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RESUMO GERAL

A diversidade funcional é uma ferramenta muito Gtil para compreender processos ecoldgicos.
Nesse contexto, no primeiro capitulo quantificamos e exploramos o estado atual das pesquisas
sobre diversidade funcional de vertebrados terrestres. Com base nos 490 artigos revisados,
observamos um aumento no numero de publicacdes sobre o tema ao longo do tempo,
principalmente nas regides Paleértica, Neartica e Neotropical. Houve uma predominéancia de
estudos focados em aves em todas as regides biogeograficas, enquanto anfibios, répteis e
mamiferos apresentaram uma producdo cientifica significativamente menor. Em relacdo as as
caracteristicas funcionais, o tipo mais usado foi a ecoldgica e a categoria de alimentacao foi a
mais aplicada nos estudos. Dentre os indices de diversidade funcional identificados nos estudos,
a riqueza funcional (FRic), uniformidade funcional (FEve), dispersdo funcional (FDis) e
divergéncia funcional (FDiv), foram os mais frequentes. Nossos achados revelam a necessidade
de maiores investimentos em pesquisas com enfoque funcional para vertebrados terrestres,
especialmente anfibios, répteis e mamiferos. No segundo capitulo nés quantificamos a
diversidade funcional dos anuros a partir de tracos ecoldgicos classicos (morfoldgicos,
reprodutivos e uso do habitat) e analisamos como os fatores climaticos, processos historicos e
disturbios antrépicos (fragmentacéo florestal) tém afetado os padrées de diversidade funcional
dos anuros da Mata Atlantica, no Nordeste do Brasil. Mostramos que a FDiv dos anuros da
Mata Atlantica € influenciada pela instabilidade ambiental histérica e pela a forma
(circularidade) dos remanescentes florestais. Além disso, a FEve mostrou associacdo com as
condicdes climaticas (precipitacdo media anual). Entretanto, a FRic se manteve sem uma
associagdo aparente com os preditores utilizados. Este estudo contribuiu para o conhecimento
acerca das forcas que dirigem a diversidade funcional, gerando resultados Uteis para subsidiar
acOes efetivas para a conservacdo dos anuros na Mata Atlantica. Por fim, no terceiro capitulo,
investigamos o grau de associacdo entre quatro medidas de diversidade em comunidades de
anuros: diversidade funcional (FD), diversidade morfologica 3D (MD), diversidade filogenética
(PD) e diversidade de nicho climatico (CND). Além disso, avaliamos a hipotese de que a MD
pode servir como uma proxy eficiente para a FD. Testamos se ha sinal filogenético nas
caracteristicas fenotipicas (classicas e de forma 3D) e de nicho climéatico das espécies de anuros
e realizamos simulacdes para montar comunidades aleatérias de anuros para quantificar a
associacdo entre a FD, PD, MD e CND. Os sinais filogenéticos das caracteristicas funcionais,
morfoldgicas 3D e dos nichos climaticos das espécies de anuros nas comunidades apresentaram
valores variando de baixos a intermediarios. Observamos um pequeno aumento nos valores de
FD e MD, enquanto a CND mostrou um crescimento claro com a inclusao de mais espécies nas
comunidades. Por outro lado, a PD ndo apresentou um aumento marcante com o maior nmero
de espécies. Evidenciamos pela primeira vez que a MD de grupos filogeneticamente proximos
estd mais fortemente correlacionada com a FD do que com a CND ou a PD. Nossos resultados
fornecem evidéncias empiricas que destacam o potencial dos dados de morfometria na
compreensdo da diversidade funcional em comunidades. Assim também, enfatizamos a
importancia dos Museus de Colecbes Biologicas como repositorios fundamentais para a
preservacado e estudo da diversidade funcional.

Palavras-chave: Comunidades de anuros, diversidade funcional, diversidade morfoldgica,
revisdo sistematica, vertebrados terrestres.



