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ABSTRACT

Thermal behavior of the complexes Pd2(dppm)2Cl2, Pd2(dppm)2(SnCl3)Cl and Pd2(dppm)2(SnCl3)2 (dppm =

bis[diphenylphosphino(methane)], ((C6H5)2PCH2P(C6H5)2) in the solid state and immobilized onto porous Vycor

glass was studied. Similar decomposition mechanisms were observed for the solid and immobilized complexes, with

a small thermal stabilization upon immobilization. The decomposition products were characterized by X-ray diffrac-

tometry, Raman and diffuse reflectance infrared spectroscopy, which indicated the presence of a mixture of metallic

palladium and oxidized species such as PdO, condensed phosphates, SnO2 and SnP2O7. According toX-ray diffractom-

etry, the decomposition products of the immobilized complexes presented higher amounts of PdO than the solid-state

residues, probably as an effect of interactions with silanol groups present in the glass surface.

Keywords: palladium(I) complex, porousVycor glass, bis[diphenylphosphino(methane)], thermogravimetric analysis.

INTRODUCTION

The study of supported organometallics and transition

metal complexes is motivated mainly by applications as

catalysts (Ando et al. 2004, Kureshi et al. 2004) and

molecular precursors to advanced materials such as gas

sensors (Alves et al. 2005, Silva et al. 2006), semicon-

ductors, andmetallic particles (Sunil et al. 1993). In par-

ticular, heterogeneous catalysts containing Pd or Pt have

been studied owing to their activity in oxidation of CO,

hydrogenation, (Evrard et al. 2004) and electrochemical

oxidations (Yang and McElwee-White 2004). A pre-

vious paper by Richmond and co-workers reported the

preparation of dinuclear phosphine-bridged palladium(I)

species and their silica-bound analogues as catalysts for

the cyclization of aminoalkynes, showing that in some
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cases the catalytic activity is improved by the higher

thermal stability of the supported catalyst (Richmond

et al. 2002).

The family of complexes of interest here includes

the complex containing metal-metal bonded Pt(I) atoms

Pt2(dppm)2Cl2 (Glocking and Pollock 1972) and its pal-

ladium analogue, which can be used as homogeneous

catalysts in several reactions (Kirss and Eisenberg 1989).

The derivatives of SnCl2 insertion into Pd-Cl bonds of

Pd2(dppm)2Cl2 also catalyze the alkoxycarbonylation of

terminal alkenes (Nguyen et al. 2005). In this context,

the thermal behavior of free and supported complexes is

important both to evaluate the thermal stability and to

identify decomposition products. However, for the com-

plexes of interest here this aspect was still unexplored.

The interest in the reactivity of single bonded

Pd2 moieties for sensor phases is a growing area

and previous attempts to immobilize similar com-
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pounds onto polystyrene for application in separation

of gases were unsuccessful due to steric demands

(Lee et al. 1986). Recently we described the immobi-

lization of Pd2(dppm)2Cl2, Pd2(dppm)2(SnCl3)Cl, and

Pd2(dppm)2(SnCl3)2 onto porous Vycor glass (Gimenez

and Alves 2002, 2004), which proved to be suitable

precursors for gas sensing systems (Alves et al. 2005,

Silva et al. 2006). We were further interested in study-

ing the thermal stability of these immobilized species,

since the gas insertions into the metal-metal bond can

be reverted both by heating and inert-gas flow. In this

paper we report the thermogravimetric study of the

complexes Pd2(dppm)2Cl2, Pd2(dppm)2(SnCl3)Cl, and

Pd2(dppm)2(SnCl3)2, both in the solid state and immo-

bilized onto porous Vycor glass, as well as the character-

ization of the decomposition products by XRD, DRIFT,

and Raman spectroscopy.

