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Recent experimental advances have measured individual coin components in discrete time quantum walks,
which have not received the due attention in most theoretical studies on the theme. Here is presented a
detailed investigation of the properties of M, the difference between square modulus of coin states of discrete
quantum walks on a linear chain. Local expectation values are obtained in terms of real and imaginary parts
of the Fourier transformed wave function. A simple expression is found for the average difference between
coin states in terms of an angle # gauging the coin operator and its initial state. These results are
corroborated by numerical integration of dynamical equations in real space. The local dependence is
characterized both by large and short period modulations. The richness of revealed patterns suggests that
the amount of information stored and retrieved from quantum walks is significantly enhanced if M is taken
into account.

ince the seminal work on quantum walks (QW) by Aharonov et al.', different versions and applications of

the original proposal have been investigated* . The ultimate goal is to determine the probability p of finding

the moving particle, hence the amplitude of wave function, as function of position and time. In the discrete
time quantum walk formulation (DTQW)', the dynamics is dictated both by the usual Hamiltonian operator and
by a unitary operator acting on so-called coin variables. They influence, in different ways, the jumping probability
from the particle’s current place to any of the lattice sites. In such cases, p is obtained by summing up the square
modules of the different wave function components associated to the coin states.

In contrast, very little attention has been paid until now to the dynamics of the individual coin components®’,
both from theoretical® and experimental'®'* points of view. Indeed, only very recently experimental measure-
ments’ were able to identify and separate the two coin state contributions to p. In this particular case, the influence
of coin operator is reflected in the photon polarization. In the other exhaustively investigated electron system, the
coin operator acts on the spin variable. The identification of coin state components opens new perspectives for a
fine control of quantum walks. However, Ref. 7 does not provide a deeper analysis of each state contribution. This
is the main motivation for this work, in which we explore in detail several features of the difference between
square modulus of coins states. For the sake of brevity, it will be denoted by M, much inspired by the notation for
magnetization of spin systems. Thus, we consider p and M as independently measurable physical properties of the
moving particle.

The general framework we propose allows for the identification of global and local properties. They are
interpreted, respectively, as the corresponding average properties associated to the coin states (polarization or
spin component), or as expression of complex (e.g. periodic, modulated, commensurate or incommensurate)
microscopic patterns. For the sake of definitiveness, we consider the simple one dimensional chain (with open or
closed boundary conditions) with two coin states, and investigate the properties of the differences between the
square modules of the two components. We were able to derive exact analytical results for the global properties,
while numerical integration of the wave function complements our results for local properties for distinct initial
conditions. Of course the presented framework can be extended to higher dimension geometries and/or to a larger
number of coin states.

We think that, by a detailed characterization of M, other properties of DTQW can be explored. The results we
discuss herein are obtained for a field free condition and, despite the fact that the output of DTQW dynamics may
look random, it is essentially deterministic. If we consider the action of external fields, it is possible to connect
DTQW to other recently discovered properties of nano-devices, which have been unified into the so-called
spintronics" framework.

In such nano-structures, the mean free path between successive collisions of charge carriers becomes larger
than the typical dimension of the devised structure. This way, they reach their destination before undergoing
collisions, thus preserving its spin, which can be measured and controlled by proper external magnetic fields. For
instance, in a pure charge current one has access only to I. = I; + I; # 0 but, in a spin-polarized current, it is
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possible to independently measure I, = I; + I} #0and I, = I, — I} #
0, where 7| indicates spin components in the up and down direc-
tions. I, and I are related, respectively, to the quantities p and M we
investigate in this work. Although we restrict ourselves to field free
conditions, it is possible to adequately enrich the model by adding
external electric and magnetic fields, in such a way that it is possible
to have situations in which I, # 0 but I, = 0, as well as I, = 0 but I, #
0. In this last extreme condition, the spin current is characterized
only by its magnetic properties, as it carries no net electric charge.

Similar field combinations leading to the observed spin-Hall effect
(SHE) and the inverse spin-Hall effect (ISHE)'*""* might be explored
within DTQW with the inclusion of the proper fields. In the first case,
which is observed in metals with strong spin-orbit interaction, car-
riers with opposite spins in I, are deflected to opposite sides of the
film by creating a spin current. In the inverse situation, up (or down)
spin carriers are deflected according to their charge and magnetic
field direction. This way, spin and charge currents are induced by the
original charge and spin currents in the device.

