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We present an overview of a method developed for the calculation of dynamic interatomic correlations in an-
harmonic crystals based on the correlative method of unsymmetrized self-consistent field (CUSF). The quadratic
correlation momenta and the mean square relative displacements have been calculated for one-, two- and three-
dimensional classical models.
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I. INTRODUCTION

This paper is primarily an extended account of a series of
results obtained by the authors in a joint work with other col-
laborators. The main purpose is to show that on the basis
of the Correlative Method of Unsymmetrized Self-consistent
Field (CUSF) [1-4] a simple and efficient method is developed
to calculate several dynamic properties of highly anharmonic
crystals.

In a crystal there are static and dynamic correlations. Of the
first type are the correlations between the mean atomic posi-
tions. These are very strong and usually called long-range
order correlations since they are in intrinsic connection with
the localization of each atom in its lattice cell. Of the sec-
ond type, the short-range ones, are the quadratic correlation
moment (QCM) and the mean square relative displacements
(MSRD) which express the effective amplitudes of atomic vi-
brations [5,6]. These quantities hold close relationship to the
density fluctuations [7]. The importance of the dynamic cor-
relations is seen in that some melting criteria are defined in
terms of the MSRD [8-10].

The QCM and MSRD have been calculated by the dynam-
ical theory of crystal lattices [5,6] but these results are valid
only at sufficiently low temperatures [11] because this theory
relies upon the harmonic approximation and the account of an-
harmonicity on its basis by using perturbation theory is rather
complicated. Since then, several other approaches have been
developed to take into account the anharmonic effects, among
which the most prominent is the self-consistent phonon the-
ory [12-21]. In this theory, the harmonic force constants are
averaged self-consistently over a trial set of harmonic oscil-
lator functions. For low temperatures, it has faced problems
with hard-core potentials that were handled by a more ade-
quate treatment of the short-range correlations instead of us-
ing a simple cutoff procedure [19]. It should be mentioned
as well the simulation techniques widely used in recent years,
especially a Monte Carlo formalism in which the quantum me-
chanical effects are included by making a modification of the
potential energy. This formalism has its origin in a previous
illustration by Feynman [22] of the use of the path-integral

form of the partition function in statistical mechanics, and is
known as the method of the effective potential and effective
Hamiltonian [23-27].

The CUSF [1-4,28-54] method, reported in this review, is
free from the hard-core potential problem. More than that, it is
just because of the core that the one-particle probability den-
sities vanish except inside the corresponding lattice cell thus
leading to a convergence of the statistical averages. It is based
on the assumption that the classical phase probability density
[55] or the quantum density matrix [31,36,56] is not symmet-
ric with respect to the interchange of coordinates of identical
atoms. Here we restrict ourselves to the classical approach.
When there is no permutation symmetry, even in the mean-
field approximation, which is the zeroth-order one for CUSF,
one takes into account the static correlations in crystals (long-
range order) and the short-range dynamical correlations pre-
venting the unlimited approach of atoms to each other. Such
an approximation includes also the main anharmonic terms of
the power-series expansion of the potential energy. Because
of this, CUSF provides a good fit to experimental data up to
the melting temperatures. The CUSF is applicable not only to
perfect, strongly anharmonic crystals, but also to crystals with
lattice defects and surfaces [28,29,33-37]. The statistical per-
turbation theory makes more accurate the contribution of the
anharmonicity to thermodynamic functions of crystals, taking
into consideration the dynamical interatomic correlations at
intermediate and long distances. This enables one to calculate
the correlations of the atomic displacements in anharmonic
crystals, including strongly anharmonic ones. In section II,
we summarize the basic aspects of the method. In section III,
we discuss a diagram technique that has been developed in or-
der to make easier the calculation of the perturbation terms.
Some applications are shown in section IV and we finish the
paper in the section V with a few concluding remarks.

