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Abstract. We study the current-induced torque for electrons on ferromagnet-normal metal-
ferromagnet (FNF) trilayer with non-collinear magnetizations. Our system is composed of a 
chaotic cavity and two junctions, coupled with ideal contacts to ferromagnetic reservatories in 
local equilibrium by means of a small number of scattering channels. We assume that the 
normal part is disordered. Each junction is related to the direction of the reservoirs 
magnetization. The system is taken out of equilibrium causing a spin accumulation. We 
suppose that all elements have a length smaller than the coherence phase and the spin flip 
lengths. This consideration lets us neglect decoherence and spin flip processes. The 
conductance and torque were found numerically by employing the random-matrix theory and 
scattering matrix formalism for the spin-flux. The observables are presented as a function of 
the number of propagating channels in the extreme quantum limit regime and of the angle 
between the magnetizations of the different ferromagnet layers. 

Introduction 
Transport properties in magnetic mesoscopic systems are sensitive to the spin dependent band 
structures [1-3]. The production of hybrid devices formed by ferromagnet/normal-metal layers has 
generated notable electric properties. An example of them is the phenomenon of giant 
magnetoresistance [4]. Classic models of two channels can be applied to hybrid systems when the 
magnetic components have collinear magnetizations [5]. However, these models fail when the 
magnetizations are not parallel. Currently, two theories have been applied to systems with non-
collinear magnetizations. These theories allow calculating the conductance and the current-induced 
torque on the magnetic components. One of them, based on circuit theory, was developed by Brataas 
et al. [1]. Its base is the Keldysh Green function formalism in the semi-classical regime. The other one 
is based on the random matrices theory and was constructed by Waintal et al. [2]. It allows the 
attainment of the extreme quantum limit regime. 

A good level of interest has been focused on the special case of spin-polarized current passing 
through a ferromagnet/normal-metal/ferromagnet (FNF) trilayer system, particularly motivated on the 
transfer of spin angular momentum which exerts a torque on the magnetic moment [1,2]. A question of 
fundamental importance is to study the transport properties in connection with few opened conduction 
channels. This system brought the possibility of improving our understanding of the extreme quantum 
regime and of making inference about qualitative and quantitative features of the semiclassical limit. 
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This is the goal of this work. We study the extreme quantum limit regime for the FNF trilayer with 
non-collinear magnetizations. The conductance and torque are found numerically using the random 
matrix theory and scattering matrix formalism for the spin-flux. 

This paper is organized as follows. In section 2 we introduce the scattering approach. The results 
are presented in section 3. Finally, in section 4 we conclude. 

Scattering approach 
Figure 1 shows the system studied. We consider a FNF trilayer system consisting of two ferromagnetic 
layers Fa and Fb with a normal disordered metal (N) spacer. The system is composed of a chaotic 
cavity and two junctions, coupled with ideal contacts to ferromagnetic reservoirs in local equilibrium 
by means of a small number of scattering channels. We suppose that all elements have a length smaller 
than the coherence phase and the spin flip lengths. This consideration lets us neglect decoherence and 
spin flip processes. 

 
Figure 1. Schematic picture of the FNF system. 

 
We follow the approach developed by Waintal et al. [2]. We define a scattering matrix that 

connects the reservoir and each other through perfect guides. The electron wave function, in the 
representation of transverse modes, can be defined as a 2N-dimensional column vector Ψi,α, where i 
(i=0,1,2,3) labels the guide and α Є {R, L} labels the right and left directions of propagation. Ψi,α 
indicates the amplitudes of the N up and N down channels. Considering the ferromagnetic layer Fa, the 
amplitudes of outgoing modes Ψ1E and Ψ0D are related with the amplitude of incoming modes Ψ1D and 
Ψ0E  by the relation 
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Following the same reasoning we can define Sb and SN. The S matrices are the 4Nx4N scattering 
matrices represented as 
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where the elements r, r’, t and t are 2Nx2N reflection and transmission matrices, in order to write the 
NxN matrices as 
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The indices ↑  and ↓ correspond to the up and down spin. The r’, t and t’ matrices have a similar 
structure. Also, there is dependence between the elements of Sa and Sb and the direction of 
magnetization ma and mb. Considering the magnetization of the reservoirs in the x-z plane as showed 
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in Figure 1 we see that ma forms an angle θ  with the z-axis. We observe that the elements of Sa have 
to be rotated in the spin space. The magnetic layers are spin filtered, and we write 

