ⊕ G2. Suppose not. Then there is a sequence m1s1 +m2s2 + . . . +mnsn = 0 with m1s1 ̸= 0
or m2s2 + . . . + mnsn ̸= 0. Since the second case implies the first we assume that m1s1 ̸= 0.
By changing the sign of some of the terms, we may assume that m1, . . . ,mn are all nonnegative.
Since G1 is cyclic, we may assume that m1 < #G1. From Lemma 2.60 we obtain a generating set
{r1, . . . , rn} such that

0 = m1s1 + . . .mnsn = r1gcd(m1, . . . ,mn)

But this implies that the new generating set has n elements and #⟨{r1}⟩ < #⟨{s1}⟩, a contradic-
tion. ■

Corollary 2.62. Let G be a infinite finitely generated abelian group. There is a surjective homo-
morphism f : G→ Z.

Proof. Since G is isomorphic to the direct sum of a finite family of cyclic groups, there is a surjective
homomorphism from G to each of these cyclic factors (the composition of the isomorphism with one
of the projection maps). Since G is infinite, one of the factors must be infinite. But every infinite
cyclic group G = ⟨{g}⟩ is isomorphic to Z, though the isomorphism G→ Z given by gn 7→ n. ■

Proposition 2.63. Let G be a finitely generated group and k ∈ {1, 2, . . .}. There are finitely many
subgroups of G with index k.

Proof. Let S = {1, 2, . . . , k}. For all H ⊂ G subgroups of index k, fix a bijection fH : G/H → S that
takes He to 1. Consider the action ΨH : G→ Sym(G/H) defined as g(Hg′) = H(g′g) (here G/H is
just a set, no group structure is needed). From fH we can induce an action ΦH : G→ Sym(S).

In general there are only finitely many homomorphisms from a finitely generated group to a
finite group: the behaviour of the homomorphism is completely determined by its value on the
elements of some finite generating set. Thus ΦH is one among finitely many actions from G on S.

But note that the stabilizer subgroup G1, of elements g ∈ G satisfying g · 1 = 1, (with respect
to the action ΦH) is equal to H, regardless the specific bijection fH we choose. Thus different
subgroups induce different actions on S and, since there are finitely many actions, there must be
finitely many subgroups. ■

Proposition 2.64. Let G be a finitely generated group. Every subgroup H ⊂ G of finite index k
is also finitely generated. If G has a generating set of n elements, then H must have a generating
set with at most nk elements.

Proof. Let S = {s1, . . . , sn} be a generating set for G. As in the proof of Proposition 2.63, consider
the action ΨH : G → Sym(G/H) defined as g(Hg′) = H(g′g). For each g ∈ G, a permutation is
induced on G/H = {Hg1, . . . ,Hgk}, where we can assume that g1 = e. If an element of the
generating set sj takes some Hgi to some Hgki,j

, we may write gisj = hi,jgki,j
for some hi,j ∈ H.

An element h ∈ H is an element of G and thus it can be written as h = sj1 . . . sjN . But each
sj = g1sj can be written as hi,jgki,j . Therefore we can make the following repeated substitutions:

h = (hi1,1gki1,1)si2si3 . . . sin

= hi1,1(gki1,1
si2)si3 . . . sin

= hi1,1(hki1,1,i2gkki1,1,i2
)si3 . . . sin

= hi1,1hki1,1,i2(gkki1,1,i2
si3) . . . sin

= · · ·

After a finite number of steps we will have expressed h as a combination of the elements of the set
{hi,j}, with i ranging in {1, 2, . . . , k} an j ranging in {1, 2, . . . , n}. ■

The following is known both as the subgroup lattice theorem and the correspondence theorem
for groups (see Proposition 8.9, Chapter II on [Alu09]):

Proposition 2.65. Let G be a group and H ⊂ G be a normal subgroup, with π : G → G/H being
the quotient map. Let G be the set of all subgroups of G that contain H and let H the set of all
subgroups of G/H. Then the function Π : G → H given by Π(A) = π(A) (usually written A/H) is
well defined and it is a bijection.
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Moreover, A ∈ G is a normal subgroup of G if and only of A/H is a normal subgroup of G/H.

In this case, the groups G/A and
G/H
A/H are isomorphic.

A subgroup B ∈ H is abelian if and only if H contains the commutator of Π−1(B)

2.3.1 Metric actions

We have commented on the importance of homomorphisms from a group to the group of automor-
phisms of an object. We are going to focus on automorphisms of metric spaces, i.e., homomorphisms
f : G→ Iso(X), where Iso(X) ⊂ Sym(X) is the group of bijective isometries. We call a homomor-
phism of this sort a metric action. We wish to define an appropriate distance between points on
X/G, the orbit space.

Definition 2.66. Let X be a metric space and let G be a group acting on X. Let a, b ∈ X. The
induced distance between OG(a) and OG(b) is defined as

d(OG(a), OG(b)) = inf{d(a′, b′) : a′ ∈ OG(a), b
′ ∈ OG(b)}.

Proposition 2.67. The distance above defines a pseudometric on X/G.

Proof. Most easily, d(OG(a), OG(a)) ≤ d(a, a) = 0. For symmetry, take a, b ∈ X and apply the
definition of inf. Let ε > 0. There are a′ ∈ OG(a) and b

′ ∈ OG(b) such that

d(b′, a′) < d(OG(b), OG(a)) + ε.

Thus we only need to choose small enough values for ε:

d(OG(a), OG(b)) ≤ d(a′, b′) = d(b′, a′)

< d(OG(b), OG(a)) + ε.

For the triangle inequality we take a, b, c ∈ X and apply the definition of the infimum. Let
ε > 0. There are a′ ∈ OG(a) and b

′ ∈ OG(b) such that

d(a′, b′) < d(OG(a), OG(b)) + ε.

Similarly, there are b′′ ∈ OG(b) and c
′ ∈ OG(c) such that

d(b′′, c′) < d(OG(b), OG(c)) + ε.

Let g ∈ G such that gb′ = b′′. We have

d(OG(a), OG(c)) ≤ d(a′, g−1c′)

≤ d(a′, b′) + d(b′, g−1c′)

!
= d(a′, b′) + d(gb′, gg−1c′)

= d(a′, b′) + d(b′′, c′)

< d(OG(a), OG(b)) + d(OG(b), OG(c)) + 2ε.

Since ε is chosen arbitrarily we have what was wanted. Notice that the equality marked by !
could fail if G wasn’t required to act isometrically on X. ■

2.3.2 Topological groups

Once again we reflect on how nice the spaces Rn are. Not only these are metric spaces that have
the topological and smooth structures that make topological and smooth manifolds possible, but
they are also groups under vector addition. More importantly, the group operation as a function
Rn ×Rn → R and the inversion function Rn → Rn are continuous and smooth, i.e., the Euclidean
spaces are groups in a way that is compatible with its geometrical structures. Again, this is
something to generalize:

Definition 2.68. Let G be a set, τ a topology on G and · : G×G→ G a group operation. Then
(G, τ, ·) is called a topological group if the group operation and the inversion function G → G
defined as a 7→ a−1 are continuous (where G×G is given the product topology).

If, additionally, A is a smooth structure of G such that the group operation and inversion
function are smooth, then (G, τ, ·,A) is called a Lie group.
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Proposition 2.69. Let X be a metric space. The group of bijective isometries Iso(X) is a topo-
logical group.

Proof. We can see Iso(X) as a topological space simply as a subset of the Cartesian product XX =∏
a∈X

X (this is known as the topology of pointwise convergence). By Proposition 2.45, it suffices

to show that for all a ∈ X the inversion function Ia : Iso(X) → X, defined as Ia(f) = f−1(a),
and the composition function Pa : Iso(X) × Iso(X) → X, defined as Pa(f, g) = f(g(a)), are both
continuous.

Let ε > 0 and f ∈ Iso(X) and consider the set

A = I−1
a (Bε(f(a))) = {f ′ ∈ Iso(X) : d(f(a), f ′(a)) < ε}.

This is the inverse image of a basis element of X under Ia, so showing that these sets are open
is enough to show that the function is continuous. Note that A is a basis element for Iso(X): it
equals the Cartesian product

∏
a′∈X

Aa′ , where Aa′ = X for all a′ ∈ X \ {a} and Aa = Bε(f(a)).

Thus the set is open, which is what was needed.
Now let ε > 0 and (f, g) ∈ Iso(X)× Iso(X) and consider

A′ = P−1
a (Bε(f(g(a)))) = {(f ′, g′) ∈ Iso(X)× Iso(X) : d(f(g(a)), f ′(g′(a))) < ε}.

Given (f ′, g′) ∈ A′, let ε′ = ε − d(f(g(a)), f ′(g′(a))). Define A′′ =
∏

(a1,a2)∈X×X

A(a1,a2), where

A(g′(a),a) = Bε′/2(f
′(g′(a)))× Bε′/2(g

′(a)) and A(a1,a2) = X ×X if a1 ̸= a or a2 ̸= g(a) (note that
this is a basis element for Iso(X)× Iso(X) containing (f ′, g′)). For all (f ′′, g′′) ∈ A′′ we have

d(f(g(a)), f ′′(g′′(a))) ≤ d(f(g(a)), f ′(g′(a))) + d(f ′(g′(a)), f ′′(g′(a))) + d(f ′′(g′(a)), f ′′(g′′(a)))

= ε− ε′ + d(f ′(g′(a)), f ′′(g′(a))) + d(g′(a), g′′(a))

< ε− ε′ + ε′/2 + ε′/2 = ε

That is, (f ′, g′) ∈ A′′ ⊂ A, which is what was needed. ■

In the year 1900, David Hilbert published a list of 23 unsolved problems that proved to be very
influential in the development of mathematics in the 20th-century. The fifth of these problems
asked whether the assumption of smoothness in the definition of a Lie group would exclude any
topological group that is also a topological manifold. The solution was eventually presented in the
1950s by Andrew Gleason, Deane Montgomery and Leo Zippin [MZ55] as the following Theorem
states:

Theorem 2.70. Let (G, τ, ·) be a topological group. Then there exists a smooth structure A on
(G, τ) that makes G into a Lie group if, and only if, (G, τ) is a topological manifold. In such case,
this smooth structure is unique.

A version of this Theorem (which can be found in [Gro81]) that is tailored to the topology on
the group of bijective isometries given in Proposition 2.69 is the following:

Lemma 2.71. Let X be a finite dimensional, locally compact, connected, locally connected homo-
geneous metric space. Its topological group of bijective isometries Iso(X) is a topological manifold
(and thus a Lie group) and has only finitely many connected components.

For those that wish to know how this Lemma came to be: it can be shown (the last Corollary
of Section 8 in [Are46], for instance) that the group of bijective isometries of a locally compact
metric space is also locally compact under the topology of pointwise convergence. We have shown
in Example 2.44 that it must also be a Hausdorff space. A result deeply tied to Hilbert’s Fifth
Problem, known as the Gleason-Yamabe Theorem (Theorem 1 on [Tao11]) then implies that the
group of bijective isometries arises as an inverse limit of Lie groups (the inverse limit is an important
categorical concept that unfortunately found no place in this text). The other hypotheses then
match the first Corollary of section 6.3 in [MZ55], yielding the result.

These results are very useful, seeing that Lie groups have nice properties that are not shared
in general by topological groups. Let us comment on one nice property that we are going to need
later: associated to every n-dimensional Lie group G we have an n-dimensional vector space Lie(G),
known as its Lie algebra. The Lie algebra is itself a Lie group (over a metric topology inherited
from some inner product, essentially the same as Rn) and one can define a map exp : Lie(G) → G,
known as the exponential map, satisfying the following properties:
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1. exp : Lie(G) → G is a smooth map;

2. exp((λ1 + λ2)u) = exp(λ1u) · exp(λ2u), for all λ1, λ2 ∈ R and u ∈ Lie(G);

3. exp(u)−1 = exp(−u), for all u ∈ Lie(G) (thus exp(0) = e);

4. There is an open set A ⊂ Lie(G) containing 0 and some open set B ⊂ G containing e such
that the restriction exp : A→ B is a diffeomorphism.

Definition 2.72. A topological group is said to satisfy the “No Small Subgroups” (NSS) property
if it has some open set containing the identity that does not contain any subgroup except the
trivial one.

Lemma 2.73. Lie groups satisfy the NSS property.

Proof. Using Property 4, let A ⊂ Lie(G) and B ⊂ G such that exp : A → B is a diffeomorphism.
Since Lie(G) is a metric space, we may assume that A is some open ball centered at 0 with a radius
ε > 0. Let A′ be the concentric ball of radius ε/2. Assume that there is some H ⊂ B′ = exp(A′)
that is a subgroup of G. Let h ∈ H and u ∈ A′ such that exp(u) = h.

SinceH is a subgroup, we have h2 ∈ H ⊂ B′, and so there is some v ∈ A′ such that exp(v) = h2.
By Property 2 above we have exp(2u) = h2, which means exp(2u) = exp(v). Since the metric on
Lie(G) comes from some vector norm | − |, we have d(e, 2u) = |2u| < ε, thus 2u ∈ A. Therefore
exp(2u) = exp(v) =⇒ 2u = v, which means 2u ∈ A′. Interactively, we have 2nu ∈ A′ for
all n ∈ {1, 2, . . .}. Since |2nu| = 2n|u| < ε, we must have |u| = 0 and thus u = 0. Then
h = exp(u) = exp(0) = e. ■
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3 The Gromov-Hausdorff distance

In the Section 2 we defined the Hausdorff distance between subsets of a fixed metric space. This
idea can be generalized by considering all possible ways to embed two spaces into a common space.
Similarly as with the Hausdorff distance, we define a pseudometric in a few equivalent ways and
then show that it can be restricted into an actual metric. We show that the space of all compact
metric spaces is a metric space in its own right, with respect to this metric.

Proposition 3.25 offers a condition for a family of compact metric spaces to have an accumulation
point in the space. This result must be adapted to non-compact spaces, which we do in Theorem
3.38. First, we define the pointed Gromov-Hausdorff distance, which applies to metric spaces with
a distinguished point. We define the notion of convergence of functions between pointed metric
spaces and in Proposition 3.35 we give a condition for a sequence of functions to have a convergent
subsequence.

Definition 3.1. Given two metric spaces (X, dX), (Y, dY ), let S be the class of all pairs (f, g),
where f : X → Z and g : Y → Z are isometries from X and Y to a common metric space Z (here
Z is not fixed, but it ranges over all metric spaces that allow such isometries to exist!). We define
the Gromov-Hausdorff distance between X and Y as

dGH(X,Y ) = inf
(f,g)∈S

{dH(f(X), f(Y ))}.

The class S above is, of course, quite large. We can make things simpler by considering not all
metric spaces that X and Y can be isometrically embedded into, but all pseudometrics that can
be given to the disjoint union X ⊔ Y that agree with dX and dY in their domains.3

Definition 3.2. Let (X, dX) and (Y, dY ) be metric spaces, we say that a pseudometric d on X⊔Y
is admissible w.r.t. dX and dY if d(x0, x1) = dX(x0, x1) for all x0, x1 ∈ X and d(y0, y1) = dY (y0, y1)
for all y0, y1 ∈ Y .

Proposition 3.3. Let (X, dX) and (Y, dY ) be two metric spaces. Define

d′GH(X,Y ) = inf{dH(X,Y )}.

Where the dH(X,Y ) ranges over the Hausdorff distances between X and Y relative to all pseudo-
metrics on X ⊔ Y that are admissible. Then d′GH(X,Y ) = dGH(X,Y ).

