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The dynamical mean-field approximation (DMFA) becomes exact in the limit of infinite dimensions, and allows results to be
obtained in a nonperturbative regime without the limitations normally found with exact diagonalization (ED) and quantum
Monte Carlo (QMC) methods. In this paper, we investigate the applicability of the method to lattices with small coordination
number in special situations. Specifically we use this approximation to study the two-dimensional (2D) Hubbard model on a
square lattice far from half filling. In this situation, we calculate the specific heat and find that when the filling decreases, that
is, antiferromagnetic correlations become less important, the agreement between DMFA and QMC results increases. Our results
show that the DMFA can be a valuable technique for studying the thermodynamic properties of the Hubbard model also on a

square lattice, but within a parameter range in which the antiferromagnetic correlations are not important.

1. Introduction

Strongly correlated electron systems (SCESs) present some
of the most fascinating physical phenomena of condensed-
matter physics. Some examples are itinerant ferromagnetism,
Mott transition and superconductivity at high temperature
[1, 2]. The superconductivity at high temperature found
in some cuprates has stimulated the research on the two-
dimensional (2D) Hubbard model on a square lattice because
many researchers believe that this model is capable of
capturing the essential physics needed in the description
of the superconductivity of these materials. In SCES the
energy of repulsion between electrons is comparable to or
larger than the kinetic energy, and an approach which goes
beyond theories that treat the electron-electron interaction
as a perturbation is needed. Many approximations developed
for studying SCES, such as arbitrary resummations of some
class of diagrams, are not based on some extreme limit of
the model in which the problem is simplified and can be
solved in a controlled manner. Quite often it is not possible
to confidently assess if a theoretical prediction reflects a true

feature of the idealized Hamiltonian or if it is an artifact of
the approximation used in its solution [2]. Exact numerical
methods have been used intensively. Nevertheless, the exact
diagonalization (ED) method for finite temperatures is
limited to very small clusters and, far from half filling, the
quantum Monte Carlo (QMC) method is restricted to rather
high temperatures due to the minus-sign problem.

The dynamical mean-field approximation (DMFA) is
a technique which allows results to be obtained in the
nonperturbative regime without the limitations normally
found in ED and QMC methods. The DMFA becomes exact
in the limit of infinite lattice coordination (or infinite spatial
dimensions), where the spatial fluctuations become frozen.
In finite dimensions these fluctuations exist but are neglected
by DMFA. Nevertheless, the on-site quantum fluctuations
among the different atomic configurations are fully taken
into account. The DMFA reduces the problem of the dynam-
ics of interacting electrons on a lattice to a single-site problem
with effective parameters self-consistently determined [1, 2].

The use of the DMFA for studying the 2D Hubbard
model on a square lattice is questionable because, for this
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lattice, the coordination number is 4, and numerical results
have proven that important antiferromagnetic correlations
occur at low temperatures. However, as the length of these
correlations decreases when the mean number of electrons
per site n deviates from one (half-filled band) [3-5], we hope
that at fillings where these correlations are not important
the DMFA should be a good approximation for studying
this system. This hypothesis has already been proposed by
Pruschke et al. [6]. They compared results for the spectral
function obtained by using DMFA and QMC and have
found that the DMFA gives a rather accurate description of
the dynamical properties of the 2D Hubbard model on a
square lattice, as long as long-range spin correlations are not
important. However, a study on the validity of this technique
in calculations of static properties is still absent.

In this paper, we calculate the specific heat of the 2D
Hubbard model on a square lattice using the DMFA in
the paramagnetic phase for n = 0.75 and 0.5, with U/t
= 4, 8 and 12. There are only a small number of studies
of the specific heat of the 2D Hubbard model on a square
lattice for a non-half-filled band. Dufty and Moreo calculated
the specific heat by QMC [7], Mancini et al. utilized the
composite operator method [8], and Bonca and Prelovsek
used the finite-temperature Lanczos method with additional
phase averaging for a system of 4 X 4 sites [9]. We find for
n = 0.75 results close to those obtained by Dufty and Moreo,
and for n = 0.5 the specific-heat curves calculated by DMFA
are nearly the same as those calculated by QMC.

2. Hubbard Model, DMFA, and
Numerical Method

The 2D Hubbard model on a square lattice is given by [10]

H=> &Ky o Cho + U > migni, 1)
k,o i
where & = —2t[cos(ka) + cos(k,a)], t denotes the nearest-

neighbor hopping amplitude, a denotes the lattice spacing,
and the wave vectors of the first Brillouin zone k = (ky, k)
are obtained from the periodic contour condition; cf(’)a (ko)
is the creation (annihilation) operator of an electron in the
Bloch state (k, 0); nis = ¢{,¢io is the number operator and
determines the number of electrons at site i with projection
of spin ¢ and U designates the on-site electron-electron
repulsion energy.