II. GENERAL FORMULAE

In the zeroth approximation of CUSF, the potential energy
of a crystal, U , is substituted by a sum of the individual self-
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consistent potentials of atoms performing anharmonic vibra-
tions near their lattice points,

U0(r1,r2, . . . ,rn) =
N

∑
i=1

ui(ri). (1)

Here, the phase probability distribution is approximated by a
product of one-particle probability densities whose configura-
tional parts

wi(ri) =
exp{−ui(ri)/Θ}R

exp{−ui(ri)/Θ}dri
(2)

as well as ui(ri) are determined by the basic equations of the
unsymmetrized self-consistent field [24-26]; Θ = kT is the
absolute temperature in energy units. Then, the phase proba-
bility density in the configurational space is written as

w(N)(r1,r2, . . . ,rN) = Aexp{−U ′/Θ}
N

∏
i=1

wi(ri), (3)

where

A−1 =
Z

exp{−U ′/Θ}
N

∏
i=1

wi(ri)dri. (4)

Here,

U ′(r1,r2, . . . ,rN) = U−U0 (5)

is taken as a perturbation. Therefore, when calculating the
statistical averages of functions of the atomic coordinates, one
can expand (3) and (4) in a power series of U ′/Θ.

The MSRD for two atoms i and j in a crystal displacements
qi = ri− Âni is given by as

Daa(i j) = (qia−q ja)
2 = q2

ia +q2
ja−2Caa(i j) . (6)

Here Â is the lattice matrix, ni are integer-components vectors,
a denotes the Cartesian components of atomic displacements
and Caa(i j) = qiaq ja is the correlation moment. We consider
a perfect crystal with pairwise central interactions

U(r1,r2, . . . ,rN) =
1
2 ∑

i 6= j
Φ

(∣∣ri− r j
∣∣) . (7)

By expanding (1) and (7) in power series of the displacements
and retaining anharmonic terms up to fourth order [2,3], the
perturbing potential (5) is written in the form

U ′ = U ′
2 +U ′

3 +U ′
4, (8)

where

U ′
2 =−1

2 ∑
i6= j

∑
α,β

Φαβ
i j qiαq jβ, (9)

U ′
3 =−1

2 ∑
i 6= j

∑
α,β,γ

Φαβγ
i j qiαqiβq jγ, (10)

U ′
4 = −∑

i 6= j
∑

α,β,γ,δ
Φαβγδ

i j [qiαqiβqiγq jδ/6− (qiαqiβq jγq jδ−

−qiαqiβq jγq jδ
0−qiαqiβ

0q jγq jδ
0)/8]. (11)

The greek letters α, β, γ, and δ stand for cartesian components,
and the zero attached to the bar denotes averaging over the
unperturbed distribution, i.e. over (3) when U ′ ≡ 0 and A = 1.
It can be seen that

qiαq jβ
0 = qiαq jβ

0δi j. (12)

In Eqs. (9-11) it has been used the notation

Φαβ...
i j =

[
∂...Φ|r|

∂xα∂xβ . . .

]

r=Â(ni−n j)
, (13)

for the derivatives of the interatomic potential. All Greek in-
dices are dummy. It follows that: U ′0 = 0. Using Eqs. (8-12),
we obtain for the variances of the atomic positions [38]

q2
ia = a2

i
0
+

1
2Θ2 ∑

k
{Φαβ(ik)Φγδ(ik)βkδk

0
(a2

i αiγi
0−

+a2
i

0
αiγi

0)+

+
1
4

Φαβγ(ik)Φδεξ(ik)[γkξk
0
(a2

i αiβiδiεi
0−

−a2
i

0
αiβiδiεi

0
)−2δiεi

0
γkξk

0
(a2

i αiβi
0−

−a2
i

0
αiβi

0
)++(a2

i αiδi
0

−a2
i

0
αiδi

0
)(βkγkεkξk

0−βkγk
0
εkξk

0
)]+

+
1
3

Φαβ(ik)Φγδεξ(ik)[βkξk
0
(a2

i αiγiδiεi
0−

−a2
i

0
αiγiδiεi

0
)+βkδkεkξk

0
(a2

i αiγi
0−

−a2
i

0
αiγi

0)]} , (14)

and for the QCM [38]