Proof. Let f : X → Z and g : Y → Z be two isometries, where Z caries the metric dZ . Let us define
a pseudometric d on X⊔Y such that dH(X,Y ) ≤ dH(f(X), g(Y )) = r. Set d(x, y) = dZ(f(x), g(y))
for all x ∈ X and y ∈ Z, as in Remark 2.4.

By the definition of the Hausdorff distance between f(X) and g(X) (in fact, due to Proposition
2.19), for all ε > 0 and all f(x) ∈ f(X), g(y) ∈ g(Y ), we have g(y′) ∈ g(Y ) and f(x′) ∈ f(X) such
that dZ(f(x), g(y

′)) < r + ε and dZ(g(y), f(x
′)) < r + ε. This equivalent to d(x, y′) < r + ε and

d(y, x′) < r + ε, which is enough to say that dH(X,Y ) ≤ r.
Conversely, let d be a pseudometric on X ⊔ Y that is admissible w.r.t. dX and dY . Let (Z, dZ)

be the metric space associated with d, where π : X ⊔ Y → Z is the quotient map (see Remark
2.2). Note that admissibility is equivalent to the inclusions iX : X → X ⊔ Y and iY : Y → X ⊔ Y
being isometries. Also note that, since d acts as a true metric when restricted to X and Y , the
restrictions of π to X and Y are isometries. Let f = π ◦ iX and g = π ◦ iY .

Let r = dH(X,Y ) (with respect to dZ). For all ε > 0 and x ∈ X, y ∈ Y , we have y′ ∈ Y and
x′ ∈ X such that dZ(x, y

′) < r + ε and dZ(y, x
′) > r + ε. This is precisely the same as saying

d(f(x), g(y′)) < r + ε and d(g(y), f(x′)) < r + ε, which in turn implies d(f(X), g(Y )) ≤ r. ■

Corollary 3.4. Let X and Y be two bounded metric spaces. We have:

dGH(X,Y ) ≤ 1/2(diam(X) + diam(Y )).

Proof. Let K = 1/2(diam(X)+diam(Y )). Define a pseudometric d on X⊔Y by setting d(x, y) = K
for all x ∈ X and y ∈ Y and letting d agree dX and dY in their domains. It is clear that d will be

3Strictly, the definition of the Hausdorff distance given previously was only meant for subsets of true metric
spaces, but we extend it verbatim to pseudometrics.
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symmetric and that d(x, x) = d(y, y) = 0 for all x ∈ X and y ∈ Y . To show the triangle inequality,
let x, x′ ∈ X and y ∈ Y and let us show that triangle inequality is satisfied:

d(x, y) = K ≤ d(x, x′) +K = d(x, x′) + d(x′, y),

d(x, x′) ≤ 2K = d(x, y) + d(y, x′).

Thus, d is a pseudometric on the disjoint union. Of course, X ⊂ BK(Y ) and Y ⊂ BK(X), which
implies the needed inequality. ■

A third equivalent definition will prove itself useful in the same way r-neighbourhoods were
useful in studying the Hausdorff distance: by making it easy to establish a triangle inequality.

Definition 3.5. A correspondence between two sets X and Y is a relation R ⊂ X × Y such that

• ∀x ∈ X, there exists y ∈ Y such that (x, y) ∈ R;

• ∀y ∈ Y , there exists x ∈ X such that (x, y) ∈ R.

Example 3.6. Let f : X → Y be a surjective function. Then its graph {(x, f(x)) : x ∈ X} is a
correspondence between X and Y .

Definition 3.7. Let R ⊂ X × Y be any relation between two metric spaces X and Y . The
distortion of R is defined as.

D(R) = sup
(x,y),(x′,y′)∈R

{|dX(x, x′)− dY (y, y
′)|}

If f : X → Y is a function between metric spaces, we define D(f) as the distortion of its graph.

We are measuring the difference between the distance of pairs elements in X and the distance
between correspondent pairs of elements in Y . If f : X → Y is a function, the distortion serves a
way to measure how far it is from being an isometry:

Remark 3.8. Let f : X → Y be a surjective function. Then D(f) = 0 if and only if f is an isometry.
Indeed, supx,x′∈X{|d(x, x′) − d(f(x), f(x′))|} = 0 is equivalent to d(x, x′) = d(f(x), f(x′)) for all
x, x′ ∈ X.

Proposition 3.9. For any two metric spaces X, Y we have

dGH(X,Y ) = 1/2 inf{D(R)}

where the infimum is taken from all the correspondences between X and Y

Proof. We begin by assuming that dGH(X,Y ) ≤ r. There is a metric space Z and isometries
f : X → Z, g : Y → Z such that dH(f(X), g(Y )) < r. Define R ⊂ X × Y as

R = {(x, y) ∈ X × Y : d(f(x), g(y)) ≤ r}.

Note that d(f(X), B(g(Y ))) ≤ r is equivalent to ∀x ∈ X, ∃y ∈ Y : (x, y) ∈ R and similarly for
d(g(Y ), B(f(X))) ≤ r, which means R is indeed a correspondence. Let (x, y), (x′, y′) ∈ R. We
have an upper bound on the distortion of R:

d(x, x′)− d(y, y′) ≤ d(x, y) + d(y, y′) + d(y′, x′)− d(y, y′) = d(x, y) + d(x′, y′) < 2r;

d(y, y′)− d(x, x′) ≤ d(y, x) + d(x, x′) + d(x′, y′)− d(x, x′) = d(y, x) + d(y′, x′) < 2r.

To show the other inequality, we assume D(R) ≤ 2r and let us construct an appropriate
pseudometric d on X ⊔ Y . For pairs of points within X or Y , we simply define d to agree with dX
and dY . If x ∈ X and y ∈ Y we set

d(x, y) = inf{dX(x, x′) + r + dY (y, y
′) : (x′, y′) ∈ R}

All axioms except the triangle inequality are clearly satisfied. we must then establish the inequality.
Without loss of generality, it suffices to show d(x, y) ≤ d(x, x′) + d(x′, y) and d(x, x′) ≤ d(x, y) +
d(y, x′) for all x, x′ ∈ X and y ∈ Y .
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Let ε > 0 and choose (x′′, y′′) ∈ R such that d(x′, y) + ε > dX(x′, x′′) + r + dY (y, y
′′). Then:

d(x, y) ≤ dX(x, x′′) + r + dY (y, y
′′)

≤ dX(x, x′) + dX(x′, x′′) + r + dY (y, y
′′)

< dX(x, x′) + d(x′, y) + ε.

Hence d(x, y) ≤ dX(x, x′) + d(x′, y). For the other inequality, let (x′′, y′′), (x′′′, y′′′) ∈ R such
that {

d(x, y) + ε > dX(x, x′′) + r + dY (y
′′, y)

d(x′, y) + ε > dX(x′, x′′′) + r + dY (y
′′′, y)

Since D(R) ≤ 2r we have dX(x′′, x′′′)− dY (y
′′, y′′′) ≤ 2r. Therefore:

dX(x, x′) ≤ dX(x, x′′) + dX(x′′, x′′′) + dX(x′′′, x′)

≤ dX(x, x′′) + dY (y
′′, y′′′) + 2r + dX(x′′′, x′)

≤ dX(x, x′′) + r + dY (y
′′, y) + dX(x′′′, x′) + r + dY (y, y

′′′)

< d(x, y) + d(x′, y) + 2ε.

Thus, dX(x, x′) ≤ d(x, y) + d(x′, y). After having proved that d is a pseudometric on X ⊔ Y , it is
easy to find an upper bound dH(X,Y ): if (x, y) ∈ R, we have d(x, y) ≤ dX(x, x)+r+dY (y, y) = r.
Thus R being a correspondence is again equivalent to X ⊂ Br(Y ) and Y ⊂ Br(X), which in turn
implies dH(X,Y ) ≤ r. ■

Corollary 3.10. Let X and Y be two bounded metric spaces. We have

dGH(X,Y ) ≥ 1/2|diam(X)− diam(Y )|.

Proof. For some ε > 0, let x, x′ ∈ X such that dX(x, x′) > diam(X) − ε. Then, for every
correspondence R between X and Y and all y, y′ ∈ Y such that (x, y), (x′, y′) ∈ R,

D(R) ≥ dX(x, x′)− dY (y, y
′) > diam(X)− diam(Y )− ε.

Therefore, D(R) ≥ diam(X) − diam(Y ) and, by symmetry, D(R) ≥ diam(Y ) − diam(X) which,
due to Proposition 3.9, implies the needed inequality. ■

Example 3.11. It follows from Corollaries 3.10 and 3.4 that if X is bounded and Y contains a single
point, then dGH(X,Y ) = 1/2diam(X). This one of the few cases where we have an exact number
for the Gromov-Hausdorff distance of two spaces.

Definition 3.12. Let X, Y and Z be sets and let R ⊂ X ×Y , S ⊂ Y ×Z be relations. We define
the composition of R and S as

S ◦R = {(x, z) ∈ X × Z : ∃y ∈ Y such that (x, y) ∈ R and (y, z) ∈ S}

The composition operation satisfies a sort of triangle inequality that will translate directly into
an analogous inequality for the Gromov-Hausdorff distance:

Lemma 3.13. The composition S ◦ R of two correspondences R ⊂ X × Y and S ⊂ Y × Z is a
correspondence. Furthermore, D(S ◦R) ≤ D(R) +D(S)

Proof. Let x ∈ X. There is some y ∈ Y such that (x, y) ∈ R. But there is z ∈ Z such that (y, z) ∈
S. Then (x, z) ∈ S ◦ R. Symmetrically, the other requirement for S ◦ R to be a correspondence
also holds.

As for the distortion, let ε > 0 and let (x, z), (x′, z′) ∈ S ◦R such that D(S ◦R) < |dX(x, x′)−
dY (z, z

′)|+ ε. We have, for all y, y′ ∈ Y :

|dX(x, x′)− dZ(z, z
′)| = |dX(x, x′) + dY (y, y

′)− dY (y, y
′) + dZ(z, z

′)|
≤ |dX(x, x′) + dY (y, y

′)|+ |dY (y, y′)− dZ(z, z
′)|

≤ D(R) +D(S).

Since ε is arbitrary, D(S ◦R) ≤ D(R) +D(S). ■
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Proposition 3.14. Let X,Y, Z be any three metric spaces. We have

dGH(X,Z) ≤ dGH(X,Y ) + dGH(Y,Z)

Proof. We use Proposition 3.9 and Lemma 3.13:

2dGH(X,Z) = inf{D(T )}
≤ inf{D(S ◦R)}
≤ inf{D(R) +D(S)}
≤ inf{D(R)}+ inf{D(S)}
≤ 2dGH(X,Y ) + 2dGH(Y,Z)

■

This shows that the Gromov–Hausdorff distance is a pseudometric on the class of all metric
spaces. Issues may again arise in the case of non-compact spaces, and we shall show that compact
spaces will behave quite nicely. Again we resort to an equivalent definition

Definition 3.15. A function f : X → Y between metric spaces X and Y is called an ε-isometry
if

• D(f) ≤ ε;

• f(X) is a ε-net of Y .

Remark 3.16. A 0-isometry is the same as a bijective isometry.

Lemma 3.17. For any two metric spaces X,Y we have

• If there exists an ε-isometry between X and Y , then there exists a correspondence R between
X and Y with D(R) ≤ 3ε

• If there exists a correspondence R between X and Y with D(R) ≤ ε, then there exists an
ε-isometry between X and Y .

Proof. For the first task, define R ⊂ X × Y as

R = {(x, y) ∈ X × Y : dY (y, f(x)) ≤ ε}

This is a correspondence: For all x ∈ X, we have (x, f(x)) ∈ R and for all y ∈ Y we have
some f(x) ∈ Bε(y), since f(X) is a ε-net. Let us estimate its distortion by taking arbitrary
(x, y), (x′, y′) ∈ R:

dX(x, x′)− dY (y, y
′) ≤ dX(x, x′)− dY (y, f(x))− dY (f(x), f(x

′))− dY (f(x
′), y′)

≤ |dX(x, x′)− dY (y, f(x))− dY (f(x), f(x
′))− dY (f(x

′), y′)|
≤ |dX(x, x′)− dY (f(x), f(x

′))|+ dY (y, f(x)) + dY (f(x
′), y′).

dY (y, y
′)− dX(x, x′) ≤ dY (y, f(x)) + dY (f(x), f(x

′)) + dY (f(x
′), y′)− dX(x, x′)

≤ |dY (y, f(x)) + dY (f(x), f(x
′)) + dY (f(x

′), y′)− dX(x, x′)|
≤ |dX(x, x′)− dY (f(x), f(x

′))|+ dY (y, f(x)) + dY (f(x
′), y′).

That is,

|dX(x, x′)− dY (y, y
′)| ≤ |dX(x, x′)− dY (f(x), f(x

′))|+ dY (y, f(x)) + dY (f(x
′), y′) ≤ 3ε

As for the existence of a ε-isometry from the assumption D(R) ≤ ε, define f : X → Y by
taking x ∈ X to some y ∈ Y such that (x, y) ∈ R. Since the graph of f will be contained in R, we
have D(f) ≤ D(R). To see that f(X) is a ε-net of Y , let y ∈ Y . Choose x ∈ X with (x, y) ∈ R.
Since (x, y) and (x, f(x)) ∈ R, we have

|dX(x, x)− dY (y, f(x)| ≤ ε

=⇒ dY (y, f(x)) ≤ ε

■
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Note that, in particular, we obtain the following characterization:

Corollary 3.18. Let X,Y be two metric spaces. Then the following are equivalent:

• dGH(X,Y ) = 0.

• For all ε > 0, there exists a ε-isometry between X and Y .

A much stronger characterization is possible for compact spaces:

Proposition 3.19. Let X,Y be two compact metric spaces. Then dGH(X,Y ) = 0 if and only of
X and Y are isometric.

Proof. If X and Y are isometric, then we have a 0-isometry between them. Thus Corollary 3.18
implies dGH(X,Y ) = 0.

If dGH(X,Y ) = 0, Corollary 3.18 implies that there is a sequence {fn} of functions between X
and Y such that each fn : X → Y is a 1/n-isometry. All compact metric spaces are separable, so
let S = {s1, s2, . . .} ⊂ X be countable and dense.

Let us find a sequence of indices {kn}∞n=1 such that fkn(s) converges as a sequence of points
in Y for all s ∈ S: there is a subsequence {f1n} of {fn} such that {f1n(s1)} converges, due to the
compactness of Y . Inductively, after having obtained a nested sequence of subsequences {f1n} ⊃
{f2n} ⊃ . . . ⊃ {f in} such that f jn(sj) converges for all j ∈ {1, . . . , j}, we find a subsequence f i+1

n of
f in such that f i+1

n (si+1) converges. Thus, by taking the diagonal subsequence {gn}∞n=1 defined as
gn = fnn , we guarantee pointwise convergence in S.