In the limit of infinite spatial dimensions, the self-energy
of the Hubbard model >, (k, iw,) becomes independent of
the wave vector, > ;(k,iw,) — > ,(iw,) [11, 12]. In the
dynamical mean-field approximation, >, (iw,) is used as an
approximation for the true self-energy of the Hubbard model
on real lattices (lattices with finite dimensions). Physically,
this approximation simplifies the spatial dependence of the
correlations among electrons by neglecting spatial fluctua-
tions (these fluctuations are only effectively frozen in the
limit of infinite dimensions) but take full account of local
quantum fluctuations. To compute >, (iw,), the Hubbard
Hamiltonian is associated to single-site effective dynamics
[13, 14]. Using this simplified self-energy, the interacting
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single-site Green’s function G (k,iw,) in the Hubbard model
is given by

1
aky' n) = X 5
Go (k, iton) iw, — e +p— D, (iwy)

(2)

where y denotes the chemical potential, w, = (2n+1)wkgT
is the Matsubara frequency (here n denotes an integer
number), and T denotes the absolute temperature. On the
other hand, we regard > (iw,) as the self-energy of a
single-site problem with effective parameters. This problem
can be described by the Anderson impurity Hamiltonian,
which describes the dynamics of a magnetic impurity on
site i coupled to a conduction band [13]. The Anderson
Hamiltonian is written as

N o + +
HA = z SZCZ’O.C[)J + Z Vl (Cl,aci,U + Ci,acl,o') + Uni,lni,l)
Lo Lo

(3)

where, in the present context, & and V] are effective param-
eters. These parameters are determined self-consistently,
requiring that the impurity Green’s function in the Anderson
model, Gg(iwn)imp, coincide with the on-site Green’s func-
tion in the Hubbard model, Gji,(iw,) = ZxGs(k,iw,). The
Dyson’s equation allows us to write

1
. _1 .
[Gg(lwn)imp] - 2:a(lwn)imp

Ga(iwn)imp =

T

where G (iwy)imp is the U = 0 impurity Green’s function
and 2, (iwy)imp is the self-energy of the Anderson impurity
model. The Green’s function Gg(iwn)imp is given by

—1
vi ] NG

iwn_g}

Gg(iwn)imp = [iwn +y-— Z
Lo

The equation Gji,(iw,) = >x Go(k,iw,) together with
equations (2), (4), and (5) and the Hamiltonian (3) form a
closed system of equations for the on-site Green’s function
Giio(iwy) and the self-energy >\ (iw,). These are the basic
equations of the DMFA and the self-consistent solution is
obtained as described below.

Using an initial set of parameters £,V;, the Green’s
functions Gg(iw,,)imp and G (iwy )imp are calculated, respec-
tively, from (5) and by solving the Hamiltonian (3), for
example using the ED method. Then, 2, (iwy )i, is calculated
from (4) and, employing %, (iw,) = X5 (iwy)imp, the Green’s
function G4 (iwy) is calculated from (2). Making G (i )imp
= Gijic(iwy,), a new Green’s function Gg(iwn)imp is obtained
from (4), and so new parameters {£},V;} are determined. The
cycle is repeated until Giio(iw,) = G (iwn )imp and 2 (iw,) =
24 (iwy )imp. We solve this system of self-consistent equations
by using an algorithm based on the exact numerical diag-
onalization of the Anderson Hamiltonian (3) with a finite
number of sites presented by Caffarel and Krauth [15]. The
program used by us is based on that indicated in [2].
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We calculate the specific heat of the 2D Hubbard model
on a square lattice with 200 X 200 sites in the paramagnetic
phase for n = 0.75 and 0.5, with U/t = 4, 8, and
12. The internal energy E was calculated numerically by
a standard method using the retarded Green’s function
obtained by applying the analytic continuation iw, — w+i8
to (2) [16]. The specific heat C(T) was first calculated by
formula C(T) = [E(T+AT) — E(T)]/(N,AT), with AT = 0.02
t/kg (N denotes the total number of sites), but this numerical
differentiation did not produce a smooth curve for some
parameters (n,U). Thus, we calculate the specific heat by the
method of Duffy and Moreo, that is, the calculated points of
E(T) are fitted to a polynomial of order 6 at low temperatures
and to a polynomial of order 4 at high temperatures, and
the specific heat is obtained by taking derivatives of these
polynomials [7].