Cab(i j) =
1
Θ

Φαβ(i j)aiαi
0b jβ j

0
+

+
1

6Θ
Φαβγδ(i j)(aiαiγiδi

0
b jβ j

0−

−aiαi
0b jβ jγ jδ j

0
)+

+
1

Θ2 ∑
k

Φαγ(ik)Φβδ( jk)aiαi
0b jβ j

0
γkδk

0−

− 1
4Θ2 Φαβγ(i j)Φδεξ(i j)aiαiγiδi

0
b jβ jε jξ j

0
+

+
1

4Θ2 ∑
k

Φαβγ(ik)Φδεξ( jk)aiαi
0b jδ j

0×

×(βkγkεkξk
0−βkγk

0
εkξk

0
)+

+
1

4Θ2 Φαβγ(i j)∑
k

(Φδεξ( jk)aiαi
0b jβ jγ jδ j

0−

−Φδεξ(ik)b jβ j
0
aiαiγiδi

0
)−

− 1
4Θ2 Φαβ(i j)Φγδεξ(i j)aiαiγiδi

0
b jβ jε jξ j

0
+
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+
1

6Θ2 ∑
k

(Φαγ(ik)Φβδεξ( jk)+

+Φβγ( jk)Φαδεξ(ik))aiαi
0b jβ j

0
γkδkεkξk

0
+

+
1

6Θ2 ∑
k

(Φαγ(ik)Φβδεξ( jk)aiαi
0b jβ jδ jε j

0
+

+Φβγ( jk)Φαδεξ(ik)aiαiδiεi
0
b jβ j

0
)γkξk

0
, (15)

In Eqs. (14) and (15) the Latin indices a and b are free,
whereas the greek α, β,... are dummy. To shorten the expres-
sions in the right-hand side we write ai, αi,... instead of qai,
qαi,... The summation extends over all values k from 1 to N,
leaving out i and j. The formulae (14) and (15) are applicable
to any Bravais lattice and arbitrary dimensionality.

In the case of a n-dimensional lattice of a high symmetry,
these formulae become simpler because only moments of type

q2
α

0
and q2

αq2
β

0
are nonzero. For a perfect strongly anharmonic

crystal, the momenta in the right-hand sides are expressed as
[37]

q2
α

0
=

βn

nK2
, (16)

q2
αq2

β
0
= (1+2δαβ)

[
6(n−βn)Θ
n(n+2)K4

−
(

βnΘ
nK2

)2
]

, (17)

where βn(x) is the solution of the transcendental equation [37]

βn(x) = nx
D−(n/2+1) [x+(n+2)βn/2nx]

D−n/2 [x+(n+2)βn/2nx]
. (18)

Here Dν(z) are the parabolic cylinder functions and x is a di-
mensionless combination of the temperature and the second-
and fourth-order force coefficients x = K2

√
3/ΘK2 with

K2 =
1
n

n

∑
α=1

Kα2 , (19)

K4 =
3

n(n+2)

n

∑
α,β=1

Kα2β2 , (20)

where

Kαlβm =
∂l+m

∂ql
αqm

β
∑
n 6=0

Φ(|q− Ân|)|q=0 . (21)

The lattice matrix Â can be calculated from the equation of
state. In the case of a n-dimensional lattice of high symmetry
with strong anharmonicity up to the fourth order under hydro-
static pressure the equation of state is [37]

P = − a
nvn(a)

(
1
2

dK0

da
+

βnΘ
2K2

dK2

da
+

(n−βn)Θ
4K4

dK4

da

)
+

+P2 +PH +PQ . (22)

Here, a is the nearest neighbor distance, vn(a) is the volume
of the unit cell and K0(a)/2 is the energy per molecule in the
static lattice; PQ is the first quantum correction and P2 and
PH are the corrections provided by the perturbation theory
which refine contributions of the anharmonic terms to thermo-
dynamic properties. At constant pressure, this equation with
various interatomic potentials has two roots a1(T ) ≤ a2(T )
up to some limiting temperature TS where a1(TS) = a2(TS) and
the isothermal bulk modulus is equal to zero [28,30,41,44,47].
At high temperatures, Eq. (22) has no real roots. For van der
Waals crystals at normal pressure its instability temperature
(spinodal point) TS is about 1.35 times greater than its melt-
ing point Tm . We have calculated QCM and MSRD along the
lower branch of the normal isobar which represents the stable
thermodynamic states.