Let us show that f : S → Y , defined as f(s) = lim
n→∞

gn(s), is an isometry. Let s, s′ ∈ S. For all

ε > 0, we have dY (gn(s), f(s)) < ε and dY (gn(s
′), f(s′)) < ε for all but finitely many n ∈ {1, 2, . . .}.

dY (f(s), f(s
′)) ≤ dY (f(s), gn(s)) + dY (gn(s), gn(s

′)) + dY (gn(s
′), f(s′))

< dY (gn(s), gn(s
′)) + 2ε

dY (gn(s), gn(s
′)) ≤ dY (gn(s), f(s)) + dY (f(s), f(s

′)) + dY (f(s
′), gn(s

′))

< dY (f(s), f(s
′)) + 2ε

The distortion of gn is bounded above by 1/n. That is:

dY (gn(s), gn(s
′)) ≤ dX(s, s′) + 1/n

dX(s, s′) ≤ dY (gn(s), gn(s
′)) + 1/n

Therefore:
dY (f(s), f(s

′)) < dX(s, s′) + 1/n + 2ε

dX(s, s′) < dY (f(s), f(s
′)) + 1/n + 2ε

=⇒ |dY (f(s), f(s′))− dX(s, s′)| < 1/n + 2ε

Where above n can be all but finitely many positive integers. Since s, s′, ε are all arbitrary, we have
that f is an isometry. By Corollary 2.14 we can extend f into an isometry on X. Symmetrically,
there is a isometry between Y and X. By Proposition 2.17, X and Y must be isometric. ■

Propositions 3.14 and 3.19 give us something remarkable: An analogue of Theorem 2.21 for the
space of isometry classes of compact metric spaces, which we call the Gromov space.

Theorem 3.20. The class of all isometry classes of compact metric spaces forms a metric space
with respect to the Gromov-Hausdorff metric.
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3.1 Convergence of compact metric spaces

We wish to obtain a better understanding of the topology of the Gromov space. Immediately, we
have the following:

Remark 3.21. The set of all finite metric spaces is dense in the Gromov space. Indeed, for any
given compact space X and all ε > 0, we have a finite ε-net S. Clearly, if i : S → X is the inclusion
and id : X → X is the identity, we have dH(i(S), id(X)) ≤ ε.

This simple observation motivates us to find a characterization of convergence within this space
in terms of convergence of finite metric spaces. The following will suffice:

Proposition 3.22. A sequence of compact metric spaces {Xn}∞n=1 converges to a space X if, and
only if, for every ε > 0 there are ε-nets Sε

n of each Xn and a ε-net Sε of X such that {Sε
n}∞n=1

converges to Sε.

Proof. Since every space is a ε-net of itself the first implication is immediate.
Assuming {Sn}∞n=1 is a sequence of ε-nets of each Xn that converges to S, we may also assume

that there are a sequence of correspondences Rn ⊂ Sn × S such that D(Rn) becomes arbitrarily
small as n → ∞. Let us extend each Rn into a correspondence R̃n between Xn and X. Define
cn : Xn → Sn such that d(cn(xn), xn) ≤ ε for all xn ∈ X (which is possible, since Sn is a ε-net).
Similarly, let c : X → S with d(c(x), x) ≤ ε for all x ∈ X.

For all xn ∈ Xn, there is some fn(xn) ∈ S such that (cn(xn), fn(xn)) ∈ Rn, since this is a
correspondence. Similarly, for all x ∈ X, there is some f(x) ∈ Sn such that (f(x), c(x)) ∈ Rn.
Define the functions fn : Xn → S and f : X → Sn as such. Now, we create a correspondence from
the union of the graphs R̃n = {(xn, fn(xn)) : xn ∈ Xn}∪{(f(x), x) : x ∈ X}. This correspondence
is close to Rn in terms of distortion, as we can check the three possible cases:

• xn, x
′
n ∈ Xn:

|d(xn, x′n)− d(fn(xn), fn(x
′
n))|

≤ |d(xn, x′n)− d(cn(xn), cn(x
′
n))|+ |d(cn(xn), cn(x′n))− d(fn(xn), fn(x

′
n))|

≤ 2ε+D(Rn).

• x, x′ ∈ X:

|d(f(x), f(x′))− d(x, x′)|
≤ |d(f(x), f(x′))− d(c(x), c(x′))|+ |d(c(x), c(x′))− d(x, x′)|
≤ D(Rn) + 2ε.

• xn ∈ Xn and x ∈ X

|d(xn, f(x))− d(fn(xn), x)|
≤ |d(xn, f(x))− d(cn(xn), f(x))|+ |d(cn(xn), f(x))− d(fn(xn), c(x))|

+ |d(fn(xn), c(x))− d(fn(xn), x)|
≤ ε+D(Rn) + ε.

Hence D(R̃n) also becomes arbitrarily small as n → ∞, which implies lim
n→∞

(Xn) = X, due to

Proposition 3.9. ■

Definition 3.23. A subset S ⊂ X of a metric space X is precompact if its closure is compact.

We wish to establish a condition that ensures that a family of compact metric spaces is pre-
compact with respect to the Gromov-Hausdorff distance.

Definition 3.24. A family {X}λ∈L of compact metric spaces is uniformly totally bounded if

• every space in the family is bounded by the same constant: There exists K > 0 such that
diam(Xλ) < K for all λ ∈ L

• for every ε > 0, there is some N(ε) ∈ {1, 2, . . .} such that all elements of the family admit a
ε-net with at most N(ε) points.
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This is the precompactness condition we hoped for:

Proposition 3.25. Let {Xn}∞n=1 be a uniformly totally bounded sequence of compact metric spaces.
Then it admits a convergent subsequence that converges to some compact metric space X.

Proof. We must construct a compact space. We may assume that for every k ∈ N, each Xn

admits a 1/k-net with exactly N(1/k) elements, allowing repetition in case of finite spaces. Let

S1
n = {x1n, · · · , x

N(1)
n } be a 1-net of Xn, S

2
n = {xN(1)+1

n , · · · , xN(1)+N(1/2)
n } be a 1/2-net, and so on.

In general, we have a family {xin}∞i=1, containing the N(1/k) points of some 1/k-net of Xn, for every
k ∈ N (note that this is a dense set on Xn).

Consider the sequence {d(xin, xjn)}∞n=1 for fixed i, j. It takes values on the compact set [0,K],
where K is the constant in Definition 3.24. Thus there is a convergent subsequence. Since the
set {(i, j) ∈ N2} is countable we may construct a sequence of nested subsequences, each allowing
the limit of d(xin, x

j
n) to exist for some (i, j). By taking the diagonal subsequence, we may assume

that {d(xin, xjn)}∞n=1 converges for all (i, j) (here we are discarding a subset of {Xn}. Only the
remaining subsequence will be considered from now on).

Thus we may define X to be the set of all sequences xi = {xin}∞n=1. The following distance is
well defined:

d(xi, xj) = lim
n→∞

d(xin, x
j
n).

Since the triangle inequality is valid for each n, it will also be satisfied by the limit. Symmetry
and non-negativity are trivial. The problem of positivity can be solved by replacing X with the
quotient construction described in Remark 2.2.

We will show that X is totally bounded: given i ∈ N, each xin is an element of Xn. Since there
is a 1/k-net of Xn contained in {xin}∞i=1, select x

jn
n such that d(xin, x

jn
n ) < 1/k for each n. Since the

1/k-nets of each Xn contains exactly N(1/k) elements, the sequence {jn}∞n=1 must have a constant
subsequence. Let j be that constant. Then the sequence d(xin, x

j
n) must have a subsequence

bounded by 1/k. Therefore, the limit d(xi, xj) must also be bounded by 1/k. Note that we have just
shown that S1 = {x1, · · · , xN(1)} is a 1-net of X, as S2 = {xN(1)+1, · · · , xN(1)+N(1/2)} is a 1/2-net,
and so on.

Since X is totally bounded its completion must also be totally bounded and thus compact.
Therefore, by Proposition 3.22, it only remains to show that Sk

n → Sk for each k. We use the
correspondence definition of dGH from Proposition 3.9 and note that the distortion of Rk

n =
{(xin, xi) : i ∈ N} can be estimated using the limit that defined the metric of X:

lim
n→∞

sup
i,j∈N

|d(xin, xjn)− d(xi, xj)| = 0 ⇐⇒ [ lim
n→∞

d(xin, d
j
n) = d(xi, xj) ∀i, j ∈ N].

■

3.2 The pointed Gromov-Hausdorff distance

In [Gro81], Gromov employs a variation of the Gromov-Hausdorff distance that has nice conver-
gence properties even for unbounded spaces. It would be nice, for instance, if there was a sense in
which the sequence of open intervals intervals In = (−n, n), n ∈ N converged to the real line, even
though the Gromov-Hausdorff distance between In and R is always infinite. Note, though, that
for arbitrary but fixed r > 0, the sequence In ∩ (−r, r) does converge to R ∩ (−r, r), which might
be used as a justification to expect In → R.

The idea of spaces converging for every bounded neighbourhood of the origin can be formalized
as the modified Gromov-Hausdorff convergence of pointed spaces, in which general metric spaces
receive a sort of origin.

Definition 3.26. A pointed metric space is a metric space X with a distinguished point x ∈ X,
which we denote (X,x) (a slightly confusing notation, since we already use the ordered pair (X, d)
to refer to the set X endowed with the metric d).

We can define a notion of convergence of pointed spaces that is less restrictive than how it was
previously defined, being well behaved even for some unbounded spaces.
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Definition 3.27. Given two pointed metric spaces (X,x) and (Y, y), we define their pointed
Gromov-Hausdorff distance dpGH((X,x), (Y, y)) as the infimum of all r ≥ 0 such that there exist
a pseudometric d on the disjoint union X ⊔ Y with the property that

d(x, y) ≤ r and B1/r(x) ⊂ Br(Y ) and B1/r(y) ⊂ Br(X).

Indeed, this definition satisfies our intuition:

Example 3.28. The sequence of intervals In = (−n, n) (seen as the pointed spaces (In, 0)) converges
to (R, 0) with respect to dGH . We can show that dGH((In, 0), (R, 0)) < 2/n by first embedding In
and R disjointly into R2 as

Z = {(x, 0) : x ∈ R} ∪ {(x, 1/n) : x ∈ In}.

Then d((0, 0), (0, 1/n) = 1/n < 2/n. Also (assuming n > 1),

Bn/2((0, 0)) = [(−n/2, n/2)× (−n/2, n/2)] ∩ Z
= {(x, 0) : x ∈ (−n/2, n/2)} ∪ {(x, 1/n) : x ∈ (−n/2, n/2)}
⊂ B2/n({(x, 1/n) : x ∈ In}) ∩ Z
= {(x, 0) : x ∈ (−n, n)} ∪ {(x, 1/n) : x ∈ In};

Bn/2((0, 1/n)) = [(−n/2, n/2)× (1/n − n/2, 1/n + n/2)] ∩ Z
= {(x, 0) : x ∈ (−n/2, n/2)} ∪ {(x, 1/n) : x ∈ (−n/2, n/2)}
⊂ B2/n({(x, 0) : x ∈ R})
= Z.

3.3 Convergence of functions

We will use the following alternative definition of pointed convergence:

Definition 3.29. Let {(Xn, xn)} be a sequence of pointed metric spaces and (Y, y) be a pointed
metric space. Let {dn}∞n=1 be a sequence of pseudometrics on Xn ⊔ Y . We say that {(Xn, xn)}
converges to (Y, y) with respect to {dn} if for every ε > 0 and r ≥ 0 there is some n0 ∈ N such
that for every n > n0 we have

dn(xn, y) ≤ ε,

Br(xn) ⊂ Bε(Y ) and Br(y) ⊂ Bε(Xn).

where the closed balls above are constructed with respect to dn. We call this definite conver-
gence w.r.t. {dn}.

Proposition 3.30. The following are equivalent:

• The sequence {(Xn, xn)} converges to (Y, y) with respect to some {dn}

• The sequence dpGH(Xn, Y ) converges to zero.

Proof. Let ρ > 0. If (Xn, xn) converges definitely to (Y, y) w.r.t. dn, then there is some n0 ∈
{1, 2, . . .} such that, for all n > n0, we have

dn(xn, y) ≤ ρ,

B1/ρ(xn) ⊂ Bρ(Y ) and B1/ρ(y) ⊂ Bρ(Xn).

which implies that dpGH((Xn, xn), (Y, y)) ≤ ρ for all n > n0. Since ρ is arbitrary, we have shown
that lim

n→∞
dpGH((Xn, xn), (Y, y)) = 0.

Conversely, assume lim
n→∞

dpGH((Xn, xn), (Y, y)) = 0. Let ε > 0 and r ≥ 0. If we set ρ <

min{ε, 1/r}, there exists n0 ∈ {1, 2, . . .} such that, for all n > n0,

dn(xn, y) ≤ ρ
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B1/ρ(xn) ⊂ Bρ(Y ) and B1/ρ(y) ⊂ Bρ(Xn)

Which implies
dn(xn, y) ≤ ε

Br(xn) ⊂ Bε(Y ) and Br(y) ⊂ Bε(Xn)

Which in turn implies {dn} induces definite convergence of (Xn, xn) to (Y, y). ■

Corollary 3.31. Let {(Xn, xn)}∞n=1 be a convergent sequence of proper pointed spaces. Then, for
every r > 0, the sequence of compact metric spaces {Br(xn)} converges.

Proof. There exists a pointed metric space (Y, y) and a sequence of metrics {dn}∞n=1, each on one
of Xn ⊔ Y , such that for all r ≥ 0 and ε > 0 we have, for all large enough n:

dn(xn, y) < ε;

Br(xn) ⊂ Bε(Y );

Br(y) ⊂ Bε(X).

Let x ∈ Br(xn) and y
′ ∈ Y such that d(x, y′) ≤ ε. We have

d(y′, y) ≤ d(y′, x) + d(x, xn) + d(xn, y) ≤ r + 2ε.

Similarly, given y′ ∈ Br(y) and x ∈ X with d(x, y′) < ε:

d(x, xn) ≤ d(x, y′) + d(y′, y) + d(y, xn) ≤ r + 2ε.

Thus Br(xn) ⊂ B2ε(Br(y)) and Br(y) ⊂ B2ε(Br(xn)), which gives an upper bound of 2ε on
the Gromov distance of between Br(xn) and Br(y). ■

The reason why we differentiate definite convergence w.r.t. a fixed sequence of metrics and
usual convergence w.r.t pGH is to be able to measure distance between points in Xn and points
in Y in exactly one way. For instance, with definite convergence it makes sense to say that a
sequence of points pn ∈ Xn converges to some p ∈ Y , while for usual convergence there could be
uncountably many different metrics on each Xn⊔Y . The following definition also only makes sense
for definite convergence.

Definition 3.32. Let {(Xn, xn)} and {(X ′
n, x

′
n)} be two sequences of pointed metric spaces that

converge to (Y, y) and (Y ′, y′), respectively, w.r.t the family of metrics {dn}∞n=1 and {d′n}∞n=1.
We say that a sequence of functions fn : Xn → X ′

n converges to a function f : Y → Y ′ when
for all ε > 0 and r ≥ 0 there is some δ > 0 and n0 ∈ N such that, for all n > n0, we have

p ∈ Br(xn), and q ∈ Br(y) and dn(p, q) < δ

=⇒ d′n(fn(p), f(q)) < ε.

A good definition of convergence is of course one that allows nice properties shared by each
element of the sequence to be preserved by the limit. The following properties will perhaps justify
Definition 3.32 as a good one:

Proposition 3.33. Let fn and f be as in Definition 3.32. If each fn is an isometry, then f is an
isometry.