3. Results and Discussions

Figures 1 and 2 show the specific-heat curves calculated
using DMFA and QMC for n = 0.75 and 0.5, respectively.
The agreement between the results obtained by these two
methods is good for n = 0.75 and excellent for n = 0.5. Since,
at half filling (1 = 1), the DMFA gives a qualitatively incorrect
result because it predicts a Mott transition at U, = 12]¢] [17];
we conclude that increases the quality of this approximation
in the study of the 2D Hubbard model on a square lattice
when the density n decreases. This fact occurs because the
DMFA neglects the antiferromagnetic correlations, and these
correlations are more important at a filling close to one at low
temperature.

At half filling, numerical results show that the 2D Hub-
bard model on a square lattice exhibits an antiferromagnetic
phase at T = 0. At a finite temperature, the Ghosh
theorem asserts the destruction of this magnetic phase [18],
although, long-range antiferromagnetic correlations survive
at low temperature. When # is reduced, the length of these
correlations is also reduced [3-5]. Duffy and Moreo analyzed
the specific heat obtained by QMC and conclude that at U/t
= 8 important antiferromagnetic correlations are absent for
n < 0.75 [7]. Therefore, since the DMFA neglects spatial
fluctuations, it is not able to correctly describe the properties
of the 2D Hubbard model on a square lattice for n near to
half filling at low temperatures, that is, within the parameter
range where important antiferromagnetic correlations occur.
However, for n < 0.75 our results show the validity of the
DMFA for studying this system (at U/t = 12 inclusive).

Figure 2 shows that, at quarter filling, the specific-heat
curves possess only one peak. At this density, the curves
obtained with DMFA and QMC present only a small differ-
ence in the height of this peak. However, White et al. showed
by means of the spin-spin correlation function calculated
by QMC that at n = 0.5, with U/t = 4 and kgT/t = 0.1,
antiferromagnetic correlations are nearly absent [4]. Since, at
this temperature, the specific heat value obtained by DMFA
agrees with that obtained by QMC, and since the peak of the
specific heat curve occurs at a higher temperature and the
temperature effect is unfavorable to magnetic correlations,
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FiGUrE 1: Specific heat C versus temperature T for n = 0.75 with
(a) U/t =4, (b) U/t =8, and (c) U/t = 12. The full lines are QMC
results taken from [7] and the dashed lines are our results calculated
by DMFA.

we conclude that these correlations are not important in the
formation of this peak, and consequently, this peak is mainly
associated with local fluctuations (see Figure 2(a)). Since the
DMEFA takes full account of local quantum fluctuations, we
believe that the difference between the specific heats obtained
by DMFA and QMC at n = 0.5 is mainly due to differences in
the lattice sizes used in these calculations. The calculations
with QMC and DMFA were carried out on a cluster of 6 X 6
sites and 200200 sites, respectively [7]. At a density n = 0.75,
the agreement between the specific heat curves calculated by
these two methods is excellent for U/t = 4, and, for U/t = 8
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FIGURrk 2: Specific heat C versus temperature T for n = 0.5 with
(a) U/t =4, (b) U/t = 8, and (c) U/t = 12. The full lines are QMC
results taken from [7] and the dashed lines are our results calculated
by DMFA.

and 12 the main difference is the position of the peak at low
temperature (see Figure 1).

One believes that moving the filling away from n = 1
not only the antiferromagnetic correlations are destroyed but
also the Mott physics, which drives the system for the Mott
insulating phase when U/t is large. Nevertheless, the DMFA
completely describes the local dynamics of the system, and as
the Mott physics is associated with the intrasite (local) energy
U, we think that the DMFA describes well the Mott Physics
for any filling. However, studies which verify this hypothesis
are important.
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4. Conclusions

We calculate the dependence on temperature of the specific
heat of the 2D Hubbard model on a square lattice far from
half filling and compare it with QMC simulations. At n =
0.75, we find results very close to those obtained by using
QMC, and at n = 0.5 the specific heat curves calculated
by using DMFA are nearly the same as those calculated by
using QMC. Our results demonstrate that even in a two-
dimensional lattice, that is, with low coordination number,
there is a parameter range where DMFA is capable of
obtaining specific heat values as accurate as those obtained
by QMC. This range is defined based on the nonexistence
of important antiferromagnetic correlations. Since DMFA
neglects spatial fluctuations, its use is valid only when these
correlations are not important. Because DMFA permits the
performance of calculations at low temperatures (without
the limitations imposed by the minus-sign problem of the
QMC method) and nearly in the thermodynamic limit, it
should become a powerful method for studying the Hubbard
model on a square lattice.
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