0)0()0( ==== ↓↑↑↓↓↑↑↓ aabb rrrr  [5]. Non-conservation of the spin current in Fa and Fb results in a 
torque τα exerted on the magnetic moment of Fα. In order to find the torque τ with respect to the 
voltage V0 generated by the applied current I, we use [2] 
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where σr  is the vector of the Pauli matrices and  
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This implies that, after some calculation, the torque along the x direction can be written as 
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, measured in unit of h/2πe. G is the adimensional conductance matrix defined by 

)´´( += ttTrG  where Ω= btt ´´ . As the normal layer is disordered, we study the average conductance 
and average torque. 

Results 
The parameters that characterize the barrier are constructed from the following quantities[1,2]: 

 
2

,
,,

2

∑ ↑↑ =
mn

mnjj t
h
eG , 

2

,
,,

2

∑ ↓↓ =
mn

mnjj t
h
eG  and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑ ↓↑↑↓

mn
mnjmnjj rrN

h
eG

,

*
,,,,

2

)( , (6) 

where N is the total number of open channels, j Є {a ,b} labels the magnetic layer, and n,m labels the 
open channels. In the following we will consider 1

22
=+ ↓↑ jj tt  and 0=ℑ ↑↓

jG . For convenience we 

define the independent parameters 
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We perform numerical calculations of transport quantities (conductance and torque) of a FNF 
system having a number of propagating modes N=1, 2 and 3 for all layers at the Fermi energy. The 
metal normal layer is described by a Gaussian random matrix H describing the states in a cavity with a 
scattering matrix given by the Mahaux-Weidenmuller formula [6]. The torque per unit current for 
Ra=9 and Rb=1, 3, 9, 1/3, 1/9 is illustrated in Figure 2 for N=1 versus θ. Figure 3 presents the 
conductance versus θ for the same parameter of Figure 1. There is a reflection symmetry between Rb 
and 1/Rb for θ=π/2. Observe that τb=0 for Rb=1, because in this case the barrier b is not active. For τb≠0 
it is necessary that the two barriers be active. The conductance G decreases if the Rb>0 and it increases 
for Rb<0. 

We can alternatively fix Rb and vary N in order to cover the other number of propagating modes. 
Figure 4 shows the torque per unit current as a function of θ for symmetric barrier Ra=Rb=9 for N=1, 2, 
4. For intermediate angle (1 < θ < 3) torque has a greater value than average and for small (θ < 1) and 
large angle (θ > 3) torque have smaller values than average. Figure 5 presents the conductance. The 
conductance decreases if the angle increases. Fixing θ and increasing N the conductance increases. 
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Figure 2. Torque per unit current as a function 
of θ. Ra=9 and Rb=1, 3, 9, 1/3, 1/9 for N=1. 

 Figure 3. Conductance versus θ. Ra=9 and Rb=1, 3, 
9, 1/3, 1/9 for N=1. 

 

 

 

Figure 4. Torque per unit current versus θ. Ra= 
Rb=9 for N=1, 2, 4. 

 Figure 5. Conductance as a function of θ. Ra= 
Rb=9 for N=1, 2, 4. 

Conclusions 
In summary, we study numerically the conductance and the spin transfer torque with respect to the 
transport of electrons through mesoscopic devices formed by the attachment in series of two 
ferromagnetic metal layers separated by a quantum dot, and connected to wave guides. Here, the 
torque is written as a function of the angle between the magnetic moments of the layers. The results 
reproduce the analytical expressions available in the literature. The most notable feature of our data is 
the difference between the transport properties for systems with a small number of channels and those 
of the semiclassical regime. This is relevant since it reveals singular properties of these regimes. For 
instance, in normal-metal mesoscopic systems, the conductance tends to Ohm's law in the 
semiclassical regime while in the extreme quantum limit the conductance has quite unusual law results 
[6]. A more detailed analysis, comparing the two regimes will be one of our future works.  
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