Proof. Let a, b ∈ Y , ε > 0 and δ as in the definition above (we may assume δ ≤ ε). Take
a′ ∈ Xn and b′ ∈ Xn (with n large enough) such that dn(a, a

′) < δ and dn(b, b
′) < δ. Then

dn(fn(a
′), f(a)) < ε and dn(fn(b

′), f(b)) < ε. Thus

dn(f(a), f(b)) ≤ dn(f(a), fn(a
′)) + dn(fn(a

′), fn(b
′)) + dn(fn(b

′), f(b))

< dn(fn(a
′), fn(b

′)) + 2ε

= dn(a
′, b′) + 2ε

< dn(a
′, a) + dn(a, b) + dn(b, b

′) + 2ε

< dn(a, b) + 4ε.
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Similarly:

dn(a, b) ≤ dn(a, a
′) + dn(a

′, b′) + dn(b
′, b)

< dn(a
′, b′) + 2ε

= dn(fn(a
′), fn(b

′)) + 2ε

≤ dn(fn(a
′), f(a)) + dn(f(a), f(b)) + dn(f(b), fn(b

′)) + 2ε

< dn(f(a), f(b)) + 4ε.

Thus |dn(f(a), f(b))− dn(a, b)| < ε for arbitrary ε. ■

For the sake of simplicity from now on every convergence of pointed metric spaces is assumed
to be definite and the fixed underlying metrics shall remain implicit.

Lemma 3.34. All proper spaces are complete.

Proof. Take a Cauchy sequence in a metric space X. Since Cauchy sequences are bounded every
term in a Cauchy sequence is contained within a closed and bounded set K ⊂ X. Since K is
compact, the sequence must converge. ■

We now prove a beautiful analogue of the precompactness criterion for sequences of isometries.

Proposition 3.35 (Gromov’s Isometry Lemma). Let {(Xn, xn)}∞n=1 and {(X ′
n, x

′
n)}∞n=1 be two

sequences of pointed metric spaces that converge to proper pointed spaces (Y, y) and (Y ′, y′), re-
spectively. Let fn : Xn → X ′

n be a sequence of isometries such that d(x′n, fn(xn)) is bounded
above by a fixed constant C. Then there is a subsequence of {fn} that converges to an isometry
f : Y → Y ′.

Proof. Let εn = 1
4n and rn = nC + 1. Due to the hypothesis of convergence we may make the

following assumptions by passing to subsequences:

d(xn, y) < εn, d(x
′
n, y

′) < εn,

Brn(y) ⊂ Bεn(Xn), Brn(y
′) ⊂ Bεn(X

′
n),

B1/2+rn+C(x
′
n) ⊂ Bεn(Y

′).

Since Y and Y ′ are proper, each ball is totally bounded. Thus for each m ∈ N there is a
sequence Sm of εm-nets of Brm(y) and a sequence S′

m of εm-nets of Brm(y′) (it is convenient to
assume that Sm ⊂ Sm+1 and S′

m ⊂ S′
m+1). We wish to initially define a family of functions

gm,n : Sm → S′
m+1 for n ≥ m.

Let s ∈ Sm. Since each s ∈ Brm(y) ⊂ Brn(y) ⊂ Bεn(Xn) we can choose some p ∈ Xn such that
d(p, s) < εn. Note that

d(fn(p), x
′
n) ≤ d(fn(p), fn(xn)) + d(fn(xn), x

′
n)

= d(p, xn) + d(fn(xn), x
′
n)

< d(p, xn) + C

≤ d(p, s) + d(s, y) + d(y, xn) + C

< εn + rm + εn + C

≤ 1/2 + rm + C.

Thus fn(p) ∈ B1/2+rm+C(x
′
n), and so is some q ∈ Y ′ such that d(fn(p), q) < εm. We can show

that q is close enough to y′ after applying the triangle inequality a few more times:

d(q, y′) ≤ d(q, fn(p)) + d(fn(p), x
′
n) + d(x′n, y

′)

≤ εn + 1/2 + rm + C + εn

≤ 1 + rm + C

= 1 + (m+ 1)C

= rm+1.
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Therefore q ∈ Brm+1
(y′). We can choose any s′ ∈ S′

m+1 such that d(q, s′) < εm+1. Define
gm,n(s) = s′.

Each S′
m+1 is finite. Thus for some fixed m ∈ N and s ∈ Sm, there is a sequence of indices

{nk}∞k=1 such that gm,nk
(s) is constant with respect to k. Since Sm is also finite there is subsequence

{nkk′}∞k′=1 and we have that gm,nk′ depends only on m. It remains to show that {fnk
k′
} is a

convergent subsequence of {fn}. From now on we pass to the subsequences in order to write fn
instead of the unwieldy fnk

k′
. Also, we write gm instead of gm,n.

Suppose that we had started with some other s̃ ∈ Brm(y) and that we found some p̃ ∈ Xn with
d(p̃, s̃) < εn. We would then have

d(p, p̃) ≤ d(p, s) + d(s, s̃) + d(s̃, p̃)

< d(s, s̃) + 2εn.

Also, if we had chosen some q̃ ∈ Y ′ such that d(f(p̃), q̃) < εm we would have

d(q, q̃) ≤ d(q, f(p)) + d(f(p), f(p̃)) + d(f(p̃), q̃)

< d(f(p), f(p̃)) + 2εm

= d(p, p̃) + 2εm

< d(s, s̃) + 2εm + 2εn.

Finally, if we had chosen some s̃′ ∈ S′
m+1 with d(q̃, s̃′) < εm+1 we would have

d(s′, s̃′) ≤ d(s′, q) + d(q, q̃) + d(q̃, s̃′)

< d(q, q̃) + 2εm+1

< d(s, s̃) + 2εm + 2εn + 2εm+1

≤ d(s, s̃) + 6εm+1.

Thus if we set S =
∞⋃

m=1
Sm and S′ =

∞⋃
m=1

S′
m the function g : S → S′, defined to coincide

with each gm on Sm, takes Cauchy sequences {sm}∞m=1 with each sm ∈ Sm to Cauchy sequences
{s′m}∞m=1 with s′m ∈ S′

m. Thus by Proposition 2.15 g is uniformly continuous. Since S is dense
on a complete metric space, due to Proposition 3.34, we extend g : S → Y ′ to g : Y → Y ′ as in
Proposition 2.13.

Now given x ∈ Brm(xn), y ∈ Brm(y) we write y = lim
m→∞

sm and we apply continuity of

the metric to obtain d(fn(x), g(y)) = lim
m→∞

d(fn(x), gm(sm)). We wish to obtain an estimate of

d(fn(x), g(y)) through this limit. Let us recall the notation from above, with gm(s) = s′

d(fn(x), s
′) ≤ d(fn(x), fn(p)) + d(fn(p), q) + d(q, s′)

< d(fn(x), fn(p)) + εm + εm+1

= d(x, p) + εm + εm+1

≤ d(x, s) + d(s, p) + εm + εm+1

< d(x, s) + εn + εm + εm+1

< d(x, s) + 3εm+1.

That is, d(fn(x), gm(sm)) < d(x, sm) + 3εm+1. Therefore d(fn(x), g(y)) ≤ d(x, y), immediately
satisfying the convergence requirement. By Proposition 3.33, f must be an isometry. ■

3.4 Consequences of the Isometry Lemma

Proposition 3.36. Let {(Xn, xn)}∞n=1 be a sequence of proper pointed spaces such that for every
r ∈ {0, 1, 2, . . .} the sequence of compact metric spaces {Br(xn)} converges to some Yr. Then
{(Xn, xn)}∞n=1 has a subsequence that converges to some proper pointed space (Y, y).

31



3.4 Consequences of the Isometry Lemma 3 THE GROMOV-HAUSDORFF DISTANCE

Proof. We see each Br(xn) as a pointed space in the obvious way. To see each Yr as a pointed
space, we endow Br(xn) ⊔ Yr with a sequence of metrics {drn}∞n=1 such that for all ε we have
Br(xn) ⊂ Bε(Yr) and Yr ⊂ Bε(Br(xn)) for all large enough n. That is, there is some point
y(ε) ∈ Yr such that drn(xn, y(ε)) < ε. We pass to a subsequence and assume that {y(1/n)}∞n=1

converges to some yr ∈ Yr, which is our distinguished point.
We will need to construct a limit space Y by joining each limit space Yr. We begin by using

Proposition 3.35 to find a subsequence of {(Xn, xn)}∞n=1 for which the inclusions B0(xn) → B1(xn)
converge to an isometry φ0 : Y0 → Y1 with respect to d0n and d1n. Then we inductively find nested
subsequences of this subsequence such that each family of inclusions Br(xn) → Br+1(xn) converges
to an isometry φr : Yr → Yr+1 with respect to drn and dr+1

n . From the definition of convergence of
functions, the fact that drn(xn, yr) becomes arbitrarily small as n→ ∞ implies that dr+1

n (xn, φr(yr))
also approaches zero. Therefore, φr(yr) = yr+1.

Thus for each r < s we can define φr,s = φs−1 ◦ . . . ◦φr, which is an isometry of Yr into Ys that
takes yr to ys. Proceed by setting

Y ′ =

∞⊔
r=0

Yr.

Given a ∈ Yr and b ∈ Ys with r < s define d(a, b) = d(φr,s(a), b). This will be a pseudometric
because for any a, b, c ∈ Y ′ the values of d(a, b), d(b, c), d(a, c) will agree with the values given by
the metric of some YR, R≫ 1.

The positivity axiom, though, will be not be satisfied in general. If b = φr,s(a), then d(a, b) = 0
even if a ̸= b. Thus we can once again apply the construction that induces a metric on the quotient
space Y := Y ′

/∼ under the equivalence relation a ∼ b ⇐⇒ d(a, b) = 0. Note that positivity was
already satisfied within each Yr ⊂ Y ′, which means under the quotient it remains unchanged:
We can still identify Yr with its image in Y . Also, all the distinguished points y0, y1, . . . become
identified as a single point y ∈ Y . This is the distinguished point we give to Y .

We now wish to characterize Yr ⊂ Y precisely as the ball Br(y). Take some y′ ∈ Yr. With
respect to drn (for arbitrary ε and large n), we have drn(y, xn) < ε and some x′n ∈ Br(xn) with
drn(y

′, x′n) < ε. Then

d(y, y′) ≤ drn(y, xn) + drn(xn, x
′
n) + drn(x

′
n, y

′) < r + 2ε.

Thus d(y, y′) ≤ r and, therefore, Yr ⊂ Br(y). Conversely, choose y′ ∈ Ys \ Yr for some s > r
(if possible. Otherwise, put Yr = Y and we are done) and let us show that y′ /∈ Br(y). Let
K = d(y′, Yr) > 0. For all ε > 0 and all but finitely many n ∈ {1, 2, . . .}, there is some x′n ∈ Bs(xn)
such that dsn(y

′, x′n) < ε. Consider the distance between x′n and some arbitrary y′′ ∈ Yr:

K ≤ d(y′, y′′) ≤ drn(y
′, x′n) + drn(x

′
n, y

′′) < drn(x
′
n, y

′′) + ε

=⇒ drn(x
′
n, y

′′) ≥ K − ε

Hence we may assume that drn(x
′
n, y

′′) > K/2 for all but finitely n, as ε is arbitrary. Since, by
hypothesis, Br(xn) ⊂ BK/2(Yr) for all but finitely many n, we see that x′n /∈ Br(xn), as long as n
is large enough. But then we have

r < dsn(x
′
n, x0) ≤ dsn(x

′
n, y

′) + d(y′, y) + dsn(y, x0) ≤ d(y′, y) + 2ε

=⇒ d(y′, y) > r − 2ε

=⇒ d(y′, y) ≥ r

That is, y′ /∈ Br(y). We have shown that Br(y) ⊂ Yr. Since Yr ⊂ Y is closed, this implies
Br(y) ⊂ Yr, as was needed.

What we have amounts to this: for arbitrary r, n ∈ {1, 2, . . .} there is a metric drn on Br(xn)⊔Yr
which, when extended do Xn ⊔ Y (see Remark 2.5), satisfies

drn(xn, y) < 1/n

Br(xn) ⊂ B1/n(Yr) ⊂ B1/n(Y )

Br(y) = Yr ⊂ B1/n(Br(xn)) ⊂ B1/n(Xn)

If we then define dn = dnn, the sequence of metrics {dn}∞n=1 clearly induces the needed definite
convergence of {(Xn, xn)}∞n=1 to (Y, y). ■
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Z2 1/2 · Z2 1/n · Z2

n→∞

R2

The sequence of metric spaces Z2
n as it converges to R2

Example 3.37. Consider sequence of pointed metric spaces {(Xn, x)}∞n=1, each over the same set
X but with the metric obtained from a fixed metric d on X by setting dn(x, x

′) = 1
nd(x, x

′). One
might picture Xn as the space X after being shrunk by a factor of n.

Interesting spaces can be obtained by shrinking other spaces. Take, for instance, (Zk, 0) with the
metric inherited from Rk. Then {(Zk

n, 0)}∞n=1 can be shown to have a subsequence that converges
to Rk as n → ∞ (in fact, the entire sequence converges, but we wish to use the statement from
Theorem 3.36). Note that the ball of radius r in Zk

n is embedded in the ball of the same radius
in Rk, consisting of the points with all coordinates being integer multiples of 1

n . The Hausdorff
distance between the two balls is then bounded by 1

n , which also bounds the Gromov-Hausdorff
distance between them, in turn satisfying the hypothesis of the Theorem. The idea of shrinking a
discrete space into a non-discrete one will come up again later on.

We finally know enough about the pointed Gromov convergence to assert a precompactness
condition. By relating the pointed convergence to the well behaved convergence of compact spaces
we have made our job quite easy:

Theorem 3.38. Let {(Xn, xn)}∞n=1 be a sequence of proper pointed metric spaces such that for
each r ∈ {0, 1, 2 . . .} the sequence {Br(xn)}∞n=1 is uniformly totally bounded. Then it admits a
subsequence that converges to some proper pointed space.

Proof. Since each sequence of balls is a sequence of uniformly totally bounded compact spaces
we may apply the former precompactness condition as in Proposition 3.25. Each {Br(xn)} has a
convergent subsequence. By Cantor’s diagonal argument there is a sequence of indices {nk}∞k=1 such
that each {Br(xnk

)}∞k=1 converges. Then by Proposition 3.36, {(Xnk
, xnk

)}∞k=1 has a subsequence
that converges to a proper pointed space. ■

Another consequence of the isometry lemma concerns homogeneous spaces:

Proposition 3.39. Let {(Xn, xn)}∞n=1 be a sequence of pointed metric spaces such that each Xn

is homogeneous and such that the sequence converges to a proper pointed space (Y, y). Then Y is
homogeneous.

Proof. Let y′, y′′ ∈ Y . There are sequences {x′n}∞n=1 and {x′′n}∞n=1 that converge to y′, y′′, re-
spectively (w.r.t. a fixed family of metrics on the disjoint unions). Let {fn}∞n=1 be a family of
isometries such that each fn(x

′
n) = x′′. By passing to a subsequence we may assume that the

sequence {fn}∞n=1 converges to an isometry f : Y → Y .
Let us consider the value of d(f(y′), y′′)). Let ε > 0. There is some δ > 0 such that

d(fn(x
′
n), f(y

′)) < ε/2, as long as d(x′n, y
′) < δ (which is true for all but finitely many n). As-

suming n is large enough, we also have d(y′′, x′′n) < ε/2. Of course we also have d(fn(x
′
n), x

′′
n) = 0.

By combining everything, we get

d(f(y′), y′′)) ≤ d(f(y′), fn(x
′
n)) + d(fn(x

′
n), x

′′
n) + d(x′′n, y

′′)) < ε/2 + 0 + ε/2 = ε.