GENERAL ABSTRACT

Functional diversity is a very useful tool for understanding ecological processes. In this context,
in the first chapter, we quantified and explored the current state of research on the functional
diversity of terrestrial vertebrates. Based on the review of 490 articles, we observed an increase
in the number of publications on the topic over time, particularly in the Palearctic, Nearctic,
and Neotropical regions. There was a predominance of studies focused on birds across all
biogeographic regions, while amphibians, reptiles, and mammals had significantly lower
scientific output. Regarding functional traits, the most commonly used type was ecological,
with the feeding category being the most frequently applied in studies. Among the functional
diversity indices identified, functional richness (FRic), functional evenness (FEve), functional
dispersion (FDis), and functional divergence (FDiv) were the most frequent. Our findings
highlight the need for greater investment in research with a functional focus on terrestrial
vertebrates, especially amphibians, reptiles, and mammals. In the second chapter, we quantified
the functional diversity of anurans based on classic ecological traits (morphological,
reproductive, and habitat use) and analyzed how climatic factors, historical processes, and
anthropogenic disturbances (forest fragmentation) have affected the patterns of functional
diversity of anurans in the Atlantic Forest, in northeastern Brazil. We showed that the functional
divergence (FDiv) of anurans in the Atlantic Forest is influenced by historical environmental
instability and the shape (circularity) of forest remnants. Additionally, functional evenness
(FEve) was associated with climatic conditions (mean annual precipitation). However,
functional richness (FRic) showed no apparent association with the predictors used. This study
contributes to the understanding of the forces driving functional diversity, providing useful
results to support effective conservation actions for anurans in the Atlantic Forest. Finally, in
the third chapter, we investigated the degree of association between four diversity measures in
anuran communities: functional diversity (FD), 3D morphological diversity (MD),
phylogenetic diversity (PD), and climatic niche diversity (CND). Additionally, we evaluated
the hypothesis that MD could serve as an efficient proxy for FD. We tested for phylogenetic
signal in the phenotypic traits (classic and 3D shape) and climatic niches of anuran species and
conducted simulations to assemble random anuran communities to quantify the association
between FD, PD, MD and CND. The phylogenetic signals of functional, 3D morphological
traits, and climatic niches of anuran species in the communities ranged from low to intermediate
values. We observed a small increase in FD and MD values, while CND showed a clear growth
with the inclusion of more species in the communities. On the other hand, PD did not show a
significant increase with the larger number of species. We demonstrate for the first time that
MD of phylogenetically close groups is more strongly correlated with FD than with CND or
PD. Our results provide empirical evidence highlighting the potential of morphometric data in
understanding functional diversity in communities. We also emphasize the importance of
Biological Collection Museums as fundamental repositories for the preservation and study of
functional diversity.

Keywords: Anuran communities, functional diversity, morphological diversity, systematic
review, terrestrial vertebrates.
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1. Introducéo geral

1.1 Dimensdes da Biodiversidade

A biodiversidade engloba multiplas dimensdes, incluindo a riqueza de espécies
(diversidade taxondmica), a presenca de diferentes linhagens evolutivas (diversidade
filogenética), a variedade de funcbes desempenhadas pelas espécies (diversidade funcional)
dentro das comunidades, além da variacdo morfolégica (diversidade morfoldgica) entre as
espécies. Dentre essas dimensdes, a riqueza é a mais classica e amplamente utilizada, e expressa
0 nimero de espécies e suas contribuicdes relativas (ou diversidade taxondmica). Porém, ha um
reconhecimento crescente de que medidas de diversidade que incorporam informacdes sobre as
relagBes filogenéticas e/ou caracteristicas funcionais das espécies nas comunidades sdo mais
eficazes para prever a estrutura e funcionamento da comunidade do que aquelas que consideram

apenas o componente taxonémico (Cianciaruso et al. 2009).

As diferencas evolutivas entre os pares de espécies de uma comunidade compdem uma
dimensdo adicional da diversidade denominada diversidade filogenética ou PD (do inglés
Phylogenetic Diversity) (Faith 1992). A PD é calculada pela soma dos comprimentos dos bragos
da arvore filogenética entre as espécies de uma comunidade. Desse modo, longos comprimentos
de bracos correspondem a tempos evolutivos maiores e, logicamente, a grupos taxondémicos
mais distintos. Portanto, a PD de uma comunidade é dada pela fun¢do do nimero de espécies e
a diferenca filogenética entre elas (Faith 1992). Alem da diversidade taxondmica e filogenética,
a dimensao funcional mede a diversidade de tracos funcionais que influenciam os processos da
comunidade independentemente da filogenia das espécies. Assim, a diversidade funcional (DF)
baseia-se nas caracteristicas das espécies (morfologicas, fisiologicas ou fenoldgicas), que
afetam tanto o desempenho ou aptiddo dessas espécies quanto 0s processos e funcionamento do
ecossistema (Petchey & Gaston 2006, Violle et al. 2007, Cadotte et al. 2011).