We consider a spin 1/2 particle in a linear chain where it can
occupy any available site. A discrete time evolution operator W
can be defined in a Hilbert space H="H.,, ®H,, where H,, and
H, are the subspaces in which the time dependence of the chain
position and spin components are embedded. W acts on the state
vector | (x, n)) = |®(x)) ® |o(n1)), with position |®) and spin |o)
components. The discrete position and time variables are indicated,
respectively, by x and nt — n.

Within a given time step #, two successive operations are carried
out by the operator W: i) the coin operator C acts on the spin com-
ponent; ii) the shift operator § updates the wave function magnitude
at each chain sites taking into account the new spin state. These
actions are formally indicated by the expression

W=3(1, ). (1)

We decompose the spin component |o) in terms of the |0) and |1)
eigenvectors of Pauli matrix, ie., |0) = og|0) + oy|1). The spin
eigenstate magnitudes o and oy are related to the jump (or
shift) dynamics. Thus, the coin operator C is expressed by a unitary

matrix
o cosO sin0 2)
~ \sin0— cos0 /)’

which is a generahzatlon (for 0 = 0 = 7/2)) of the usual Hada-
mard operator H obtained by taking 0 = /4. If we start with a
nearest neighbor tight-binding Hamiltonian with unitary hopping
probability

S [t 1) (el + e 1) el )

X=—00

the $ operator is expressed by

S= cosH[ i |+ 1) (x| | |0)(0]
o (4)
+mm{§:u—n@pmm

Finally, from Egs. (1)-(4), a single expression for W can be written,
which describes the evolution of the state vector | (x, n)).

Results

Analytic properties. For convenience, we describe the wave function
representation of | (x, n)) using two component vector amplitudes
in order to separate the spin particle states according to the
framework reported in Ref. 8. Thus,

v~ (1),

where Yr(x, n) and Y (x, n) are amplitudes at time #n and lattice
position x of a walker with, respectively, upper and lower internal
degree of freedom. From Egs. (1)-(4) the evolution of the wave
function is given by transformation

()

0 0
Y(xnt+1)= (sin() —cos 0

)¥(x—Ln)

cos ) sin 6 (©)
+(

0 o) Wt Lim).

Introducing the Fourier transform

n)= Z W (x,n) e (7)

the wave function evolution obeys the following simple form
¥ (k,n+1) =T P (k,n), where

kcosO e *sin0
T= ( eksing  —ekcosh ) (®)
Thus, as a function of the initial state (n = 0), the wave function at
time n is W(k,n) = (Tk)n‘l-’
approach®, we diagonalize Ty and after a tedious but straightforward
calculation, the wave function components in Fourier space at time n:

- —iwgn 0
sz(k,n)={e . (1—|—COS cosk>

COS Wi
—1 Vleiwkn
e

(k,0). In the sequence, using a standard

COSQCOSk)}IpL(k 0) ©)

2 COS Wy
e *sing , _. L~
—iWkn ()" giwkn k.0
2 cos Wy (e (=1)% )l’bR( 0)
7 eik sin 0 —iwgn n_iwen\ .,
alh) = £ S0 (o (1)), (k)
N e~ imen - cos 0 cos k (10)
2 COS Wi
(—1)"en cos 0 cos k
1
+ 2 + COS Wy lpR(k 0)

In Egs. (9) and (10), sin @, = cos 0 sin k. We assume that the initial
condition (n = 0) is such that the particle is at position x = 0 and the
coin is in the state o(7) = cos 5|0) + i sin #|1). Using the inverse
Fourier transform, we can obtain the real space wave function that
leads to the probability density p(x, n) of observing a particle at time
n and position x and to the value of M(x, n) defined by:

pxn) = () + v, (),

M(xm) = g () |* — [, () . (12)

Asymptotic properties of the Y/r(x, n) and Y1 (x, n) wave functions
in the large time limit have been analyzed® by decomposing p =
Psdow T Prast- Essentially, pgow corresponds to the non-oscillating
term and pg,, to the remaining oscillating one. The contribution of
the fast component is of lower order in #n than that from the slow one
and, for the large time limit, we can write p ~ pgow. For instance,
when the initial condition is = 0, pgg,, = pisDW takes the form®