■
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4 GROUPS OF POLYNOMIAL GROWTH

4 Groups of polynomial growth

To finish our task, we return to finitely generated groups and their growth. We will properly
define the growth rate of a group, showing that the definition does not depend on the choice of a
generator set. We proceed to explore properties of the growth rate of a finitely generated group,
particularly how it is related to the growth rate of its subgroups and how it behaves in relation to
exact sequences. We prove in Corollary 4.14 the result that Gromov’s Theorem is the converse of:
all finitely generated almost nilpotent groups have polynomial growth.

In Proposition 2.71 we tie many results from the previous two sections by showing that a group
of polynomial growth, when endowed with a certain sequence of left-invariant metrics, converges
with respect to the Gromov-Hausdorff distance to a metric space with finite Hausdorff dimension
whose group of isometries is a Lie group. Finally, we conclude the section with a proof of Gromov’s
Theorem.

Definition 4.1. Let G be a finitely generated group. Let S ⊂ G be a generating set that is
symmetric (i.e., x ∈ S =⇒ x−1 ∈ S). Each element of G can be written (usually in multiple
ways) as a finite string of elements of S. We denote the norm of g with respect to S as the minimal
possible length of such strings, denoted |g|S .

Proposition 4.2. The norm defined above is indeed a group norm as a function G → R≥0, i.e.,
for a finitely generated group G and a fixed generator set S we have the following (where g, h ∈ G
are arbitrary elements and e ∈ G is the group identity):

1. |g|S = 0 ⇐⇒ g = e;

2. |g−1|S = |g|S;

3. |gh|S ≤ |g|S + |h|S.

Note that an for abelian group a group norm looks exactly like a usual norm for vector spaces,
where (2.) could be reinterpreted as a sort of absolute homogeneity for all invertible scalars of the
ring.

A norm | · | defined on a group G induces a metric on G as defined by

d(g, h) = |g−1h|.

This metric is known as a left-invariant metric. The name becomes justified when we consider the
value of d(tg, th) for t, g, h ∈ G:

d(tg, th) = |g−1t−1th| = |g−1h| = d(g, h).

That is, left-multiplication by an element of G induces an isometry on G. Metric spaces
constructed from group metrics are always homogeneous: Given g, h ∈ G, there is a isometry
taking g to h, namely left-multiplication by hg−1. Also, these isometries are a way for subgroups
of G to act on G:

Proposition 4.3. Let H ⊂ G be a subgroup, where G carries the left-invariant metric defined
by a group norm. For each h ∈ H, the function g 7→ hg is an isometry on G. Moreover, the
corresponding function H → Iso(G) is an action.

Proof. As we have seen above, left multiplication defines an isometry for all elements of G, elements
of H in particular. To show that it is a homomorphism, take h, h′ ∈ H and g ∈ G. Let fh be
defined as g 7→ hg and define fh′ and fhh′ similarly. We have

fhh′(g) = (hh′)g = h(h′g) = fh(h
′g) = fh(fh′(g)) = (fh ◦ fh′)(g).

■

By the construction above, each finitely generated group can be seen as a pointed metric space
(G, e). We are interested on the asymptotic behaviour of the function bS : N → N defined by
sending n to the cardinality of the closed the ball centered at e with radius n with respect to the
metric induced by S. We first remove the arbitrariness regarding S.
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4.1 Some motivation 4 GROUPS OF POLYNOMIAL GROWTH

Proposition 4.4. Let S ⊂ G and S′ ⊂ G be two finite generating sets. There is some constant
C > 0 such that, for all g ∈ G

C−1|g|S′ ≤ |g|S ≤ C|g|S′ .

Proof. Let S′ = {s′1, . . . , s′n}. Write an element of G as g = s′j1 . . . s
′
jk
, where k = |g|S′ . Write each

s′j as s′j = s1,j . . . smj ,j for si,j ∈ S. Choose C such that C > mj for every j ∈ {1, . . . , n}. Then g
can be written as a string of k · C elements of S. Thus |g|S ≤ k · C = C|g|S′ , where C does not
depend on g.

Symmetrically we have |g|S′ ≤ D|g|S , and therefore D−1|g|S′ ≤ |g|S . By choosing C larger
than D we obtain the other inequality. ■

Thus if we have g ∈ BS
n (e) then |g|S ≤ n, which means |g|S′ ≤ Cn and g ∈ BS′

Cn(e). Therefore,
bS(n) ≤ bS′(Cn). Similarly, if |g|S′ ≤ C−1n, we have |g|S ≤ n and thus bS′(C−1n) ≤ bS(n).

Definition 4.5. Let f, g : N → N. We say that f has a polynomial growth rate of degree d ≥ 0
when there are positive constants K1,K2 such that, for all n ∈ N we have

K1n
d ≤ f(n) ≤ K2n

d.

Similarly, we say that f has exponential growth rate when there are constants K1,K2 > 1 such
that, for all n ∈ N

Kn
1 ≥ f(n) ≥ Kn

2 .

Remark 4.6. If a function f : N → N has polynomial growth rate, then its degree of growth is
unique. Otherwise, we would have positive K1,K

′
2 and d > d′ such that

K1n
d ≤ f(n) ≤ K ′

2n
′d

=⇒ K1n
d −K ′

2n
′d ≤ 0.

This is a contradiction, since the polynomial K1n
d −K ′

2n
′d has a positive leading coefficient and

must satisfy lim
n→∞

K1n
d −K ′

2n
′d = ∞.

Remark 4.7. If G is a finitely generated group and S and S′ are two finite generating sets, and bS′

has polynomial growth of degree d, then the same can be said of bS . Indeed, from Proposition 4.4,
if K1n

d ≤ bS′(n) ≤ K2n
d we have K1C

−dnd ≤ bS(n) ≤ K2C
dnd.

Definition 4.8. Let G be a group generated by a finite S ⊂ G. We say that G is a group of
polynomial (resp., exponential) growth if bS is a function of polynomial (resp., exponential) growth.

We define the growth rate Γ(G) of G as the degree the polynomial growth of bS , if it is of
polynomial growth, and set Γ(G) = ∞ otherwise.

Example 4.9. Finitely generated abelian groups have polynomial growth. If a group is abelian and
generated by a finite subset S = {s1, . . . , sk}, then all strings with letters in S can be rearranged
into the simple form sm1

1 . . . smk
n , with m1, . . . ,mk ∈ Z. The value of bS(n) is precisely the number

of elements in the group that can written as one of such strings with |m1| + . . . + |mk| = n. An
exercise in combinatorics shows that this is bounded by 2k

(
n+k
k

)
≤ 2knk.

Example 4.10. Free groups (see Example 2.52) with finitely many but at least two generators have
exponential growth. If a generating set S has k elements and for each s ∈ S we have s−1 ∈ S,
then each string with i letters is uniquely determined by a choice of the leftmost element among
k choices, and each of the subsequent i − 1 letters can be any one of k − 1 elements (since we
must avoid the inverse of the previous letter to ensure uniqueness of the word). Thus there are

1 +
n∑

i=1

k(k − 1)i−1 = 1 + 1−(k−1)n

1−k ≥ (4/3)k strings with at most k letters.

4.1 Some motivation: Volume growth in compact Riemannian manifolds

Now that we have defined the growth rate properly, let us try and put the problem of group growth
in context and justify (somewhat informally) our interest in it. We refer to [Lee11] and [Lee12]
for the background on the fundamental group and on Riemannian manifolds that will be needed
in the rest of the section. See [Mil68] for the original proof of Proposition 4.11 below and more
information on the application of the theory of group growth to differential geometry.
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Let M be a compact smooth Riemannian manifold with a basepoint x0 ∈ M and let G =
π1(M,x0) be its fundamental group (which is finitely generated due to the compactness of M).
Let

p : (M̃, x̃0) → (M,x0)

be its universal covering map. If we endow M̃ with a Riemannian metric, then a geodesic ball
Br(x̃0) with radius r centered at x̃0 has a well-defined, positive and finite volume vr(x̃0), given by
integral of the Riemannian volume form over the ball.

If the Riemannian metric on M̃ is the pullback by p of the metric given to M , then G acts
isometrically on M̃ by the identification of the fundamental group with the group of deck trans-
formations of the universal cover. This action is properly discontinuous, i.e., every point in M̃ has
a neighbourhood U such that gU ∩ U = ∅ for all g ∈ G \ {e}.

Let us assume that vr(x̃0) has polynomial growth with respect to r, i.e., there are positive
constants K, d such that

vr(x̃0) ≤ Krd.

Let ε > 0 be small enough such that gBε(x̃0)∩Bε(x̃0) = ∅ for g ∈ G\{e}. Let S = {g1, . . . , gk}
be a finite generating set for G with a corresponding growth function bS and let r0 be large
enough such that g1x̃0, . . . , gkx̃0 ∈ Br0(x̃0). Then if g ∈ G can be written as a string of n
elements of S, successive application of the triangle inequality implies gx̃0 ∈ Br0n(x̃0). We have
gBε(x̃0) ⊂ Br0n+ε(x̃0), which in terms of volume implies

bS(n) ≤
vr0n+ε(x̃0)

vε(x̃0)
≤ K(r0n+ ε)d

vε(x̃0)
.

That is, bS is of polynomial growth. Thus we expose a connection between the algebraic growth
of the fundamental group of a space and the geometric growth of its universal cover. Let us seek
an inequality in the other direction, assuming bS(n) ≤ Knd.

Let δ be the diameter of M as a metric space. We have that the restriction of p : X̃ → X to
Bδ(x̃0), the closed ball centered at x̃0, is surjective. Then X̃ has the cover by compact sets

X̃ =
⋃
g∈G

gBδ(x̃0).

Note that for every r > 0, the ball Br(x̃0) intersects finitely many of these translates. For,
otherwise, there would be infinitely many points in the form gx̃0 at a distance less than r+ δ from
x̃0, which would mean there are infinitely many balls with positive volume Bε(x̃0) contained in the
ball with radius r + δ + ε centered at x̃0, a contradiction due to the finite volume of those balls.

Let S′ be the finite subset of G consisting of all g′ ∈ G that satisfy

g′Bδ(x̃0) ∩Bδ(x̃0) ̸= ∅.

We will show that this set generates G as a group. Let η > 0 be the infimum of all the
(positive) distances between Bδ(x̃0) and gBδ(x̃0), where g ∈ G \S′. Fix some g ∈ G \S′ and some
t ∈ {1, 2, . . .} such that d(x̃0, gBδ(x̃0)) < ηt+ δ.

We have some y0 ∈ gBδ(x̃0) with d(x̃0, y0) < ηt+ δ. Choose a minimal geodesic from y0 to x̃0
(the existence of a minimal geodesic relies on the completeness of X̃, which is guaranteed by the
fact that X is itself complete) and take points y1, . . . , yt along its image such that d(x0, yt) ≤ δ
and d(yi, yi+1) < η for all i ∈ {0, . . . , t− 1}. Each yi is contained in some ball hiBδ(x̃0), where in
particular we choose ht = e and h0 = g. If we write g′i = h−1

i yi−1 we have

g′t . . . g
′
1 = h−1

t ht−1h
−1
t−1 . . . h1h

−1
1 h0 = h−1

t h0 = g.

Note that h−1
i yi ∈ Bδ(x̃0) and h−1

i yi−1 = h−1
i hi−1h

−1
i−1yi−1 ∈ g′iBδ(x̃0). But since G acts

isometrically on X̃, we have

d(h−1
i yi, h

−1
i yi−1) = d(yi, yi−1) < η.

Thus we have a group element, g′i, such that g′iBδ(x̃0) is closer to Bδ(x̃0) than the minimum
reached by any element in G \ S′. It follows that g′i ∈ S for all i ∈ {1, 2, . . . , t}. Since g′t . . . g′1 = g
and g was taken arbitrarily from G \ S′, we see that S′ generates G.
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4.2 Growth rate of subgroups 4 GROUPS OF POLYNOMIAL GROWTH

As we will see later, the asymptotic behaviour of the growth function does not change when
we choose a different finite generating set, so we might as well assume that S′ = S and that bS(n)
is still the growth function associated with this generating set. Every y0 is in some gBδ(x̃0) for
g ∈ G and above we shown that even if g /∈ S, if additionally we have d(x̃0, y0) < ηt + δ, then
g can be written as a string of no more than t elements of S. Then the ball Bηt+δ(x̃0) must be
completely covered by translates of gBδ(x̃0), where g is one of such strings. Since there are no
more than bS(t) distinct elements of G that can be expressed in this form, we have

vηt+δ(x̃0) ≤ vδ(x̃0)bS(t) ≤ vδ(x̃0)Kt
d.

Having acquired this second inequality, we have the following very nice result:

Proposition 4.11. Let M be a compact Riemannian manifold and M̃ be its universal cover, en-
dowed with the Riemannian metric pulled back from the covering map. Then π1(M) has polynomial
group growth if and only if M̃ has polynomial volume growth.

In the terminology of Geometric Group Theory, what we have really accomplished in the proof
of Proposition 4.11 is showing that the fundamental group of a compact Riemannian manifold is
quasi-isometric to its universal covering space. This is a very particular case of what is now known
as the Švarc–Milnor Lemma, or the Fundamental Observation of Geometric Group Theory (see
Chapter IV of [dlH00] for a definition of quasi-isometries and a full statement of the Lemma).

Under the language of quasi-isometries, Remark 4.7 could be re-stated as “The metrics induced
on a finitely generated group by different finite generating sets are quasi-isometric to each other”,
while the proof of Proposition 4.12 below implies that “A finitely generated group is quasi-isometric
to its subgroup of finite index”.

4.2 Growth rate of subgroups

We begin our delve into groups of polynomial growth by inquiring about the growth rate of sub-
groups of a group of polynomial growth. This the the first significant result:

Proposition 4.12. Let G be a finitely generated group and H ⊂ G a subgroup of finite index.
Then G has polynomial growth if and only if H does, in which case we have Γ(G) = Γ(H).

Proof. If G is generated by a finite set S ⊂ G, then H is generated by a finite set R ⊂ G, due
to Proposition 2.64. Then G is also generated by R ∪ S and of course we have bR(n) ≤ bR∪S(n),
which implies that Γ(H) ≤ Γ(G).

Conversely, let H ⊂ G be a subgroup of finite index and of polynomial growth, generated by
some finite R ⊂ H. Let us assume temporarily that H is normal in G. Then we have a finite
quotient group G/H = {Hg1, Hg2, . . . ,Hgn}. We may assume that g1 = e and let U = {g1, . . . , gn}.
Normality implies that each g−1

i rgi ∈ H for r ∈ R and gi ∈ U . Then H is also generated by the
finite set

R′ = {g−1
i rgi : gi ∈ U, r ∈ R}.

Since all elements of G can be written as g = hgi for some h ∈ H and gi ∈ U , we see that S = R′∪U
is a finite generating set for G. In particular for all ε1, ε2 ∈ {−1, 1} and i, j ∈ {1, . . . , n} we can
write gε1i g

ε2
j = gk(ε1i,ε2j)h(ε1i, ε2j) for some h(ε1i, ε2j) ∈ H and k(ε1i, ε2j) ∈ {1, . . . , n}. There

are finitely many combinations of ε1, ε2, i, j, so let N ∈ {1, 2 . . .} be such that all h(ε1i, ε2j) can
be written as a string of, at most, N elements of R′.