Recentemente, a PD tem sido proposta como proxy para a DF (Kraft & Ackerly 2010,
Parrent et al. 2010, Pavoine et al. 2013, Prinzing 2016, De Bello et al. 2017, Cadotte et al. 2019)
e apoia-se no pressuposto de que as caracteristicas fenotipicas das espécies sdo produto da sua
historia evolutiva compartilhada. Entretanto, a suposicdo de que a histdria evolutiva das
caracteristicas funcionais estaria contida ao longo dos ramos da filogenia apenas pode ser feita
se os atributos funcionais apresentarem sinal filogenético, ou seja, que as mudancas nos tracos
sejam proporcionais ao tempo de divergéncia das espécies (Flynn et al. 2011, Srivastava et al.

2012). Desse modo, frequentemente tem sido assumido que os padrbes de PD refletem a DF

12



nas comunidades. Apesar disso, descobertas recentes mostraram que geralmente a PD é um
proxy fraco da FD em comunidades (Devictor et al. 2010, Lososova et al. 2016, Wong et al.
2018, E-Voijtké et al. 2023, Hahn et al. 2024). Sendo assim, dado que diferentes tragos
ecoldgicos possuem diferentes niveis de sinal filogenético (Kamilar & Cooper 2013), a relacéo
entre FD e PD vai depender das caracteristicas utilizadas e dos processos evolutivos que tem

moldado os tracos utilizados.

Adicionalmente, uma outra dimensdo que também apresenta conexdes significativas
com o desempenho funcional dos organismos no ecossistema é a morfologica (Violle et al.
2007). Assim, a forma e a posicdo dos caracteres morfologicos tém sido descritas por meio da
ferramenta da morfometria geométrica (MG), com base em analises de pontos de referéncia
(Rohlf & Bookstein 2003). Aspectos morfoldgicos tém sido geralmente usados para medir a
variacdo da biodiversidade no tempo ou no espaco (McClain et al. 2004, Farré et al. 2013,
Hughes et al. 2022). Porém, essa dimenséo da biodiversidade ainda tem sido pouco explorada

em estudos comunitarios.

1.2 Diversidade funcional

O estudo da DF tem auxiliado a entender o funcionamento e a dindmica dos
ecossistemas ao longo do espaco-tempo (Petchey & Gaston 2006, Cadotte et al. 2011, Song et
al. 2014). A partir da quantificacdo das caracteristicas funcionais das espécies dentro das
comunidades, a DF tem permitido descrever o papel das espécies dentro do ecossistema (Diaz
& Cabido 2001, Tilman 2001). Nas ultimas décadas, a DF tem sido quantificada a partir de
caracteristicas morfoldgicas, bioquimicas, fisiologicas, estruturais, fenoldgicas e/ou
comportamentais das espécies, as quais estdo associadas a forma como 0s organismos
respondem a variacdo do ambiente fisico e biotico (Violle et al. 2007). Sendo assim, é esperado
que a DF seja o componente da biodiversidade que influencia a dindmica e o funcionamento
dos ecossistemas (Tilman 2001, Petchey & Gaston 2006). O estudo da DF tem auxiliado na
compreensdo de como 0S organismos interagem com 0s ambientes fisicos, quimicos e
biologicos circundantes (Hooper et al. 2005). Em decorréncia dessa ampla abordagem, houve

um acelerado crescimento de estudos de DF (Mammola et al. 2021).

Atualmente, a DF pode ser quantificada por diversos métodos, como aqueles baseados
em dados brutos, grupos funcionais, matrizes de distancias, arvores, hipervolumes de densidade
de Kernel e envoltorios convexos (Legras et al. 2018, Bello 2021, Mammola et al. 2021). Nesse

contexto, o rapido desenvolvimento desses métodos foi acompanhado por um nimero crescente
13