MATERIALS AND METHODS

PREPARATION OF SOLID AND SUPPORTED COMPLEXES

All the syntheses were carried out using solvents purified

and dried by standard methods. PdCl2, dppm and anhy-

drous SnCl2 were purchased fromAldrich and usedwith-

out further purification. The complexes Pd2(dppm)2Cl2
(1), Pd2(dppm)2(SnCl3)Cl (2) and Pd2(dppm)2(SnCl3)2
(3) were prepared by methods described in the literature

(Balch and Benner 1982, Olmstead et al. 1979).

IMMOBILIZATION EXPERIMENTS

The complexes were immobilized onto 1-mm thick pol-

ished Vycor 7930 glass plates. Immobilization exper-

iments were carried out by immersion of 10 × 10 ×
1 mm glass plates into 1 10–3 mol L–1 methylene chlo-

ride solutions of the complex at room temperature for

24 hours. The solvent was removed under vacuum. The

PVG-supported complexes will be referred in the text as

PVG/1(PVG/Pd2(dppm)2Cl2),

PVG/2(PVG/Pd2(dppm)2(SnCl3)Cl) and

PVG/3(PVG/Pd2(dppm)2(SnCl3)2.

THERMOGRAVIMETRIC ANALYSIS

Thermogravimetric analyses were carried out in a TA

Instruments 2960, using platinum sample holders, under

the dynamic flow of dry synthetic air (20 mL min–1), at

a heating rate of 10 K min–1.

PYROLYSIS EXPERIMENTS

All pyrolysis experiments of solid and immobilized com-

plexes were carried out in platinum crucibles under air

for 24 h at specified temperatures.

X-RAY DIFFRACTOMETY (XRD)

X-ray diffractograms were obtained with a Karl Zeiss

URD-6, using Cu-κα radiation (λ = 1.54060Å), with a

step 2θ 0.02/0.4 s.

RAMAN SPECTROSCOPY

Raman spectra were recorded on a Renishaw Raman

Imaging Microscope System 3000, coupled to an op-

tical microscope with resolution 1.5µm and a He-Ne

(λ = 632.8 nm) laser source. Sampling was accom-

plished by scanning different surface regions of the sam-

ple placed onto glass sheets.

FOURIER TRANSFORMED DIFFUSE REFLECTANCE

INFRARED ANALYSIS (DRIFT)

Diffuse reflectance infrared spectra were obtained with

a Nicolet 520 spectrophotometer in the spectral range

4000-400 cm–1 using KBr as reference.

RESULTS AND DISCUSION

Figure 1 shows theTGcurves for the solid samples, while

their corresponding data are displayed in Table I. The de-

composition of 1 starts at 471 Kwith an abrupt mass loss

up to 837 K corresponding to a 62% loss (calculated

62%), attributed to elimination of one P(Ph)2CH2Cl2 ac-

tive radical andonedppmmolecule. Formationof similar

radical species was reported by Zayed and co-workers in

the thermal decomposition of mononuclear Pt(dppm)Cl2
complexes in the range 393-773 K (Zayed et al. 1999).

In the present case a further decomposition step can be

observed above 837K,with amass loss of 13% attributed

to the elimination of residual phosphine species and re-

duction of PdO eventually formed on the surface. The

formation of metallic Pd residues or Pd/PdO mixtures

rely on the pyrolysis conditions as well as on the pres-

ence of groups in themolecular structure able to generate

reducing conditions during decomposition.
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In the TG curve of compound 2, the mass gain start-

ing from 474 Kmay be attributed to oxygen uptake. The

mass increase at relatively low temperatures by oxygen

absorption is commonly observed for Pd and Pt com-

plexes such as [Pd(PPh3)4] and [Pt(PPh3)4], rendering

species such as CO2−3 and Ph3PO (phosphinoxide) (Bar-

bieri et al. 1995). As verified in Figure 1, the mass gain

is followed by a gradual mass loss from 546 K to 968 K.