The expressions (16) to (21) are valid for strongly anhar-
monic crystals. When the anharmonicity is weak, i.e. the
temperature is not very high,

βn ≈ n[1− (n+2)/x2]; x >> 1. (23)

III. DIAGRAM TECHNIQUE

With each term in the right-hand side of Eqs. (14) and (15),
we properly associate a diagram. We next formulate the rules
for drawing them. Each diagram consists of vertices con-
nected by one or several lines with bars. Some of the ver-
tices have besides the lines branches ending in a bar. The total
number of lines is equal to the order of the perturbation the-
ory. Each vertex corresponds to an atom in a lattice point and
represents the momenta of a one-particle function such as Eqs.
(16) and (17). The order of a moment is equal to the number
of bars near the vertex. The line denotes the derivatives of the
interatomic potential [Eq. (13)] whose order is equal to the
number of bars on this line. The branches with bars corre-
spond to the displacements of the atoms whose moments are
calculated. In the general case, summation is carried out over
the cartesian components. The vertices with branches tally the
fixed lattice points, whereas other vertices are dummy.

These diagrams, like those known diagrams introduced by
Feynman and Mayer, can be connected or disconnected. The
contribution of each disconnected diagram is proportional to
Nl−1, where l is the number of its connected parts. All such
contributions cancel each other. Expression (15) contains only
connected diagrams.

In Fig. 1, the diagrams are represented in the same se-
quence as in Eq. (15). One can see the physical meaning
of each term in Eq. (15). The first and third diagrams ex-
press the correlation momenta in the harmonic approximation
and the others take into account the anharmonicity. The di-
agrams A, B, D and G correspond to those parts of correla-
tions between two atoms that are due to their mutual interac-
tions. Those parts of their correlations which are represented
by the diagrams C, E, H and I are caused by the interactions
of both of them with other (intermediate) atoms. At last, the
diagram F takes into account the influence of the surrounding
atoms (background) on the first part of the correlations, which
is brought about by the anharmonicity.
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FIG. 1: Diagrams for Eq. (15). Only vertices corresponding to fixed
lattice points are indexed.

One may notice that similar diagrams can be used to ob-
tain corrections to the Helmholtz free energy of strongly an-
harmonicity crystal [34]. However, in that case there are no
vertices with branches.

For the variances of the atomic position [Eq. (14)] the dia-
grams are drawn as it has been done for the interatomic cor-
relations. Each of them, representing an additional influence
(i.e. not included in the zeroth approximation [Eq. (16) and
(17)]) of the vibrations of neighbors on the momenta of the
displacement of the given atom, contains the vertices and the
inner and outer lines with bars, as shown in Fig. 2.

IV. APPLICATIONS

A. One-dimensional model: linear chain

As a first application of these general results, we study
firstly a monatomic linear chain (see Fig. 3). In these cal-
culations we have used the Morse interatomic potential (see
Appendix).

In Fig. 4, we compare MSRD in a linear chain using various
approximations, taking the relative displacements between the
next to nearest neighbors. Data of the weakly anharmonic-
ity approximation are close to those of the strongly anhar-
monic approximation. At very low temperatures all values
practically coincide. However, at high temperatures the differ-
ences between results of strongly anharmonic computations
and those of harmonic and weakly anharmonic approxima-

A
i

B

C

D

E

i

i

i

i

FIG. 2: All diagrams for Eq. (14).

1 2 3 4 i +1i

x

FIG. 3: A monoatomic linear chain.

tions reach about 40 and 11% respectively. For the nearest and
third neighbors, the results of various approaches can show
the important role of anharmonic effects at high temperatures
[38,39].

MSRD between nearest, second, and third neighbors in lin-
ear chain are represented in Fig. 5 taking into account the
strong anharmonicity of their vibrations. As one should ex-

0 0.1 0.2

0.2

0.4

0.8

0.6

q/e

1

2

3

FIG. 4: MSRD between the next-nearest neighbors in various ap-
proximations: (1) harmonic, (2) weakly anharmonicity, and (3)
strongly anharmonic.
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pect, MSRD increases with interatomic distance [38,39].

q/e
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3

FIG. 5: MSRD between various neighbors taking into account the
strong anharmonicity: (1) nearest, (2) second, (3) third neighbors.