de revisdes que buscam analisar suas diferencas (Petchey & Gaston 2006, Cianciaruso et al.
2009, Calaca & Grelle 2016, Mammola et al. 2021). Entretanto, esses esforgos ainda séo
insuficientes para comparar essa infinidade de métodos, avaliar seus pontos fortes e limitacoes,
0 que ainda tem gerado confusdo na selecdo de métodos apropriados para questdes especificas
e dificultado a comparabilidade entre estudos distintos (Boersma et al. 2016, Carmona et al.
2016). Além disso, outra limitacdo no uso da DF é a dificuldade de mensurar e coletar muitas
das caracteristicas funcionais, resultando em lacunas sobre os tracos funcionais de muitas
linhagens (Hortal et al. 2015, Stewart et al. 2023). Adicionalmente, o conhecimento imperfeito
sobre quais, e quantas caracteristicas e fun¢fes sdo importantes em um determinado contexto
ecoldgico tem sido frequentemente relatado como uma questdo critica para a estimagédo
adequada da DF (Diaz & Cabido 2001, Petchey & Gaston 2006). Também néo esta claro qual
proporcao de espécies é necessario medir para fazer uma avaliacdo confiavel da DF, nem se
essa proporgdo pode ser aplicada de forma consistente a diferentes sistemas de estudo, grupos

taxonémicos ou metodos de amostragem (Méjekova et al. 2016).

1.3 Morfometria geométrica

A morfometria geométrica (MG) € uma ferramenta que permite estudar a forma dos
organismos e sua correlacdo com outras variaveis, e devido a sua ampla aplicabilidade tem
beneficiado varios campos da biologia (Adams et al. 2004, Adams & Otarola-Castillo 2013,
Klingenberg 2011, Lawing & Polly 2010, Zelditch et al. 2012). A MG baseia-se em pontos de
referéncia, permitindo a descricdo precisa de todos os aspectos da forma (Adams et al. 2013),
além de capturar variacdes sutis de forma, o que € util ao investigar grupos biolégicos com
baixa variedade morfologica ou quando se trabalha no nivel populacional (Collyer et al. 2015).
Assim, a técnica de MG foi inicialmente usada para testar correlac6es entre a forma do corpo e
as caracteristicas ecologicas (Langerhans et al. 2004, Clabaut et al. 2007, Lombarte et al. 2010).
Nas Ultimas décadas os estudos de MG tem sido cada vez mais utilizados para quantificar a
diversidade morfologica (DM) das espécies dentro das comunidades no tempo e no espaco. Por
exemplo estudos de MG tem permitido comparar a DM entre as assembleias de peixes quando
as informac6es ecoldgicas estdo ausentes ou escassas (Farré et al. 2013, Raffaella Bravi et al.
2014). Mas também, foram utilizados em grandes escalas espacial, permitindo a caracterizacao
da DM ao longo de grandes gradientes ambientais (Maestri et al. 2018, Hughes et al. 2022).
Apesar disso, aspectos morfoldgicos da forma dos organismos ainda tém sido pouco explorados

para quantificar diversidade das comunidades e ndo se sabe se a DM pode representar um proxy
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vidvel para a DF, ja que a forma dos organismos esté intimamente associada com o desempenho
funcional dos organismos no ecossistema e/ou aptiddo individual. Uma das vantagens da DM
é que grande parte das informacdes estdo disponiveis nas cole¢des bioldgicas, as quais podem
ser consultadas para pesquisa cientifica. Entretanto, até onde sabemos, ainda ndo existem

trabalhos que examinem a associa¢do da DM com outras métricas de diversidade.

1.4 Anuros como modelo de estudo

Os anuros constituem um modelo de estudo ideal para testar as hipoteses deste estudo
por seis motivos principais: (i) sdo localmente abundantes, facilitando a amostragem da maioria
dos grupos; (ii) sdo facilmente preservados, ficando disponiveis nas colecGes herpetoldgicas de
museus, as quais podem ser consultadas para pesquisa cientifica; (iii) existe um banco de dados
abrangente de caracteristicas AmphiBIO para anfibios em todo o0 mundo (Oliveira et al. 2017),
amplamente utilizado em estudos de ecologia funcional (Amado et al. 2019, Carmona et al.
2021, Ceron et al. 2022); (iv) as relacOes filogeneticas entre as espécies é bem estabelecida,
existindo uma filogenia abrangente que inclui a maioria das espécies de anuros existentes (Jetz
& Pyron 2018); (v) existe um bom registro de ocorréncias das espécies no Global Biodiversity
Information Facility (GBIF), que permite caracterizar de forma acurada o nicho climatico
realizado das espécies (Kendal et al. 2018, Harris et al. 2022, Segura-Hernandez et al. 2023); e
(vi) s@o os mais ameacados dentre os vertebrados, devido a sua suscetibilidade as modificacbes
na paisagem, como a perda e fragmentacdo de habitats, e as mudancas climaticas (Collins &
Crump 2009, Hoffmann et al. 2010, Catenazzi 2015, McLaughlin et al. 2025).