No clear plateau can be defined but the curve derivative

shows a broad feature from 546 to 822 K correspond-

ing to a 49% loss. Probably the decomposition involves

elimination of P(Ph)2CH2Cl2 plus one entire dppm (ex-

pected loss: 52%).
For compound 3 the initial 2% loss due to elim-

ination of water suggests the presence of SnCl2 (hy-
groscopic) as an impurity. When this compound is put
into CH2Cl2 solution the following chemical equilibrium
takes place (Olmstead et al. 1979):

Pd2(dppm)2(SnCl3)2 � Pd2(dppm)2(SnCl3)Cl+ SnCl2
3 2

A large SnCl2 excess is necessary in the synthesis lead-

ing to the presence of SnCl2 as a product impurity. Ex-

haustive purification attempts by recrystallization will

form compound 2 and, in fact these limitations precluded

the crystal structure determination for this compound,

since its earliest report (Olmstead et al. 1979). Accord-

ing to TG curve, compound 3 degrades with continuous

mass loss from 413K up to 916K. In the range 586-683K

the mass loss observed (24%) is coherent with loss of a

P(Ph)2CH2Cl2 radical plus a Cl2 molecule (calculated

24%). The decomposition of the residue is gradative and

incomplete with a final mass percent of 48%.

The decomposition products were characterized by

XRD, DRIFT and Raman. According to X-ray diffrac-

tion, Figure 2, the main decomposition product of solid

complex 1 is metallic palladium (2θ = 40.1◦, 46.6◦ and
68.1◦ (JCPDS)). For the complexes 2 and 3, residues
contain SnO2 (2θ = 26.5◦, 34◦, 38◦, 51.8◦) and SnP2O7
(2θ = 19.2◦, 22.3◦, 37.6◦) in addition to metallic
palladium.

DRIFT andmicro-Raman spectroscopies suggested

the presence of additional phases, mostly in the case of

1. For 1, the Raman spectrum (Fig. 3) shows the typi-

cal features of PdO (Chan and Bell 1984), probably not

detected by X-ray diffraction due to its concentration
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Fig. 1 – TG curves of compounds: Pd2(dppm)2Cl2 (1),

Pd2(dppm)2(SnCl3)Cl (2) Pd2(dppm)2(SnCl3)2 (3).

on the surface. For compounds 2 and 3, SnO2 bands

near 630 cm–1 dominate the Raman spectra (Fig. 3).

For all samples, spectra of some surface regions show

a pair of broad bands at 1330 cm–1 and 1580 cm–1 indi-

cating amorphous carbon residues (Macedo et al. 2008).
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TABLE I

Thermogravimetric data for compounds 1-3.

Compound T range (K) � mass % � mass (amu)

471-837 62
654

1 P(Ph)2CH2Cl2 radical +dppm

837-970 13 133

474-519 2 (gain) 19

2 546-822 49
654

P(Ph)2CH2Cl2 radical +dppm

822-968 7 85

298-379
2 29

H2O

413-454 1 9

3
586-683 24

341

P(Ph)2CH2Cl2 radical + Cl2
683-769 14 206

769-916 11 152
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Fig. 2 – X-ray diffractograms of the decomposition products after

heating compounds 1-3 at 1000◦C. Assignments over the peaks refer
to the phases: • = Pd, O = SnO2, � = SnP2O7.

DRIFT spectrum of 1 (not shown) showed a broad band

around 1000 cm–1 suggesting the presence of condensed

phosphates. For 2 and 3, SnP2O7 already detected by

XRD was confirmed due to the bands at 1160 cm–1 and

1026 cm–1, assigned to νsym(P-O) and νasym(P-O) from

terminal PO2−3 groups, respectively, and at 748 cm–1

assigned to νsym(P-O) from P-O-P bridges (Hubin and

Tarte 1967, Guan et al. 2005). Also a strong band at

1280 cm–1 can be assigned to intra-chain PO2 moieties

from condensed phosphates.