(11)

® _ (1—o)cos’k,
slow ™ 1163 tan? O tan k,,

(13)

where k, is the solution of dwy/dk + o = 0 and o = x/n. Using similar
steps, it is possible to show that M(a«, n) ~ Mgow(a, 1), so that we
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obtain asymptotically the expression Mg,,, = —apgow- The corres-
ponding global values is calculated by integrating the local expression
for My, over the position variable

M:nJMslowd(x:(l_ sin 0) cos(27), (14)

which is valid for all values of 5.

Numerical consequences. Numerical values of the state vector
Y(x,n) have been obtained for a large number of initial
conditions #, different choices of coin operator angle 0, and
system size 2L + 1. For the sake of definitiveness, we always
consider x € [—L,L]. The asymptotic magnetization depends
on the values of both 7 and 0, as illustrated by the curves M x 7
and M x 0 in Fig. 1. It is possible to see that the numerical values
corroborate the analytical expressions given above. For arbitrary
initial combinations of up and down components, the typical
patterns change continuously from one of the extreme cases to
the other. The extreme values of M, which depend on the initial
conditions, lie in the interval [l -2 / 2,1]. In Fig. 1b we illustrate
the dependence of M x 1. It is amazing to see that, by an adequate
choice of the coin operator (through the selected value of 0), it is
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Figure 1 | Comparison of M between the numerical and the analytical
results (Eq. (11)). (a) M x y for typical values of 6. (b) M x 0 for y = 0.
Symbols indicate numerical results while curves correspond to analytical
results from Eq. (12).

possible to obtain asymptotic states running from zero to unitary
average magnetization per particle.

The numerical integration allows for identifying several distinct
patterns of local magnetization. Since we consider finite systems, the
investigation of open boundary conditions is limited to time inter-
val in which the probability of occupation of the x = =L sites is

M(x,n)

0.0100
0.0075
0.0050
0.0025

-0.0025
-0.0050
-0.0075
-0.0100

20 X 40
p(x,n)

0.0300
0.0263
0.0225
0.0188
0.0150
0.0113
0.0076
0.0038
1.0000E-4

20 X 40

40 200 0

Figure 2 | Local values of M(x, n) and of the global probability density p(x, n) for two distinct choices of initial conditions for wave function

and coin state when x € [—50, 50]. For M, blue, white and red indicate the ranges 1 = M =< 0.001, 0.001 = M = —0.0001, —0.001 = M = —1.
For p, colors change smoothly from blue to red as p increases. Free propagation with local interference occurs until # = 50. Periodic boundary conditions
give rise to rhombic patterns. In (a), M shows periodicity in time direction. In (b), interference pattern has smaller coherence. Panels (¢) and (d) show the

dependence of p for the same initial conditions as (a) and (b), respectively.

| 3:1976 | DOI: 10.1038/srep01976



negligible. From that time on, circular geometry condition becomes
effective, i.e., (L + 1) = y(—L).

Typical symmetric and antisymmetric patterns for L = 50 are
shown in Fig. 2 for the 0 = y = /4 (a) and 5 = 0, 0 = 7/8 (b). In
both cases, open boundary conditions persist until #~ 50, when clear
non-zero values of M(=*L,n) are obtained. In the first case, we observe
a first rhombic structure characterized by antisymmetric rhombuses
with respect to the center of the chain (x = 0). It is characterized by
the dominant presence of positive and negative values of M(x,n) for x
€ (0,L) and x € (—L, 0), respectively. The circular geometry con-
ditions becomes effective producing interference patterns that start at
the boundary x = =L and evolve towards the center of the chain. In
this process, we note an inversion of the magnetization, with predom-
inance of positive (negative) values of M at the left (right) side of the
chain. The resulting patten is a tile of superposed antisymmetric
rhombic units, with the wide parts being successively placed at x =
0 and x = 50 = —50. For the antisymmetric initial condition, rhom-
buses are displaced with respect to the center of the chain, giving
rising to superposed diagonal stripes going from left to right (positive
M) and from right to left (negative M).