2. Objetivos
2.1 Objetivo geral

- Avaliar a estrutura comunitaria a partir de diferentes dimens6es da diversidade. Para
tal, utilizamos diferentes abordagens para determinar como variaveis ambientais, historicas e
antropicas influenciam a diversidade funcional em comunidades de anuros naturais, bem como
investigamos a associacdo entre a diversidade morfoldgica, diversidade de nicho climatico e

diversidade filogenética com a diversidade funcional em comunidades simuladas de anuros.

2.2 Objetivos especificos
- Quantificar e apresentar analises exploratorias sobre o estado atual das pesquisas

relacionadas a diversidade funcional de vertebrados terrestres (capitulo 1);
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- Quantificar a diversidade funcional dos anfibios anuros a partir de tragos ecoldgicos
classicos (morfoldgicos, de uso do habitat e reprodutivos) e analisar como os fatores ambientais,
processos histéricos e antrépicos (fragmentacdo florestal) tém afetado os padrdes de

diversidade funcional dos anuros da Mata Atlantica, no nordeste do Brasil (capitulo 2);

- Investigar a associacao entre diversidade morfoldgica, diversidade de nicho climético
e diversidade filogenética com a diversidade funcional em comunidades simuladas de anuros

(capitulo 3).
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Diversidade Funcional de Vertebrados Terrestres: Uma Revisao Sistematica
das Tendéncias e Lacunas no Conhecimento (Capitulo 1)

Resumo

Estudos sobre diversidade funcional de vertebrados terrestres refletem a necessidade de
compreender 0s processos ecoldgicos que sustentam a biodiversidade e a funcionalidade dos
ecossistemas diante do grande evento de extingdo em massa que ameaga esse grupo. Nesse
contexto, com o objetivo de quantificar e explorar o estado atual das pesquisas sobre
diversidade funcional de vertebrados terrestres, realizamos uma revisao sistematica da literatura
utilizando as bases de dados Web of Science e Scopus. Nossa anélise abordou os principais
autores que publicam sobre o tema, as regifes biogeograficas onde os estudos foram
conduzidos, os tipos e categorias de tracos utilizados para quantificar a diversidade funcional e
os indices funcionais aplicados nessas pesquisas. Com base nos 490 artigos revisados,
observamos um aumento no numero de publicacdes sobre diversidade funcional de vertebrados
ao longo do tempo, principalmente nas regides Paleartica, Neartica e Neotropical. Houve uma
predominancia de estudos focados em aves em todas as regifes biogeograficas, enquanto
anfibios, répteis e mamiferos apresentaram uma producéo cientifica significativamente menor.
Em relacdo as caracteristicas funcionais, o tipo mais usado foi a ecoldgica e a categoria de
alimentacdo foi a mais aplicada nos estudos. Dentre os indices de diversidade funcional
identificados nos estudos, FRic, FEve, FDis e FDiv foram os mais frequentes. Além disso,
ressaltamos que a escassez de informacdes sobre os tracos funcionais de muitas espécies,
decorrente da auséncia de protocolos padronizados de coleta, limita a aplicacdo da abordagem
funcional, especialmente para anfibios e répteis. Por fim, é urgente a necessidade de maiores
investimentos em pesquisas com abordagem funcional, bem como no preenchimento das
lacunas de dados sobre as caracteristicas funcionais de diversas espécies de vertebrados, uma
vez que a diversidade funcional é uma dimensdo fundamental da biodiversidade para a
conservacdo das espécies e a manutencdo do funcionamento dos ecossistemas terrestres.

Palavras-chave: Anfibios, aves, mamiferos, répteis, tracos funcionais.

