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Abstract. The Monte Carlo technique is here used for study the behavior of
metamagnet Ising model in presence of random field. The phase diagram is obtained
by employing Glauber’s algorithm in a cubic lattice of linear size L with values ranging
from 16 to 42 and with periodic boundary conditions.

1. Introduction

Random fields and disordered magnetic systems have been a considerable source of

research in recent years [1]. The random field Ising model (RFIM) has been one

of the most interesting subject of research in Physics of Condensed Matter in the

last fifteen years and it occupies prominence position when we deal with disordered

systems [2, 3]. The specimen most common of disorder are represented by: i) disorder in

the bonds and ii) randomness in the strength of the applied magnetic field.In this model

the disorder depends on the applied external magnetic field and although RFIM has

deserved many investigations from both experimental and theoretical points of view[4]

and no conclusive result has been achieved for the understanding the nature of the

phase transitions and critical behavior. On the other hand, questions as the lower

critical dimension [5, 6] and the existence of a static phase transition have already

been solved from the theoretical point of view, while questions as the existence of the

tricritical point are still opened[7]. The relevance of RFIM is due to the fact that it

is the simplest to describe the essential physics of various class of disordered systems,

which includes: i) structural phase transitions in random alloys[8], ii) commensurate

charge-density-wave systems with impurity pinning[9, 10], iii) binary fluid mixtures in

random porous media [11], iv) melting of intercalates in layered compounds such as

TiS2[12], v) frustration introduced by the disorder in interacting many body systems,
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besides explaining several aspects of electronic transport in disordered insulators[13] and

vi) systems near the metal-insulator transition[14, 15].

In the last years, the physics of the hysteresis, of the avalanche behavior and

of the origin of self-organized criticality[15] have been modelled employing the non-

equilibrium behavior of the RFIM. In particular, a new class of problems, such as

self-generated glassy behabior, has been studied through the non-disordered model

with infinitesimal random field [16]. Recently, random magnetic fields have been

applied also in metamagnet systems like Ising model and importants results have

been obtained [17, 18]. An ideal metamagnet crystal can be constructed overlapping

identical layers of spin with ferromagnetic coupling between spins next neighbors of

each layer and with antiferromagnetic coupling next neighbors spins of the adjacent

layers. Another way to think a metamagnet crystal is to consider a cubic crystal with

the couplings between the first neighbors as being of antiferromagnetic character and

the couplings between the second neighbors as being ferromagnetic. In these systems,

only the competition between the ferromagnetic and antiferromagnetic ordering are

interesting. However, the application of a random and uniform magnetic field can yield

the appearance of new phenomena and a richer critical behabior becomes possible and,

in particular, in the present work we study the RFIM applied to a metamagnet system

in a cubic lattice by employing Monte Carlo Method.

2. Model and Simulation

Metamagnet ideal can be considered as a set of spins with uniaxial anisotropy

ferromagnetic interactions within each (J1 > 0) and antiferromagnetic interaction

(J2 < 0) . The hamiltonian model for spin-1/2 is given by:

H = − ∑
〈i,j〉

J1σiσj −
∑
〈i,j〉

J2σiσk −
N∑

i=1

(h − hi)σi , (1)

where the first is executed on all pairs of spin nearest-neighbors on same plane and second

sum run over all pairs of spin nearest-neighbor in parallel planes, h is the strength of

the external uniform magnetic field and hi is the random magnetic field which obeys

the bimodal distribution given by:

P (hi) =
1

2
[δ(hi − hr) + δ(hi + hr)] , (2)

where hr is the strength of the random field.

To study this system we employed Monte Carlo simulation technique [19] by using

the algorithm of Glauber in a cubic lattice of linear size L with values ranging from 16 to

42 and with periodic boundary conditions. To reach the equilibrium state we take, for

guarantee, at least 2 × 104 Monte Carlo steps (MCs) for all the lattice sites we studied

and more 3 × 104 MCS to estimate the average values of the quantities of interest. In

our work we consider one MCs equivalent L3 trials for change the state of a spin of the

lattice.
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We calculated the sublattice magnetization per spin belong to the different planes

by using

mA =

[
2

N

〈∑
i∈A

σi

〉]
, (3)

mB =

[
2

M

〈 ∑
i∈B

σi

〉]
, (4)

The transition lines of the phase diagram were obtained from the staggered

magnetization, ms and magnetization m. Thus we calculate ms = mA − mB and

m = mA +mB that are our parameters of order for antiferromagnetic and ferromagnetic

phase, respectively. In the above equations [ · · · ] denotes the average over the disorder

and 〈 · · · 〉 denotes the thermal average.

3. Results and Conclusions

The Figure 1 illustrate the complete phase diagram, for two selected values of the

random field hr, showing the continuous and discontinuous transition lines separating

the antiferromagnetic and paramagnetic phases. The tricritical point, which is indicated

by an open square, joins these two lines. The points of the phase diagram are obtainded

from the knowledge of the point of maximum of the curve for the susceptibility, see

Figure 2. It was obtained of the results by fixing H and changing T. In the case

of the discontinuous transition, we determined the magnetization curve as a function

of the field, for a fixed value of temperature. This procedure is not an efficient to

localize the tricritical point one, because it is difficult to distinguish a continuous from a

discontinuous curve, especially near the tricritical point, but it gives an idea of the range

of values of the field where the transition is of first order. In this work the location of the

tricritical point was achieved through the disappearance of hysteresis [20]. For a fixed

value of temperature, we drew the magnetization curves for increasing and decreasing

values of the magnetic field.

On the other hand, Figure 3 shows the behavior of the magnetization m and the

staggered magnetization ms as function of the temperature for different values of the

field external uniform.In this diagram we can observe as the random field affects the

behavior of the system. The behavior of the magnetization when the external field

varies for different values of the temperature is shown in Figure 4. For T = 2 one get a

first-order transistion and for T = 3 and T = 4 a transistion of second order.

We can observe in Figure 5 the variation of the susceptibility with the external

field for different temperatures. In Figure 6 we can see better as the random field affects

the order of the system, in this Figure we kept the temperature and we calculate the

magnetization with the variation of the field uniform for different values of random field.

In summary, the present Monte Carlo simulations for a metamegnet Ising model

in a random and uniform field show that the phase diagram in the plane uniforme field
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Figure 1: Phase diagram of metamag-

net in a cubic lattice in the plane t − h

for hr = 0 and hr = 1.

Figure 2: Susceptibility curve versus

temperature, KBT/J , for different

values of external field.

Figure 3: Curves of magnetization m

and staggered magnetization ms for

different values of external field.

Figure 4: Susceptibility curves versus

external field h for different tempera-

tures.

h versus temperature present continuous and first-order transition lines separated by

possible tricritical points.
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Figure 5: Curves of magnetization m

versus external field for different values

of temperature.

Figure 6: Curves of magnetization m

versus external field for different values

of random field hr.
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