Thermal behavior of immobilized complexes was

also studied. Figure 4 shows the TG curves of the PVG-

supported complexes and for all samples the initial mass

loss from 298 K to 423 K is due to elimination of ad-

sorbed water from the glass surface. Up to 25% of

PVG “dry mass” can be composed by adsorbed water

as the pore surface is composed mainly by the very reac-

tive silanol (Si-OH) groups (Hood and Nordberg 1938,

1942). At higher temperatures all mass losses are at-

tributed to decomposition of the complexes and from

these curves as well as from the mass loss observed for

solid samples, it is possible to estimate the amount of

adsorbed complexes. The related data are displayed in

Table II. The thermal decomposition of PVG/1 starts at

449 K with loss of 1%, followed by 1%. The initial

decomposition temperature of the supported complex is

slightly higher than in the solid state, indicating a stabi-
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Fig. 3 – Micro-Raman spectra of the decomposition products after

heating compounds 1-3 at 1000◦C.

lization of the supported complex. The thermal decom-

position of PVG/2 starts at 510 K, with a deflection at

563 K and a gradual mass loss up to 919 K. Finally, for

PVG/3 mass losses at 488 K, 573 K and 740 K can be

observed, slightly higher than in the solid state.
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Fig. 4 – TG curves of samples: PVG/1, PVG/2 and PVG/3.

TABLE II

Thermogravimetric data for samples PVG/1-3.

Sample
T range �% %(mass)

of events (K) immobilized*

295–403 -3

PVG/1 449–514 -1 3

533–603 -1

295–395 -3

PVG/2 510–562 -1 5

563–816 -2

295–403 -2

PVG/3 488–573 -1 5

573–740 -1

*estimate.

As glass signals dominated the DRIFT and Raman

spectra of PVG samples, only XRD was able to detect

residues of the complexes. Interestingly in this case PdO

peaks are observed in addition to metallic Pd for all sam-

ples, suggesting that the close contact of the complexes

with silanol groups facilitates the formation of PdO, in

contrast to the behavior of the solid complexes. For

PVG/2 and PVG/3 the peaks of metallic palladium are

weak in comparison to SnO2 and SnP2O7 peaks.

From the results of thermal analysis and character-

ization of the decomposition products, we conclude that

the thermal stability of the complexes is improved by

immobilization onto porous Vycor glass and the com-

position of the residues presents some differences. The

decomposition mechanism is complex and involves con-

comitant processes such as elimination of P(Ph)2CH2Cl2
radicals and Cl2 molecules. The residues, both in the

solid state and embedded in the glass, consist of amixture

of compounds such as oxides, phosphates and metallic

palladium.
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RESUMO

Estudosdos complexosPd2(dppm)2Cl2, Pd2(dppm)2(SnCl3)Cl

e Pd2(dppm)2(SnCl3)2 (dppm = bis[diphenylphosphino(meth-

ane)], (C6H5)2PCH2P(C6H5)2) por análise termogravimétrica
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(TG), no estado sólido e imobilizados no vidro poroso Vycor,

são descritos. Osmecanismos de decomposição dos complexos

no estado sólido e imobilizados no vidro poroso Vycor são

similares e apenas uma ligeira estabilização é observada me-

diante a imobilização. Os produtos de decomposição foram

caracterizados por difração de raios-X, espectroscopias Raman

e de Refletância difusa no infravermelho, indicando a presença

de uma mistura de paládio metálico e espécies oxidadas tais

como PdO, fosfatos condensados, SnO2 e SnP2O7. Os pro-

dutos de decomposição dos complexos imobilizados no PVG

apresentaram quantidades mais elevadas de PdO do que os

resíduos no estado sólido, segundo a difração de raios-X, em

virtude provavelmente da ocorrência de reações com grupa-

mentos da superfície do vidro, bem como pelo fato de que as

moléculas adsorvidas se encontram isoladas umas em relação

às outras.

Palavras-chave: complexos de paládio(I), vidro porosoVycor,

bis[difenilfosfino)metano, análise termogravimétrica.
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