B. Two-dimensional models: square and hexagonal lattices

Here, we investigate QCM and MSRD in some two-
dimensional models of a weakly anharmonic crystal with
square [40,43] and hexagonal lattices [44], using for the nu-
merical evaluations the Morse potential which is typical for
short-range interactions. In the two-dimensional case only the
square and hexagonal lattices are compatible with pairwise
central forces.

FIG. 6: A fragment of the square lattice with the coordinate systems
for the nearest, second and third neighbors.

In Fig. 6 there are shown three coordination circles of the
fragment of a two-dimensional model with square lattice. We
calculate the QCM and MSRD of the atomic displacements
of the nearest and third neighbors in the coordinate system

X1,3×Y1,3, and for second neighbors the system X2×Y2 (see
Fig. 6). In the coordinate system used, Cxy(k) = 0. In Fig.
7 we represented the longitudinal components of MSRD for
the square lattice. For the nearest neighbors the harmonic
approximation is also shown to demonstrate the anharmonic
effects which are appreciable here. One can see that Dxx(1)
and Dxx(3) are very close to MSRD between the nearest and
second neighbors in the weakly anharmonic one-dimensional
model. This behavior is peculiar only to square and simple cu-
bic lattices owing to right angles between interatomic bonds.

q/e

0 0.1 0.2

0.2

0.4

0.6

0.8

4

1

3

2

FIG. 7: Longitudinal components of MSRD, in square lattice, be-
tween the first (1), second (2), and third (3) neighbor, (4) the har-
monic approximation for Dxx(1).

FIG. 8: A fragment of the hexagonal lattice with the coordinate sys-
tems for the nearest, second and third neighbors.

The two-dimensional hexagonal lattice represented in Fig.
8 is the simplest model of a close-packed crystal. For any
pair of atoms, we shall use the coordinate system whose X-
axis runs through the corresponding lattice points. In the case
of second neighbors, the axes are denoted by X2×Y2 in Fig.
8. In such systems, Cxy(k) = 0. Basically, the correlations
between the longitudinal atomic displacements, in hexagonal
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lattice, are smaller and correlations between transversal dis-
placements are larger than those in the square lattice [40].
The exceptions are Cxx(2) and Cyy(3). It is interesting that
transversal correlations between the second and third neigh-
bors are negative. For an atomic pair |Cyy(k)|< Cxx(k). In the
harmonic approximation Ch

yy(1) = Ch
xx(2) = −3Ch

yy(3). An-
harmonic effects violate these simple relations. QCM de-
creases as the interatomic distance increases, with it going
slower along the line passing through a nearest neighbor of an
atom than along other directions. Some results are presented
in Fig. 9.
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0.30.20.10
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0.35

q/e

FIG. 9: Quadratic correlations moments in hexagonal lattice: 1-
Cxx(1), 2-Cyy(1), 3-Cxx(3), 4-Cxx(2), 5-Cyy(2).

In the hexagonal lattice, the QCM and MSRD are, for the
most part, less than those in the linear chain [38,39] and in the
square lattice [40,43]. The exception is the case of correla-
tions between the second neighbors in the latter. Anomalous
(very small) magnitudes of the correlations between the sec-
ond neighbors in the square lattice are caused by right angles
between interatomic bonds, and appear to be associated with
the instability of such lattice relative to shearing strain when
only the nearest neighbors interact.

C. Three-dimensional models: the cubic lattices

1. Simple cubic lattice

In Fig. 10, we show a fragment of a simple cubic lattice (sc)
with the coordinate systems. Here we have used the Morse po-
tential to calculate QCM and MSRD. For any pair of atoms,
we use the coordinate system whose X-axis runs through the
corresponding lattice points. To calculate the QCM for the
nearest, and fourth neighbors, we considered here the crystal-
lographic coordinate system X ×Y as shown in Fig. 10. To
make easier the calculations of the correlation momenta of the
second neighbor displacements we have chosen the axes de-
noted as X2, Y2 in Fig. 10. In this model, the QCM between

the third neighbors vanishes in the second order of perturba-
tion theory.

i

FIG. 10: A fragment of a simple cubic lattice with the coordinate
system.
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FIG. 11: Comparison of quadratic correlation moments,
103Cαα(k)/r2

0 , between the nearest neighbors in various lat-
tices: 1-Cxx(1) in a simple cubic lattice, 2-Cxx(1) in a square lattice,
3-Cxx(1) and 4-Cyy(1) in a hexagonal lattice, 5-Cyy(1) in a simple
cubic and square lattices.