Let r′ = g−1
i rgi ∈ R′ and gj ∈ U . We have

r′gj = g−1
i r(gigj)

= g−1
i rgk(i,j)h(i, j)

= (g−1
i gk(i,j))(g

−1
k(i,j)rgk(i,j))h(i, j)

= gk(−i,k(i,j))h(−i, k(i, j))(g−1
k(i,j)rgk(i,j))h(i, j)

That is, we can write r′gj as an element of U followed by a string of, at most, 2N +1 elements
of R′. Now write some g ∈ G as a string of m elements of S, that is, with letters in the form
gj ∈ U or r′ = g−1

i rgi ∈ R′.
There is a rightmost occurrence of a gj in the string that that is not part if a conjugate g−1

i rgi.
We can translate this gj right to left through the string, replacing each r′gj with some gj′w0, where
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w0 is a string of length not greater than 2N + 1 elements of R′. If another lone gk is encountered,
replace gkgj′ with gj′′w1, where w1 is a string of not more than N elements in R. After a finite
number of steps, we are left with an equivalent string in the form gJw2, where w2 is a product of
no more than m(3N + 1) elements of R′.

Thus, every g ∈ BS
m(e) can be written as a product of one of the [G : H] elements of U by one

of the elements of BR′

m(3N+1)(e). It follows that bS(m) ≤ [G : H]bR′(m(3N +1)), which is bounded

above by a polynomial of degree Γ(H). Therefore, Γ(G) ≤ Γ(H).
Even if H is not normal in G, the intersection N =

⋂
g∈G

g−1Hg is normal in G. Note that if

g′ = hg for some g ∈ G and h ∈ H, we have

g′−1Hg′ = (hg)−1H(hg) = g−1h−1Hhg = g−1Hg

Hence ifH has finite index inG, it has finitely many conjugate subgroups. ThenN is an intersection
of finitely many subgroups of finite index and thus has finite index in both G and H, which means
Γ(N) ≤ Γ(H) and Γ(G) ≤ Γ(N), as we have just proved. ■

We have shown in Example 4.9 that finitely generated abelian groups have polynomial growth.
Let us do better and prove something much stronger:

Proposition 4.13. Finitely generated nilpotent groups have polynomial growth.

Proof. We prove by induction on the length of the lower central series, where the first step is
complete as it is precisely Example 4.9.

For the inductive step, let G = ⟨{s1, . . . , sp}⟩ be a finitely nilpotent group with lower central
series of length N . Let g = si1 . . . siℓ be some string of elements of S = {s1, . . . , sp}. If G were
abelian, one could put any such string in the simple form sm1

1 . . . s
mp
p with |m1|+ . . .+ |mp| ≤ ℓ by

repeatedly swapping elements with their neighbour to the left to ensure all occurrences of s1 come
first, then all occurrences of s2, and so on. Since G is merely nilpotent, any swap made along the
way can generate non-trivial commutators, as g1g2 = g2g1[g1, g2]

Every element of S present in the string will have to swap places with, at most, ℓ other elements
of S in order to be placed in its adequate position. This will generate no more than ℓ2 commutators
in the form [si, sj ] (elements of G1) that have to be inserted into an appropriate position so that
the string remains equal to g. This means that every element of S present in the string will also
have to swap places with possibly each one of these commutators, adding ℓ3 entries to the string
that have the form [[si, sj ], sk], which are elements if G2. We proceed as such, swapping elements
of S with commutators as needed.

The result will be an equivalent string g = sm1
1 . . . s

mp
p w, where w is a product of, at most ℓ2

elements of G1, ℓ
3 elements of G2, and so on. Of course, no elements of GN will be needed because

we can commute with elements of GN−1 as needed.
Applying the inductive hypothesis, we know that there is some K > 0 such that w is one of no

more than K

(
N−1∑
i=2

ℓi
)Γ(G1)

≤ KℓNΓ(G1) possible elements of G1. Since we know that there are,

at most, 2p
(
ℓ+p
p

)
≤ 2pℓp elements of G in the form sm1

1 . . . s
mp
p with |m1| + . . . + |mp| ≤ ℓ, we are

able to bound the growth function of G with respect to S by the expression Kℓp+NΓ(G1), which
implies Γ(G) ≤ p+NΓ(G1). ■

Propositions 4.12 and 4.13 are combined in an important result. We say that a group is almost
nilpotent if it has a nilpotent subgroup of finite index (similarly for almost abelian or almost
solvable groups). Thus:

Corollary 4.14. Finitely generated almost nilpotent groups have polynomial growth.

Gromov’s Theorem is the much more interesting converse of this Corollary: Groups of poly-
nomial growth must always be almost nilpotent. Gromov’s proof relied on the following previous
results, respectively by Tits (Corollary 1 on [Tit72]) and Wolf (Theorem 4.8 on [Wol68])

Theorem 4.15. A finitely generated subgroup of a Lie group with finitely many components either
contains a free group with at least two generators or a solvable group of finite index

Theorem 4.16. A finitely generated solvable group either has exponential growth or is almost
nilpotent.
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By combining both results we obtain a partial converse to Corollary 4.14:

Lemma 4.17. If a finitely generated subgroup of a Lie group with finitely many components has
polynomial growth, then it is almost nilpotent.

Our objective henceforth will be to extend this result to all groups of polynomial growth,
acquiring a better understanding of the growth rate along the way. An obvious next step will be
to seek a version of Proposition 4.12 for subgroups of infinite index.

To do so we return our attention to metric aspect of the growth function. Propositions 2.67
and 4.3 tell us that there is a pseudometric on G/H built from the metric on G (here we do not
need to see G/H as a group, merely as the set of left cosets). Looking back at the definition we
have

d(Hg,Hh) = inf{d(g′, h′) : g′ ∈ Hg, h′ ∈ Hh}.

Since the metric on G only takes integer values, we notice that d(Hg,Hh) = 0 implies that
d(g′, h′) = 0 for some g′ ∈ Hg and h′ ∈ Hh. Thus Hg = Hh. Therefore, the pseudometric induced
on G/H is an actual metric in this case. This space has the following useful property:

Definition 4.18. A metric space is said to have the integral connectivity property if for all a, b ∈
{1, 2 . . .} and x ∈ X we have Ba(Bb(x)) = Ba+b(x).

Proposition 4.19. Let X be a metric space such that d(x, x′) ∈ Z for all x, x′ ∈ X. Then the
following are equivalent:

1. X has the integral connectivity property.

2. For all points x0, xp ∈ X with d(x0, xp) = p there are x1, . . . , xp−1 ∈ X with d(xi−1, xi) = 1
for all i ∈ {1 . . . , p}.

Proof. We begin by assuming the first property and proving the second. Let x0, xp ∈ X with
d(x0, xp) = p. Then xp ∈ Bp(x0) ⊂ B1(Bp−1(x0)). We see that xp must be contained in
B1(Bp−1(x0))\Bp−1(x0) (Otherwise, d(xp, x0) ≤ p−1). Thus there must be some xp−1 ∈ Bp−1(x0)
with d(xp, xp−1) = 1. Also, we have

p = d(x0, xp) ≤ d(x0, xp−1) + d(xp−1, xp) = d(x0, xp−1) + 1.

Thus d(x0, xp−1) = p− 1. We may then proceed inductively with xp−1.
For the other implication, note that the inclusion Ba(Bb(x)) ⊂ Ba+b(x) is true for every metric

space. For the converse inclusion, let x′ ∈ X with d(x, x′) = p ≤ a + b and p > b (if p ≤ b
the inclusion x′ ∈ Ba(Bb(x)) is immediate). Then there are x = x0, x1, . . . , xp = x′ such that
d(xi−1, xi) = 1. If i > j we have

d(xi, xj) ≤ d(xi, xi−1) + . . .+ d(xj+1, xj) = i− j.

In particular, d(xb, x0) ≤ b and d(xp, xb) ≤ p− b ≤ a. Thus xp ∈ Ba(Bb(x0)). ■

Proposition 4.20. Let G be a finitely generated group endowed with the metric induced by the
finite generating set S = {s1, . . . , sn}. Then G has the integral connectivity property

Proof. We apply Proposition 4.19 by using the alternative definition. Given x0, xp ∈ X, we write
xp = x0(x

−1
0 xp), where x

−1
0 xp = sj1 . . . sjp is some minimal string of elements of S. Then we can

make xi = x0sj1 . . . sji . Indeed we have

0 < d(xi−1, xi) ≤ |(x0sj1 . . . sji−1)
−1(x0sj1 . . . sji)|S = |sji |S = 1.

■

Corollary 4.21. Let G be a finitely generated group and S ⊂ G be a finite generating set. Then
bS(n) ≤ bS(1)

n.

Proof. Due to Proposition 4.20 we have, with respect to the metric induced on G by S, the inclusion
Ba+b(e) ⊂ Ba(Bb(e)) for all positive integers a, b. Then bS(a + b) ≤ bS(a)bS(b). In particular,
bS(n) ≤ bS(1)bS(n− 1) ≤ . . . ≤ bS(1)

n. ■
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It turns out that this property is inherited by G/H:

Proposition 4.22. Let X be a metric space such that d(x, x′) ∈ Z. Let f : G → Iso(X) be a
metric action. If X has the integral connectivity property, then so does X/G (here, X/G is an actual
metric space due to the fact that the metric on X takes only integer values).

Proof. Again we use the alternative definition from Proposition 4.19. We take OG(x0), OG(xp) ∈
X/G with d(OG(x0), OG(xp)) = p. Since the metric of X takes only integer values, we may assume
that d(x0, xp) = p (that is, we assume that x0 and xp are the elements of their respective classes
that are as close as possible to each other). There must be a a sequence x0, x1, . . . , xp with
d(xi−1, xi) = 1. We claim that d(OG(xi−1), OG(xi)) = 1

p = d(OG(x0), OG(xp)) ≤ d(OG(x0), OG(x1)) + . . .+ d(OG(xp−1), OG(xp))

≤ d(x0, x1) + . . .+ d(OG(xi−1), OG(xi)) + . . . d(xp−1, xp)

= d(OG(xi−1), OG(xi)) + p− 1.

Thus d(OG(xi−1), OG(xi)) ≥ 1. Since we know that d(OG(xi−1), OG(xi)) ≤ d(xi−1, xi) = 1, we
have the needed equality. ■

Lemma 4.23. Let X be an infinite metric space with the integral connectivity property. Each ball
Br(x), r ∈ {0, 1, 2, . . .}, x ∈ X has at least r + 1 elements.

Proof. Fix some r and x. If Br(x) is infinite we are done. Otherwise there is some x′ ∈ X with
d(x, x′) > r. Then we have a sequence x = x0, x1, . . . , xp = x′ with p = d(x, x′) and d(xi−1, xi) = 1.
Note that each xi ∈ Bi(x), which means #Br(x) ≥ p+ 1 ≥ r + 1. ■

Proposition 4.24. Let G be a finitely generated group of polynomial growth and let H ⊂ G be a
finitely generated subgroup of infinite index. Then H has polynomial growth and Γ(H) < Γ(G).

Proof. We may assume that G is finitely generated by some S such that H is generated by some
S′ = S ∩H. Due to the previous lemma, we know that the ball in G/H centered at He with radius
r has at least r + 1 distinct elements Hx0, . . . ,Hxr, where we may assume d(Hxi, He) = d(xi, e)
because the distance taking integer values implies that the infimum of the distances does achieve
a minimum in this case.

For all h ∈ H, we have |h|S ≤ |h|S′ which implies that the ball B′ of radius r in H centered at
the identity w.r.t. S′ in contained in the concentric ball of radius r in H w.r.t. S. Hence we have
B′ ⊂ Br(e) ∩H.

Consider the sets B′xi of all elements xxi, for all x ∈ B′. Since B′ ⊂ H, we know that
each pair B′xi, B

′xj is disjoint, as xi and xj belong to different classes of G modulo H. Since
d(Hxi, He) = d(xi, e) we have that x0, . . . , xr ∈ Br(e). Thus B

′xi ⊂ B2r(e). We have shown that
(r + 1) disjoint copies of B′ are contained within the ball of radius 2r in G. Thus

#B′ ≤ #B2r(e)

(r + 1)
≤ K(2r)Γ(G)

(r + 1)
< K(2r)Γ(G)−1

Where K is the constant in the definition of growth and r is taken arbitrarily. Thus Γ(H) ≤
Γ(G)− 1. ■

4.3 Group growth and exact sequences

In order to make use Proposition 4.24 we are going to need a condition that ensures that a subgroup
with infinite index of a group of polynomial growth is finitely generated. This will suffice:

Proposition 4.25. Let G a group of polynomial growth. Let f : G → H be a surjective group
homomorphism such that imf contains an infinite, cyclic group. Then ker f is finitely generated.

Proof. Choose some s0 ∈ G such that f(s0) is a generator of the infinite cyclic subgroup of H. If
S = {s0, s1, . . . , sn} ⊂ G is a finite generating set containing s0, note that {s0, s1sk1

0 , . . . , sns
kn
0 }

(with each ki ∈ Z) is still a generating set. By setting ki = −f(si) for all i ∈ {1, 2, . . . , n}, we get
that {s1sk1

0 , . . . , sns
kn
0 } ⊂ ker f . Thus by replacing S we may assume that S \ {s0} ⊂ ker f .
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Consider the nested sequence of subgroups {Gi}∞i=0 defined as such

Gi = ⟨{sj0sks
−j
0 : k ∈ {1, . . . , n}, j ∈ {−i, . . . , i}}⟩.

Note that each Gi ⊂ ker f , since sk ∈ ker f =⇒ sj0sks
−j
0 ∈ ker f , due to the normality of the

kernel. Also, if g ∈ ker f , then g can be written as a string of elements of S such that s0 and s−1
0

appear the same amount of times, which we can call N . A bit of combinatorics will convince one
that then we must have g ∈ GN . Thus

ker f =

∞⋃
i=0

Gi.

Note that, since each Gi is finitely generated, no more work is needed if the sequence of
subgroups halts, i.e., if Gi = ker f for some i ∈ {0, 1, . . .}. Assuming the contrary, we have
a sequence {gi}∞i=1 with each gi = sji0 skis

−ji
0 with ki ∈ {1, . . . , n} and j ∈ {−i, i} such that

gi /∈ Gi−1.
Let Si = {0, 1}i (The i-times Cartesian product of the set {0,1}). Define the following function

Fi : Si → ker f

(e1, . . . , ei) 7→ ge11 . . . geii

This is an injection: Assume that there are E = (e1, . . . , ei) and E′ = (e′1, . . . , e
′
i), two different

elements of Si such that Fi(E) = Fi(E
′). Let I ∈ {1, 2, . . .} be the maximum index such that

eI ̸= e′I (We may assume that eI = 1 and e′I = 0). Thus

ge11 . . . geii = g
e′1
1 . . . g

e′i
i =⇒ ge11 . . . geII = g

e′1
1 . . . g

e′I
I

=⇒ ge11 . . . gI = g
e′1
1 . . . g

e′I−1

I−1

=⇒ gI = g
eI−1

I−1 . . . g
e1
1 g

e′1
1 . . . g

e′I−1

I−1 ,

a contradiction, since all terms on the right are elements of GI−1. Thus imFi ⊂ ker f contains at
least #Si = 2i elements. Applying the group norm | − | induced by the generating set S we have

g ∈ imFi =⇒ |g| ≤
i∑

j=1

|gj | =
i∑

j=1

|s±i
0 skj

s∓i
0 | ≤

i∑
j=1

(2i+ 1) = (2i+ 1)i

That is, if the sequence {Gi}∞i=0 doesn’t halt, then for all i ∈ {1, 2, . . .} the ball of radius (2i+ 1)i
has cardinality bounded below by 2i, while by hypothesis we know that it must be bounded above
by a polynomial with degree Γ(G) + 2 (in reality we have only used the fact that the growth is
less-than-exponential). ■

Corollary 4.26. The commutator subgroup of a group of polynomial growth is finitely generated.