Plots for p like those shown in Fig. 2 are obtained, with the major
difference being related to the fact that 0 = p = 1. As in the space-
temporal patterns for p reported in Ref. 8, the observed presence of
positive and negative values of M is absent in the corresponding plots
for p. Similar plots are typical for larger values of L, provided the time
axis becomes also scaled by the same factor. The values of
M(x, n) for n = 28 correspond to the difference between experi-
mental points (or blue and red bars) of Fig. 1 of Ref. 7.

To obtain a more precise insight on the possible presence of peri-
2E M) —
M(x.j)|, which measures how close two local magnetization patterns
are for different instants of time n and m. The results are displayed in
Fig. 3 (a) and (b), for the same conditions used to draw Fig. 2. Fig. 3a
uncovers the presence of both short period correlated pattern for

odic magnetization we evaluate Am(i,j)= Z

() Am(i,])
500 n = n/4

] —

i 0=mn/4
2001 . 1.084
0.802
200
, 0.520
100f"
"l g : 0.238
100 200 300 400 {500
(c) Ap(i,))

j m n=n/4
400 ' ; 6=mn/4
300 R I 2.005

' 1.420
200 > ;
' 4 0.835
100
0.250

100 200 300 400 i

small values of both n and m, when Am(i,j) reach largest absolute
values. Next, the results indicate the persistence of the overall modu-
lation pattern of the local magnetization, with period ~ 140 altern-
ating between correlated and anti-correlated patches. They are,
however, subject to a fading process that amounts to a decrease in
the magnitude and a smoothing process leading to less sharp bound-
aries between the local values. Fig. 3b shows a different pattern, with a
shorter period. It is also possible to note the disappearance of clear
square tile that characterizes Fig. 3, which is replaced by diagonal
stripes with decreasing correlation. Evidence of long period anti-
correlated patches, as in (a), disappears being replaced by a mixture
of short and large period of a stronger correlated local magnetization.

Plots for p are shown in Fig. 3c and 3d. For the two cases defined by
the same initial conditions as in panels (a) and (b) , the resulting
patterns for Ap(i,j) = Z *=L 1p(x,i) — p(x,j)| fade out in compar-
ison to those shown in Fig. 3. The general structure related to short
and long periods is well reproduced, but the measure Am is much
richer in details than that for Ap.

Let us now consider the time evolution of M(x, n) for fixed values
of x. Typical patterns are illustrated in Fig. 4 for L = 500, and five
different values x = jL/5, j = 1, 2, 3, 4, 5. They can be brought in
contact with the rhombic pattern in Fig. 2. Once a site enters the
region of non-zero magnetization, M(x, n) has large amplitudes cor-
responding to the darker border regions. The amplitudes decay as n
increases, until the site enters a new rhombic region, where M
becomes negative. At this moment, the amplitude suffers a sudden
increase that is followed by a decaying phase. This is a periodic
behavior that will be repeated for any value of x. The regions where
M remains positive or negative depend on x. So, for j = 1, 2, regions
of positive M are larger than those with negative M, situation that is
inverted for j = 3 and 4. j = 5 corresponds to a site at the boundary x
= L. In this case, there is no separation between regions of positive
and negative values of M. Positive and negative values coexist in any
time window. The sudden increase in the magnitude of M persists

(b) Am(i,))

j L
400 0 =n/8
5004 ‘ ll 1.710

L 1.303
2004 ‘
0.897
100
M e 0.490
100 200 300 400 1§
d Ap(ij)
( ). J 0 i

J 4 0=mn/8

400 7

2.000
300 II

1.495
200

0.990
100

0.485

100 200 300 400 ;

Figure 3 | Color code plots indicating the dependence of Am(i,j) (panels (a) and (b)) and Ap(i,j) (panels (c) and (d)) with respect to two instants of time.
In (a), alarge period modulation is observed by the presence of square tile for values of n or m. Inside each square, high frequency modulation patterns are
indicated by alternating green and yellow tiles. In (b), long range modulation almost vanishes, being replaced by short period correlation along the

diagonal separated by cyan stripes. Results for Ap(i,j) produce basic features (square tiles or diagonal stripes), but details have been blurred in comparison

to those in Am(i,j).
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3000 4000

2000

0 1000 5000
Figure 4 | Details of the dependence of M(x, n) with respect to n for a
larger system (L = 500), and the following values of x: 100 (black),
200(red), 300 (blue), 400 (magenta), and 500 (green).

until the moment where the site L leaves one of the rhombs and
enters the next one. The symmetric condition # = n/4 causes M(x
= 0,n) to vanish identically for all values of .