In Fig. 11, we compare the correlations versus dimension-
less temperature Θ/ε plot for the sc crystal with those in two-
dimensional models with square and hexagonal lattices. Note
that the magnitudes of the longitudinal and transversal compo-
nents of QCM for the square and sc lattices are very close. It
is seen that the longitudinal components for the nearest neigh-
bors are larger and the transversal components are smaller
than those in an hexagonal lattice. However, the magnitudes
of the longitudinal and transversal components of correlations
for the second neighbors are smaller than those of the longi-
tudinal components and larger than those of the transversal
components of QCM in an hexagonal lattice. This behavior
is so because QCM is dependent on the dimensionality of the
lattice and the coordination number [45].

In Fig. 12, we compare the longitudinal components of
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FIG. 12: Mean square displacements, 100Dαα(k)/r2
0: 1-Dαα(k)

where k ≥ 4, 2-Dxx(4), 3-Dxx(1) in a simple cubic lattice, and 4-
Dαα(k) where k = 3,5,6,7, . . ., 5-Dxx(2) ' Dxx(3), 6-Dxx(1) in a
hexagonal lattice.

MSRD in a sc lattice with those in an hexagonal lattice. One
can see that the mean square relative displacements of the lat-
ter are smaller than those in the former. Note that the first
and second neighbors in a sc lattice are similar to the first and
second neighbors respectively in the square lattice and in the
linear chain. Moreover, the fourth neighbors in a sc lattice
correspond to the third neighbors in a square lattice [46].

Basically, the correlation momenta between the longitudi-
nal (a = x) displacements are larger and the correlations be-
tween the transversal ones (a = y,z), and are smaller for the sc
lattice than those for low-dimensional models.

2. Face-centered cubic lattice

We consider now the fcc crystal in which only nearest
neighbors interact. Such a lattice is represented in Fig. 13,
where the X-axis for various pairs of atoms are shown and a
fragment of a close-packed (111) plane is shaded.

In Fig. 14, we compare the correlations and the variances
of the atomic positions for the fcc, sc and two-dimensional
hexagonal lattices, using the Morse potential. The tempera-
ture Θ/ε = 0.5 is close to the melting point of the fcc crys-
tal with nearest-neighbor interactions. Temperature intervals
for other models have been chosen by having in mind that
their melting points must be proportional to their coordina-
tion numbers. The same qualitative remarks made in the first-
order perturbation theory remain valid in the second-order: (i)
the more is the coordination number in a lattice the less is the
lengthwise correlation between the nearest neighbors; (ii) in
the case of close-packed lattices, these values decrease with
increasing dimensionality [47].

FIG. 13: The spatial arrangement of the neighbors of an atom in the
fcc lattice.
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FIG. 14: Variances of the atomic positions q2
α/r2

0 (1-3) and length-
wise correlations between the nearest neighbors Cxx(1)/r2

0 (4-6) ver-
sus dimensionless temperature Θ/ε in the simple cubic (1,4), two-
dimensional hexagonal (2,5) and face-centered cubic (3,6) weakly
anharmonic lattices.

In Fig. 15, results for the longitudinal correlation moment
between the nearest neighbors Cxx(1), calculated with the ac-
count of strong anharmonicity, are compared with those ob-
tained in the harmonic and weakly anharmonic approxima-
tions. We have used this time the Lennard-Jones potential.
It is seen that only at very low temperatures (T < 0.4Tm) all
the three curves are very close to one another, and at high
temperatures the moment in the weakly anharmonic approx-
imation decreases with increasing temperature. The strong
anharmonicity leads to a change in the convexity and a sharp
enhancement of Cxx(1) near the melting temperature, in the
metastable region Tm < T < TS and especially when T → TS.
As this takes place, the strong anharmonicity significantly af-
fects the interatomic correlations. It can be noticed as well
that a drastic rise in Cxx(1), in the vicinity of TS, corresponds
to the general concept about the behavior of fluctuations and
correlations of physical quantities near the spinodal [52].
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FIG. 15: Quadratic correlations moments between longitudinal dis-
placements of the nearest neighbors calculated using various approx-
imations: (1) harmonic, (2) weakly anharmonic, (3) strongly anhar-
monic.