Proof. If the commutator is of finite index, then by Proposition 2.64 it must be finitely generated.
Otherwise, by Proposition 2.61, the commutator is the kernel of a surjective homomorphism onto
a direct sum of finitely many cyclic groups, one of which being infinite. ■

Proposition 4.25 is sometimes put in a different language. We use the term exact sequence of
groups to refer to a sequence of groups {Gi}∞i=0 and groups homomorphisms {fi : Gi → Gi+1}∞i=0

such that
ker fi+1 = imfi.

The most ubiquitous exacts sequences are short, meaning they have the form

{e} → A
f→ B

g→ C → {e},

where {e} is the trivial group and the rightmost and leftmost arrows are the only possible group
homomorphisms in this case. Note that we have f injective and g surjective. We often identify
A with imf = ker g ⊂ B and C with B

ker g = B/A. Reciprocally, if B is any group and A ⊂ B is
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any normal subgroup, then the inclusion A → B and the quotient B → B/A define a short exact
sequence.

Thus Proposition 4.25 says that if B is of polynomial growth and C has Z as a subgroup, then
A is finitely generated. Often, we can say something about a group that is part of a short exact
sequence based on properties of the two other groups. The following is a classic example:

Proposition 4.27. Let {e} → A
f→ B

g→ C → {e} be a short exact sequence. Then A and C are
solvable if and only if B is solvable.

Proof. Suppose B is solvable. If A(m) and B(m) are them-th terms of the derived series of A and B,
respectively, we can show that A(m) ⊂ B(m) inductively on m (where we are using the appropriate
identification of A with a subgroup of B): For m = 1, simply note that the commutator of a
subgroup is contained in the commutator of the entire group. But if A(m) ⊂ B(m), then B(m+1)

is the commutator of B(m), and thus A(m+1) ⊂ B(m+1) (we have proved, more generally, that
subgroups of solvable groups are solvable).

Similarly, we prove by induction that if C(n) is the n-th term of the derived series of C,

then C(n) = B(n)A
A (where B(n)A = {ba : b ∈ B(n), a ∈ A}). First we note that for all

Ab1, Ab2 ∈ B/A we have [Ab1, Ab2] = A[b1, b2]. Thus [C,C] = [B,B]A
A . Inductively, since C(n+1) is

just the commutator of C(n), we have C(n+1) = [C(n), C(n)] = [B(n),B(n)]A
A = B(n+1)A

A .
Conversely, suppose and A and C are both solvable, with derived series of lengths m and n,

respectively. We know that {e} = C(n) = B(n)A
A . Thus B(n) ⊂ A. But then B(n+i) ⊂ A(i) for all

i ∈ {1, 2, . . .}. In particular, B(m+n) ⊂ A(n) = {e}, and we conclude that B is solvable. ■

More appropriate to our discussion we have:

Proposition 4.28. Let {e} → A
f→ B

g→ Z → {e} be a short exact sequence, where B is of
polynomial growth. If A has a solvable subgroup of finite index, then so does B.

Proof. We know from Proposition 4.25 that A is finitely generated. Again, we see A as a subgroup
of B through the identification provided by f . There is some M ⊂ A solvable with finite index.
From Proposition 2.63 we know that A has finitely many subgroups with index q = [A : M ]. Let
A′ ⊂ A be the intersection of all subgroups of A with index q (A′ is itself solvable and has finite
index on A) and s ∈ B such that g(s) = 1 ∈ Z. Let B′ ⊂ B be the subgroup generated by A′∪{s}.

The subgroup A′ is normal in B′: If b ∈ B′, we must show that b−1A′b ⊂ A′. This is certainly
true if b ∈ A′. Thus it is enough to show that s−1A′s ⊂ A′. Every a ∈ A′ is an element of every
subgroup of A with index q. But a conjugate of such a group by s must also be contained in A,
since A is normal in B and s ∈ B. Thus s−1as is an element of every subgroup of A with index q
and thus we have s−1A′s ⊂ A′.

Consider the kernel of the restriction g : B′ → Z. It consists of the words

sk1a1s
k2a2 . . . aNs

kN+1 ,

k1 + k2 + . . .+ kN+1 = 0.

We can always rearrange such words to be a combination of conjugates of elements of A′ by
powers of s, replacing sk1a1s

k2a2s
k3 with sk1a1s

−k1sk1+k2a2s
−k1−k2sk1+k2+k3 , and so on. Due to

A′ being normal, all of such words must then be in A′, which implies that A′ is the kernel of g,
which is the same as A ∩B′.

As in the beginning of the proof of Proposition 4.25, we may assume that B is generated by a
set {s, s1, . . . , sn}, with si ∈ A for all i ∈ {1, 2, . . .}. Thus we have B = AB′ and

[B : B′] = [AB′ : B′] = [A : A ∩B′] = [A : A′] <∞;

[B : B′][B′ : A′][A′ :M ] = [B :M ] = [B : A][A :M ] = ∞;

=⇒ [B′ : A′] = ∞.

The image of the restriction g : B′ → Z must then be infinite and thus isomorphic to Z itself.

Therefore, the restricted sequence {e} → A′ f→ B′ g→ g(B′) → {e} remains exact. Since both A′

and g(B′) ⊂ Z are solvable, we apply Proposition 4.27 and obtain that B′ is solvable. ■
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4.4 Growth rate and dimension

An important aspect of the growth rate we will investigate is how large a ball of a given radius is
when compared to balls of fixed lesser radius. More specifically, we wish to cover the ball Bn(e)
with translates of the ball of smaller radius Bε(e) and obtain an estimate of the number of balls
that is needed (note how this can remind one of the Hausdorff dimension).

Theorem 4.29. Let G be a finitely generated group with a fixed set of generators. Let r, ε ∈
{1, 2, . . .}, with ε ≤ r. The ball Br(e) can be covered by #Br(e)

#Bε(e)
balls of radius 3ε. Moreover, if the

group is of polynomial growth rate d, there is some K > 0 (independent of r, ε) such that a cover

with K
(
r
ε

)d
balls is possible.

Proof. Let S ⊂ G be a maximal 2ε-separated net of Br−ε(e) as per Remark 2.10. The balls Bε(s)
for s ∈ S are pairwise disjoint and contained in Br(e). Thus

#S ≤ #Br(e)

#Bε(e)
.

The balls B2ε(s) for all s ∈ S cover Br−ε(e), since S is a 2ε-net. The balls B3ε(s) = Bε(B2ε(s))
cover Br(e) = Bε(Br−ε(e)), due to the integral connectivity property.

Further assuming that the group is of polynomial growth, let K1,K2 positive constants such
that K1r

′d ≤ #Br′(e) ≤ K2r
′d for all positive integers r′. By combining this with inequality above

we see that the ball Br(e) can be covered by #Br(e)

#Bε(e)
≤ K2

K1

(
r
ε

)d
balls of radius 3ε. ■

We will now combine Theorems 3.38 and 4.29 into a generalization of Example 3.37. As before,
we take a finitely generated group G of polynomial growth rate d (in the example we took the
group Zk) and denote as d the metric induced on G by some fixed set of generators. Then we
define a metric space Gn over the same set G but with the scaled metric dn = 1

nd.

The ball Br(en) of radius r centered at the identity in Gn is just the ball Bnr(e) of radius
nr centered at the identity in G but with the distances shrunk by a factor of n. Since Bnr(e)
can be covered by K(nrnε )

d = K( rε )
d isometric copies of Bnε(e), we know that Br(en) can be

covered by K( rε )
d copies of Bε(en). This implies that the family of balls {Br(en)}∞n=0 is uniformly

totally bounded. Each space Gn is of course proper since all balls are finite in cardinality and thus
compact. Thus the sequence {(Gn, en)}∞n=1 satisfies the hypothesis of Theorem 3.38 and we have
a limit space (YG, y0). This space happens to have particularly nice properties.

Proposition 4.30. Let G be a group of polynomial growth rate d and let YG be as above. We have

1. YG is connected and locally path connected.

2. YG is a locally compact and homogeneous space.

3. dim(YG) ≤ d.

Proof.

1. Denote by δ the metric on YG. Let a, b ∈ YG. By applying Proposition 3.30 we know that
there is a sequence of metrics {δn}∞n=1, each agreeing with both δ and dn on the disjoint
union Gn ⊔ YG, such that {Gn} converges to {YG} w.r.t. {δn}. Each space Gn is just G
with the metric scaled by a positive factor λn ≤ 1/n (the sequence {λn}∞n=1 is by construction
a subsequence of {1/n}∞n=1). By passing to a subsequence, we may assume that there are
an, bn ∈ Gn such that δn(an, a) < λn and δn(bn, b) < λn.

By applying Proposition 4.19 toGn we know that there is a sequence an = x0, . . . , xi, . . . , xp =

bn, each belonging to Gn such that dn(xi−1, xi) = λn and p = dn(an,bn)
λn

. Setting j to p
2

rounded down to the nearest integer and applying the triangle inequality j times we see that

dn(an, xj) ≤ jλn

≤ dn(an, bn)

2
+ λn

≤ δ(a, b)

2
+ 2λn.
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Very similarly:

dn(xj , bn) ≤ (j + 1)λn

≤ dn(an, bn)

2
+ 2λn

≤ δ(a, b)

2
+ 3λn.

By choosing some yn ∈ YG such that δn(yn, xj) < λn we get

δ(a, yn) ≤
δ(a, b)

2
+ 3λn,

δ(yn, b) ≤
δ(a, b)

2
+ 4λn.

Then, the resulting sequence {yn}∞n=1 can be seen to be a Cauchy sequence that by complete-

ness converges to some y ∈ YG satisfying the inequalities δ(a, y) ≤ δ(a,b)
2 and δ(y, b) ≤ δ(a,b)

2 .
Note that by applying the triangle inequality once more, we have δ(a, b) ≤ δ(a, y) + δ(y, b),
which would imply the contradiction δ(a, b) < δ(a, b) if either of the inequalities above were
strict. Thus we have the interesting property that for all a, b ∈ YG there is some y ∈ YG that
is precisely halfway between a and b:

δ(a, y) =
δ(a, b)

2
= δ(y, b).

By applying induction, the above implies that for all points t ∈ [0, 1] that can be written as
a integer multiple of 2−k for some k ∈ {1, 2, . . .} there is some yt ∈ YG such that

δ(a, yt) = tδ(a, b),

δ(yt, b) = (1− t)δ(a, b).

All of the points yt are contained in the ball of radius δ(a, b) centered at either a or b. By
applying Proposition 2.13 we obtain a path [0, 1] → YG with 0 7→ a and 1 7→ b, not only
showing that YG is path connected but all of the balls are path connected, which in turn
implies that YG is locally path connected.

2. The limit space being proper is one of the things guaranteed by Theorem 3.38, which implies
that the space is locally compact. Homogeneity is proved by Proposition 3.39, since a metric
induced by a group norm is always homogeneous and this property is directly inherited by
each Gn.

3. The ball of radius 1 centered at the origin of YG is covered by 1
εd

balls of radius ε. Thus we
can bound its d-dimensional Hausdorff measure, limiting also its dimension:

Hd(YG) ≤
1

εd
(2ε)d ≤ 2d.

By Corollary 2.33 we only need to show that there is a countable, dense subset of YG. This is
possible because YG is a proper space: each closed ball has a countable dense subset because
it is compact. The union of the countable subsets of YG that are dense in each of the closed
balls with rational radii centered at some arbitrary point will also be countable and will be
dense in the entire space.

■

From Lemma 2.71 we obtain

Proposition 4.31. The group of bijective isometries Iso(YG) is a Lie group with finitely many
connected components.
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4.5 Some necessary algebra

We now invoke an important result from the theory of Lie groups that is going to assist us ([Rag72],
Theorem 8.29)

Theorem 4.32 (Jordan–Schur Theorem for Lie groups). Let L be a Lie group with finitely many
connected components. There is a positive number k(L) such that every finite subgroup of H ⊂ L
has an abelian subgroup H ′ ⊂ H such that [H : H ′] ≤ k(L).

Corollary 4.33. Let L be a Lie group with finitely many connected components. Let G be a finitely
generated group such that, for all n ∈ {1, 2, . . .} there is a group homomorphism fn : G → L such
that n ≤ #imfn < ∞. Then there is a subgroup of G′ ⊂ G such that [G : G′] < ∞ and
[G′ : [G′, G′]] = ∞. In particular, G′ admits a surjective homomorphism f : G′ → Z.

Proof. Let fn : G → L be the required homomorphism. Since its image is finite for each n, we
apply Theorem 4.32 and obtain an abelian subgroup Hn ⊂ imfn with [imfn : Hn] ≤ k(L). By
Proposition 2.65, there is some Gn ⊂ G such that [Gn, Gn] ⊂ ker fn ⊂ Gn and Hn = Gn

ker fn
. We

also have

#
G

Gn
= #

G/ker f
Gn/ker fn

=
#imfn
#Hn

≤ k(L),

#[Gn : [Gn, Gn]] ≥ [Gn, ker fn] = #Hn =
#imfn

[imfn : Hn]
≥ n

k(L)
.

Consider the subgroup G′ =
∞⋂

n=1
Gn. From Proposition 2.63 we see that this is really an intersection

of finitely many subgroups of finite index and thus the index of G′ in G is also finite. Note that

[G : [G′, G′]] ≥ [Gn : [Gn : Gn]] ≥
n

k(L)
.

Since n
k(L) can be made arbitrarily large, we see that the commutator of G′ has infinite index

in G. But G′ has finite index in G and thus [G : G′][G′ : [G′, G′]] = ∞, which implies that
[G′ : [G′, G′]] = ∞.

In conclusion, note that the index of the commutator of G′ being infinite is equivalent to its
abelianization being infinite in cardinality. From Proposition 2.64 we know that G′ is finitely
generated, which in turn implies its abelianization also is finitely generated. Thus from Corollary
2.62 we see that there is a surjective homomorphism from the abelianization to Z. ■

Some of the previous results will be combined in this Lemma:

Lemma 4.34. Let G be a finitely generated group of polynomial growth and L be a Lie group
with finitely many connected components. Assume that G has a subgroup of finite index H ⊂ G
satisfying one of the following:

• H is abelian.

• For all n ∈ {1, 2, . . .} there is a group homomorphism fn : H → L with #imf ≥ n.

Then G is almost nilpotent.

Proof. We prove by induction on d = Γ(G). If d = 0, the group is finite and even the trivial group
{e} ⊂ G is nilpotent with finite index.

Let H ⊂ G be the subgroup of finite index satisfying the hypothesis (note that H must also be
infinite). One of three cases apply:

• If H is abelian, then due to Proposition 2.61 we know that H is direct sum of finitely many
cyclic groups, one of them being isomorphic to Z. The projection H → Z is a surjective
homomorphism.