In order to stress differences between the two independent mea-
sures p and M, it is convenient to consider Fourier decompositions in
the frequency space, p(x,®) and M(x,w), as shown in Fig. 5. There @
has been normalized to the interval [—0.5,0.5]. Since the two inde-
pendently defined measures are orthogonal, the Fourier decomposi-
tion clearly evidence differences in the parity of the considered signal.
Of course both of them depend on the position x. For any value of x,
p(x,w) is dominated by a peak at = 0, while the band extremes at @
= +0.5 depend on x. They decrease monotonically as j goes from 1 to
5. Atj = 5 the band edge peak vanishes identically. The spectrum also
present two further vanishing points at « = *0.25, for any value of x.
The transform of the magnetization M(x,w) is dominated by the
peaks at « = *0.5, while the peak at ® = 0 depends on x. In the
limit x — L, the central peak vanishes identically.

Discussion

The standard DTQW on a chain with N sites has 2N degrees of
freedom, but the traditional way of looking at the system output
neglects half of available information. Through the analysis of M,
the difference between the squared amplitudes of the wave func-
tion associated to each of the coin states, it is possible to access the
sofar neglected information. The first immediate output of this

0.0008

analysis is that the presence of non-zero values of M indicates a
preponderant contribution of one of the coin states in the value of
p. Having a physical meaning similar to that of actual magnetiza-
tion in magnetic systems, it provides a measure of the ordering of
coin states as a function of space and time. The experimental
access to the individual coin state components has recently been
achieved by an optical system where photons play the role of
walkers. Our results explore in detail several properties of M.
Besides being orthogonal to the information displayed by p, the
results for M offer a brighter contrast. This increases the possibil-
ity of designing DTQW devices for specific information storage
and manipulation. By a simple algebraic combination of p and M
it becomes possible to single out the dynamical behavior of each
coin state. With the adopted formalism, it becomes possible to
treat richer conditions where the presence of external fields, acting
in different ways on individual coin states, may produce targeted
effects similar to those treated nowadays in spintronics. Other
important aspect is related to the influence that the combination
of there two measures may have in connection to quantum entan-
glement problems. Nevertheless, further work is required to devise
feasible protocols to explore these ideas.

As a final comment, we could not devise if the proposed method
developed here can be extended to the continuous time quantum
walk (CTQW)>***! formulation of the problem. In such case, the
algebraic structure of the pertinent quantum walk is related to that
of the continuous time (classical) random walk (CTRW), both of
which can be described with the help of an imaginary (CTQW) or
real (CTRW) exponential evolution matrix*.

Methods

The analytical results have been obtained by the usual manipulation methods of
dynamical equations, which includes Fourier transforming, averaging, matrix alge-
bra, and sum rules.

The numerical results are obtained from the successive evaluation of the time
dependent wave function “I’(x,n)) = W|‘P(x,n —1)). The discrete W evolution
operator is obtained from Egs. (1)-(4). Since the output if purely deterministic, no use
of pseudo-random number generator is required. Time and space numerical averages
are performed whenever required. All results were obtained by FORTRAN codes
generated by the authors.

x=10
0.0006

0.0004-

p (X,m)

~

0.00024 1

0.0000 T T T

0.00034 1

0.0002

M (x,»)

0.00014

x=250 x=500

0.0000+ T T T
0.0 0.2 04 0.0

(Q)

0.2 04 0.0 0.2 0.4
() (@)

Figure 5 | Amplitude of the Fourier transform j(x,) and M (x,o) for x = 10, 250, and 500. Signals are restricted to » € [0,0.5]. Common features are
the broad composition of the signal and the zero amplitude at @ = 0.25. Dominant peaks at the center or at edge of the band depend both on the parity of

the signal (p or M) and on the value of x.
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