FIG. 16: The arrangement of the neighbors of an atom in the bcc
lattice for the spatial fragment of this lattice.

3. Body-centered cubic lattice

A spatial fragment of a strongly anharmonic crystal with
body centered lattice (bcc) is shown in Fig. 16. In this case,
we can see from formula (15) that the second-order perturba-
tion theory yields the calculation of the momenta including
up to the fifth neighbors. For the second neighbors, it is more
convenient to use the crystallographic coordinate system. Fi-
nally, with a rotation of π/4 around the crystallographic Z-
axis, we obtain the correlation momenta between the third
neighbors. Here, we used the Schiff and the Lennard-Jones
potentials for the numerical evaluations (see Appendix).

In Fig. 17, we have compared the longitudinal correlation
momenta calculated using the Lennard-Jones and Schiff po-
tentials. We can see that the correlation momenta using the
Schiff potentials for Na are less anharmonic and at high tem-
peratures their values are also less than the ones calculated by
the Lennard-Jones potential with the exception of the curves
Cxx(5) and Cyy(1). The melting temperature of Na is 373 K.
For temperatures less than 50 K, Na has another crystal struc-
ture. For this reason, we investigated the QCM and MSRD
in the temperature range between 50 K and 373 K [49,52].
It is seen that some momenta are negative, implying that the
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FIG. 17: Longitudinal correlations moments Cxx(1)-(1,2), Cxx(1)-
(3,4) and Cxx(2)-(5,6) calculated using the Schiff (1,3,5) and the
Lennard-Jones (2,4,6) potentials.

corresponding atoms oscillate in such a direction for the most
part opposite in phase. The negative sign of the longitudinal
correlation moment in the second-order perturbation theory is
because of an obtuse angle between them and each of their
common nearest neighbor. When this angle is acute, such a
correlation is positive and in the case of a straight angle, it is
very small being proportional to the squared temperature. Due
to the symmetry of the coordinate systems, the components of
transversal correlations between the nearest, second and fifth
neighbors are the same, namely Cyy(n) = Czz(n), n = 1,2,5.
It can be noticed that the transversal correlations are much
smaller than the longitudinal ones.

4. C60 fullerite

The method was applied also to C60 fullerites, using an in-
termolecular potential proposed by Girifalco (see apendix).
In Fig. 18, we show the X-axis for various molecular pairs
and also other axes for the second neighbors. In Fig. 19, a
comparison is shown of the QCM longitudinal and transver-
sal components between the fullerite and the solid Ar [53].
The qualitative agreement is because both materials have the
fcc crystal lattice with short-range interactions. But C60 val-
ues are by far smaller than those for Ar. For instance, at 1500
K, that has been evaluated as the triple point temperature [47]
the Lindemann parameter is about 0.041, which is less than
for Ar by a factor of 1.9−2.4.

The melting curve of this fullerite was estimated [54]. To
do this, the equation of state was solved at various fixed pres-
sures up to the temperature Tm(P), at which the Lindemann
parameter is equal to 0.041 and the molar volume was calcu-
lated at this melting point V = Vm(P). The results are shown
in Fig. 20. The melting curve was calculated from the melting
point at normal pressure, estimated at 1500 K up to 15 kbar
corresponding to a melting temperature Tm = 4000 K.