• If there are homomorphisms fn : H → L with finite but arbitrarily large images, from
Corollary 4.33 we obtain H ′ ⊂ H with [H : H ′] < ∞ and a surjective homomorphism
H ′ → Z. We may replace H with H ′ for simplicity, since it will also have finite index in G
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• If there is a homomorphism f : H → L with infinite image, then from Lemma 4.17, imf is
an infinite group which has a solvable subgroup of finite index K ⊂ imf . That is, K has a
finite derived series K(0) ⊃ K(1) ⊃ . . . ⊃ {e}. Since K(0) = K is infinite, one of the terms of
the sequence must have infinite index on K. Replacing K(0) with the last term with finite
index (and H with the inverse image under f of that term), we have that K(1) = [K(0),K(0)]
has infinite index. The composition of f with the abelianization map K(0) → K(0)

/K(1),
followed by the projection map K(0)

/K(1) → Z obtained in Proposition 2.61 is a surjective
homomorphism H → Z.

Thus we have a surjective group homomorphism g : H → Z, regardless of which case. Since Z
is abelian, we know that ker f contains the commutator [H,H]. Thus

[H : [H : H]] ≥ [H, ker f ] = #Z = ∞.

We know from Corollary 4.25 that ker g is finitely generated. Therefore, Proposition 4.24 tells
us that the kernel has polynomial growth rate bounded above by d−1. We then apply the inductive
hypothesis: ker g is almost nilpotent and, a fortiori, almost solvable. Thus we have the short exact
sequence

{e} → ker g
f→ H

g→ Z → {e}

Proposition 4.28 implies that H is almost solvable. Finally, Theorem 4.16 implies that it must be
almost nilpotent. ■

4.6 A Proof of Gromov’s Theorem

Let us rehash the ideas from Proposition 4.30. A certain group of polynomial growth G gives
rise to a sequence of metric spaces {Gn}∞n=1, each being identical to G excepts for having its
metric scaled be a factor λn, with the sequence {λn}∞n=1 converging to zero. Our understanding
of Gromov’s convergence confirms that the sequence of spaces converges to (or has a subsequence
that converges to) a very nice pointed space (YG, y0), endowed with a metric δ. The theory of
Gleason, Montgomery and Zippin then implies that the group of bijective isometries of this space
is a Lie group with finitely many connected components L = Iso(YG).

Let us now see this from the perspective of Proposition 3.35, Gromov’s Isometry Lemma. Each
group Gn acts isometrically on itself, with each g′ ∈ Gn defining an isometry fg′,n ∈ Iso(Gn),
taking some g ∈ Gn to g′g, and we have

dn(g, g
′g) = λn|g−1g′g|.

In particular, dn(fg′,n(e), e) = λn|g′| ≤ |g′|. Since the limit space YG is proper, this matches
exactly with the hypothesis of the Isometry Lemma and thus we obtain a subsequence of {fg′,n}∞n=1

that converges to some fg′ ∈ L.
Now let g1, g2 ∈ Gn, defining fg1 , fg2 ∈ L. Reminding ourselves of the definition of convergence

of functions between pointed metric spaces, we know that for all ε > 0 and r ≥ 0 there are η > 0
and n0 ∈ {1, 2, . . .} such that, for all n > n0:

δn(g, y) < η =⇒ δn(fg1,n(g), fg1(y)) < ε and δn(fg2,n(g), fg2(y)) < ε.

Where δn is a metric on Gn ⊔ YG that coincides with both dn and δ, the points g ∈ Gn and
y ∈ YG are in the balls of radius r centered at the distinguished points of their respective spaces,
and n ≥ n0. Let g

′ ∈ Gn such that δn(g
′, fg1(y)) < min(ε, η). We have the following inequalities:

δn(fg2,n(fg1,n(g)), fg2(fg1(y))) ≤ dn(fg2,n(fg1,n(g)), fg2,n(g
′)) + δn(fg2,n(g

′), fg2(fg1(y)))

≤ dn(fg1,n(g), g
′) + δn(fg2,n(g

′), fg2(fg1(y)))

< dn(fg1,n(g), g
′) + ε

< δn(fg1,n(g), fg1(y)) + δn(fg1(y), g
′) + ε

< 3ε.

Thus we see that the sequence of isometries {fg2,n ◦ fg1,n}∞n=1 converges to fg2 ◦ fg1 . Since G is
countable (due to the fact of it being finitely generated), we apply a diagonalization argument and
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obtain a group homomorphism F : G→ L given by g′ 7→ fg′ , which is a metric action of G on YG.
We may write g′y instead of F (g′)(y). Let us determine kerF .

Let g′ ∈ G and r ≥ 0. We define the following value

∆r(g
′) = sup{|g−1g′g| : g ∈ Br(e)}.

Lemma 4.35. Let F : G→ L be as above. We have

kerF = {g′ ∈ G : lim
n→∞

λn∆λ−1
n
(g′) = 0}.

Proof. Let g′ ∈ G and y ∈ YG such that δ(y, g′y) > ε for some ε > 0. Let r > δ(y, y0). There
is some n0 ∈ {1, 2, . . .}, such that, for all n ≥ n0 we may choose g ∈ Gn with dn(g, e) ≤ r,
δn(g, y) ≤ ε/4 and δn(g

′g, g′y) ≤ ε/4. Therefore

δ(y, g′y) ≤ δn(y, g) + dn(g, g
′g) + δn(g

′g, g′y) ≤ dn(g, g
′g) + ε/2

=⇒ dn(g, g
′g) = λn|g−1g′g| ≥ ε/2

=⇒ λn∆r(g
′) ≥ ε/2

=⇒ lim
n→∞

λn∆λ−1
n
(g′) ̸= 0.

Conversely, suppose there is some ε > 0 such that for all n0 ∈ {1, 2, . . .} we have n ≥ n0 such
that λn∆λ−1

n
(g′) ≥ ε. Then there is some g ∈ G with dn(g, e) ≤ λ−1

n and λn|g−1g′g| ≥ ε. Take

some y ∈ Y with δ(y, y0) ≤ λ−1
n and δn(g, y) ≤ ε/4. We may also assume that δn(g

′y, g′g) < ε/4.
We obtain

dn(g, g
′g) ≤ δn(g, y) + δ(y, g′y) + δn(g

′y, g′g) ≤ δ(y, g′y) + ε/2

=⇒ d(y, g′y) ≥ ε/2

=⇒ g′ /∈ kerF.

■

Consider what it means for the function ∆r(g
′) to be bounded as r → ∞. Let C : G→ Aut(G)

be the conjugation action given by C(g)(g′) = g−1g′g. The orbit Og′(G) w.r.t. the action C is
finite if and only if ∆r(g

′) is bounded. As we have seen in Remark 2.55, this is equivalent to the
stabilizer of g′ having finite index as a subgroup of G.

Theorem 4.36 (Gromov’s Theorem). All groups of polynomial growth have a nilpotent subgroup
of finite index.

Proof. Let G be a group of polynomial growth. If L = Iso(YG), Lemma 4.34 tells us that we must
find some G′ ⊂ G, a subgroup of finite index, that is either abelian or endowed with homomor-
phisms G′ → L with arbitrarily large images. This is quite easy if the image of the group action
F : G→ L described above is infinite.

If the image is not infinite (i.e., the kernel of the action has finite index), there are two possi-
bilities: First, suppose that there is some fixed constant C > 0 such that ∆r(s) < C for all r > 0
and with s ranging in some finite generating set S ⊂ kerF (the kernel is finitely generated for it
has finite index). Then the stabilizer Gs of each s under the conjugation action has finite index,
and so does the intersection H =

⋂
s∈S

Gs. Every element of H commutes with every element of

kerF (see Example 2.57), and so G′ = H ∩ kerF is abelian (while having finite index).
The second possibility is more interesting, for we are going to use a different artifice to create

arbitrarily large homomorphic images of kerF on L (that is, we set G′ = kerF , which has finite
index). Lemma 2.73 says that L as a topological group has the No Small Subgroups property, i.e.,
there is a open set U ⊂ L containing the identity that contains no subgroups. We may assume
that U is a basic open set: there is some ε′ > 0 and a finite collection of points y1, . . . , yk ∈ Y such
that all isometries ℓ ∈ L that satisfy δ(yi, ℓ(yi)) < ε′ for all i ∈ {1, . . . , k} are in U . Let R > 0 be
the maximum distance of all yi to the origin y0.

Let ℓ ⊂ U be an isometry that generates in L a subgroup of order N . Consider what happens
if we assume that δ(y, ℓ(y)) < ε′/N: for all y ∈ BR+ε′(y0):

δ(y, ℓp(y)) ≤ δ(y, ℓ(y)) + δ(ℓ(y), ℓ2(y)) + . . . , δ(ℓp−1(y), ℓp(y)) <
pε′

N
≤ ε′
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We see that each of the isometries in {ℓ, ℓ2, . . . , ℓN} = ⟨ℓ⟩ is still in U , a contradiction since ⟨ℓ⟩ is
a subgroup. Thus, if we are somehow able to construct an isometry ℓ ∈ L with the property that
δ(y, ℓ(y)) < δ(y0, y)

ε′

(R+ε′)N for all y ∈ YG, we would know that #⟨ℓ⟩ > N . Let us fix ε < ε′

(R+ε′)N

and proceed on this direction.
The function r 7→ ∆r(s) is unbounded for r > 0 and s ranging in any fixed generating set

S ⊂ kerF . Proposition 4.20 tells us that for every ρ > 0 and gr ∈ Br+ρ(e) there is some
gρ ∈ Bρ(e) with d(gr, gρ) ≤ r. Thus, for all g′ ∈ G we have

d(gr, g
′gr) ≤ d(gr, gρ) + d(gρ, g

′gρ) + d(g′gρ, g
′gr) ≤ ∆ρ(g

′) + 2r

=⇒ ∆r+ρ(g
′) ≤ ∆ρ(g

′) + 2r.

Note also that, for arbitrary α ∈ G and g ∈ Br(e),

d(g, α−1g′αg) = d(αg, g′αg) ≤ ∆|αg|(g
′)

=⇒ ∆r(α
−1g′α) ≤ ∆r+|α|(g

′) ≤ ∆r(g
′) + 2|α|.

Let ε > 0. We are assuming that ∆r(s) is unbounded for r > 0 and s ∈ S. Lemma 4.35 tells
us that, for all s0 ∈ S and large enough n ∈ {1, 2, . . .}, we have

∆λ−1
n
(s0) < λ−1

n ε.

But, from unboundedness, there is some g̃ ∈ BR(e) for some R > 0 and s1 ∈ S such that
|g̃−1s1g̃| > λ−1

n ε. Let α = g̃g−1 for some g ∈ Bλ−1
n
(e) and we obtain

∆λ−1
n
(α−1s1α) ≥ |g−1α−1s1αg| = |(αg)−1s1(αg)| = |g̃−1s1g̃| > λ−1

n ε.

Since kerF ⊂ G is normal we have that s1 and s0 are conjugate. Thus by replacing α we
may assume that ∆λ−1

n
(α−1s0α) > λ−1

n ε Apply the integral connectivity property again, using the
alternative definition from Proposition 4.19. There is a sequence

e = α0, α1, . . . , αk−1, αk = α,

such that d(αi, αj) ≤ |i− j|. Thus

|∆λ−1
n
(α−1

i s0αi)−∆λ−1
n
(α−1

j s0αj)| ≤ 2|α−1
i αj | ≤ 2|i− j|.

Since ∆λ−1
n
(α−1

0 s0α0) < λ−1
n ε < ∆λ−1

n
(α−1

k s0αk), there must be some intermediate αi = β such
that

∆λ−1
n
(α−1

i s0αi) < λ−1
n ε < ∆λ−1

n
(α−1

i+1s0αi+1)

=⇒ |∆λ−1
n
(β−1s0β)− λ−1

n ε| < 2.

Since n is only required to be large enough, for all large enough n we have βn such that

|∆λ−1
n
(β−1

n s0βn)− λ−1
n ε| < 2

=⇒ lim
n→∞

|λn∆λ−1
n
(β−1

n s0βn)− ε| = lim
n→∞

2λn = 0

=⇒ lim
n→∞

λn∆λ−1
n
(β−1

n s0βn) = ε.

Define a family of actions Fn : kerF → Iso(Gn) as

Fn(g
′)(g) = β−1

n g′βng.

Note that the distance dn(Fn(g
′)(e), e) = λnd(e, β

−1
n g′βn) ≤ λn∆λ−1

n
(β−1

n g′βn) cannot be much
greater than ε as n → ∞, which again satisfies the hypothesis for Proposition 3.35. We obtain a
new action F ′ : kerF → Iso(YG) as its limit (passing to subsequences a countable amount of times
as needed).
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Consider the distance between some y ∈ YG and its image under the action of s0. We must
take a family gn ∈ Gn such that δn(gn, y) < 1/n, where δn is a metric on Gn ⊔ YG that coincides
with the metrics of both spaces on their domain. Therefore

δ(y, F ′(s0)(y)) = lim
n→∞

dn(gn, Fn(s0)(gn))

= lim
n→∞

λnd(gn, β
−1
n s0βngn)

≤ lim
n→∞

λn∆|gn|(β
−1
n s0βn)

≤ lim
n→∞

λn
λm

λm∆λ−1
m
(β−1

n s0βn)

= δ(y0, y)ε,

where above we chose a minimal m ∈ {1, 2, . . .} with λ−1
m ≥ |gn|. This is precisely what

was needed: the isometry F ′(s0) generates a subgroup of order greater than N on L, where
N ∈ {1, 2, . . .} was taken arbitrarily. Thus, #F ′(kerF ) ≥ #F ′(⟨s0⟩) = #⟨F ′(s0)⟩ > N . ■
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mathématiques de l’IHÉS, 53(1):53–78, December 1981.

[Lee11] John M. Lee. Introduction to Topological Manifolds. Springer New York, 2011.

[Lee12] John M. Lee. Introduction to Smooth Manifolds. Springer New York, 2012.

[Mil68] J. Milnor. A note on curvature and fundamental group. Journal of Differential Geom-
etry, 2(1), January 1968.

[MZ55] Deane Montgomery and Leo Zippin. Topological Transformation Groups. Interscience
Publishers, University of California, 1955.

[Rag72] M S Raghunathan. Discrete Subgroups of Lie Groups. Springer, 1972.

[Sch55] Albert S. Schwarz. A volume invariant of coverings. Proceedings of the USSR Academy
of Sciences, 105:32–34, 1955.

[Tao11] Terence Tao. 254a, notes 5: The structure of locally compact groups, and hilbert’s fifth
problem, Oct 2011. Available on terrytao.wordpress.com.

[Tit72] J Tits. Free subgroups in linear groups. Journal of Algebra, 20(2):250–270, February
1972.

[vdDW84] L van den Dries and A.J Wilkie. Gromov’s theorem on groups of polynomial growth
and elementary logic. Journal of Algebra, 89(2):349–374, August 1984.

[Wol68] Joseph A. Wolf. Growth of finitely generated solvable groups and curvature of rieman-
nian manifolds. Journal of Differential Geometry, 2(4), January 1968.

50

arxiv.org
arxiv.org
terrytao.wordpress.com

	Introduction
	Spaces and their symmetries
	Metric spaces
	Continuous extension and complete metric spaces
	Compact metric spaces
	The Hausdorff distance
	Measures and dimension

	Topological spaces
	Manifolds

	Groups and actions
	Metric actions
	Topological groups


	The Gromov-Hausdorff distance
	Convergence of compact metric spaces
	The pointed Gromov-Hausdorff distance
	Convergence of functions
	Consequences of the Isometry Lemma

	Groups of polynomial growth
	Some motivation
	Growth rate of subgroups
	Group growth and exact sequences
	Growth rate and dimension
	Some necessary algebra
	A Proof of Gromov's Theorem