The liquid phase of fullerites has never been observed.
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FIG. 18: The arrangement (a spatial fragment) of the neighbors of a
molecule in the high-temperature modification of C60 fullerite with
the coordinate axis for various molecular pairs
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FIG. 19: QCM in a C60 fullerite (1,2) and in a solid Ar (1’, 2’)(1,1’)
Cxx(1), (2,2’) Cyy(1)

Nevertheless, discussion about its possible existence has per-
sisted for years, based on a cluster-expansion-type method
[58], an integral-equation approach [59], a Monte Carlo tech-
nique [60,61,62], a density-functional theory [62,63], mole-
cular dynamics simulations [58,64], a modified hypernetted-
chain method [66] and also on the scaling of Lennard-Jones
values [59].

The temperature dependence of the melting pressure is very
well described by the Simon equation

(Pm(T )/bar)−1
b

=
(

T
T0

)c

, (24)

where T0 = 1500 K, b = 6643.8 and c = 1.209. The tempera-
ture dependence of the molar volume along the melting curve
is approximated by [55]

Vs(T ) = Vs(T0)−29.20ln(T/T0), (25)
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FIG. 20: The possible melting curve of C60 fullerite

V. CONCLUDING REMARKS

In summary, a method is given for the calculation of in-
teratomic correlations in anharmonic crystals. We have given
here a classical approach, although it enables also the calcula-
tion of quantum correction [31]. When there is no permutation
symmetry, even in the zeroth mean-field approximation, the
long-range static and the short-range dynamic correlations are
taken into account preventing the unlimited approaching of
atoms to each other. Such an approximation includes also the
main anharmonic terms of the power series expression of the
potential energy. Corrections calculated by statistical mechan-
ical perturbation theory improve the zeroth-order approxima-
tion making more accurate the account of the anharmonicity
in the thermodynamical functions of crystals and also includ-
ing the calculations at intermediate and long distances.

We note that CUSF yields good results for thermodynamic
properties of strongly anharmonic crystals with various lat-
tices and bonds: for van der Waals crystals [28,42], ionic crys-
tals [30], fullerites [54,55] and also for Sodium [41,50,52]
based on an effective interionic potential [58]. The CUSF
is applicable not only to perfect, strongly anharmonic crys-
tals, but also to crystals with lattice defects and surfaces as
well [29,33-36], allowing to study structural, dynamical and
thermodynamical properties and providing a good agreements
to available experimental data up to the melting temperatures
[55]).

APPENDIX A: POTENTIALS

In this work we used the potentials:

1. Morse potential

The Morse interatomic potential is

Φ(r) = ε[e−2ρ(r−r0)−2e−ρ(r−r0)], (A1)

where ρ = 6/r0, being ε the depth of the potential and r0 is
the minimum point of the interatomic potential.
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2. Lennard-Jones potential

The Lennard-Jones potential

Φ(r) = 4ε
[(σ

r

)12
−

(σ
r

)6
]
, (A2)

where σ = r0/21/6. The latter potential is more anharmonic
and decreases with increasing interatomic distances some-
what slower than former.

3. Schiff potential

Schiff [67] proposed the following potential for Sodium
which is a typical crystal with the bcc lattice

Φ(r) = ε
(
A+B/R2 +C/R4) cos(2kF R)

R3 +

+ε
(
D+E/R2) sin(2kF R)

R4 , (A3)

where R = r/σe f f , is the depth of the potential ε/k = 599K,
σe f f = 0.324 nm the effective diameter of an ion screened by

free electrons. The parameters are: A = 0.19, B = −1.02,
C = −0.08, D = −0.43, E = −2.54, 2kF = 5.987. Such po-
tential is of an oscillating form, what is known as Friedel os-
cillations. Essentially all calculations that use such potentials
refer to numerical modeling [68].

4. Girifalco potential

The potential proposed by Girifalco [69] for the fullerenes
has the form

Φ(r) = −α
(

1
s(s−1)3 +

1
s(s+1)3 −

2
s4

)
+

+β
(

1
s(s−1)9 +

1
s(s+1)9 −

2
s10

)
, (A4)

where s = r/2a, a = 3.55× 19−8cm, α = 7.494× 10−14erg
and β = 1.3595× 10−16erg. Its minimum point is is r0 =
10.0558 Å and the well depth is ε/k = 3218.4 K. A method
was proposed in [70] for the calculation of the coefficients
of this potential for a series of smaller and higher fullerenes,
from the C28 to the C96 (see also [71,72]).
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