1. Introducao

Compreender o funcionamento dos ecossistemas € essencial para o equilibrio ambiental

e a sustentabilidade do planeta. Para isso, uma das facetas fundamentais da biodiversidade é a
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diversidade funcional (DF). Esta é definida como a variedade de fungdes desempenhada pelos
organismos nas comunidades (Petchey & Gaston 2006), e baseia-se na variabilidade de
caracteristicas ecoldgicas, morfoldgicas ou fisiologicas das espécies (Violle et al. 2007). A
partir da DF, mecanismos por tras da rotatividade de espécies entre comunidades podem ser
desvendados, garantindo um elo entre espécies e processos ecossistémicos, como produtividade
primaria e fluxo de nutrientes (Tilman et al. 1997, Tilman 2001, Diaz & Cabido 2001, Cadotte
et al. 2011, Lavorel et al. 2013). Ademais, seu duplo papel como indicador (mostrando o que
influencia diferencas na composicdo de espécies) e preditor (prevendo processos em nivel de
ecossistema) tem revelado as forcas que impulsionam a montagem das comunidades e 0
funcionamento do ecossistema (Hooper et al. 2005, Mouchet et al. 2010). Sendo assim, 0s
estudos focados nos tragcos funcionais das espécies tém se tornado promissores para abordar

questdes fundamentais de ecologia (Mason & De Bello 2013).

Os tragos funcionais sdo caracteristicas associadas a aspectos como alimentacgéo, uso do
habitat, histéria de vida e locomocdo das espécies, as quais podem ser mensuraveis e estéo
diretamente relacionadas a sua aptidao e funcdo ecoldgica na comunidade (Mason et al. 2005,
Violle et al. 2007, Cadotte et al. 2011). A escolha dos tragos a serem utilizados € um dos passos
mais importantes em uma analise de DF (Petchey & Gaston 2006, Bernhardt-Romermann et al.
2008). A gquantidade de tracos pode variar conforme o nimero de espécies estudadas, o tipo de
traco a ser avaliado e com a comunidade e a métrica escolhida para a analise (Petchey & Gaston
2006, Mouchet et al. 2010, Lohbeck et al. 2012, Pakeman 2014). Adicionalmente, quanto maior
a disponibilidade de dados de tracos para um maior nimero de espécies na comunidade, mais
precisos serdo os indices, refletindo de forma mais fiel os valores reais da diversidade funcional
(Pakeman 2014, Méajekova et al. 2016). A problematica que perpassa esse assunto esta no fato
de que os dados completos de tragos funcionais para muitas espécies sdo geralmente
indisponiveis (Hortal et al. 2015, Stewart et al. 2023). Além disso, outro problema
frequentemente relatado esta no peso e na padronizacao dos tragos, visto que muitas matrizes
de dados incluem variaveis com diferentes unidades e tipos, como categoricas, quantitativas e
semi-quantitativas (Podani & Schmera 2006). Por fim, outro aspecto importante esta no fato de
que geralmente os tracos selecionados direcionam a escolha do indice a ser utilizado na

quantificacdo da DF.

Assim também, diferentes métodos sdo utilizados para quantificar a DF, como dados
brutos, grupos funcionais, matrizes de distancias, arvores, hipervolumes de densidade de

Kernel, envoltérios convexos, entre outros (De Bello et al. 2021, Mammola et al. 2021). Dentre
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estes, 0 método de Gower é um dos mais utilizados, pois tenta contornar o problema de peso e
padronizacdo dos tracos (Podani & Schmera 2006, Pavoine et al. 2009). Contudo, outro método
que vem ganhando popularidade é o 'gawdis', que minimiza a contribuicdo desigual dos
diferentes tracos ao calcular a dissimilaridade de multiplos atributos (De Bello et al. 2021). Essa
diversidade de métodos reflete o crescente interesse pelo tema, mas também gera desafios,
como dificuldades na escolha da metodologia mais adequada para cada questdo e na
comparabilidade e generalizagdo dos resultados entre diferentes estudos (Boersma et al. 2016,
Carmona et al. 2016). Devido a isso, revisoes para analisar os pontos fortes e limitacdes dos
métodos tém permitido avancar nestas questfes, mas ainda sdo insuficientes perante a grande
quantidade de métodos desenvolvidos atualmente (ver Petchey & Gaston 2006, Cianciaruso et
al. 2009, Calaga & Grelle 2016, Mammola et al. 2021).

Nesse sentido, apesar dos estudos com DF estarem sendo expandidos ainda persistem
muitas lacunas que precisam ser preenchidas (Diaz et al. 1998, Kraft et al. 2008, Cornwell &
Ackerly 2009, Freitas & Mantovani 2017). Por exemplo, o estudo da DF em vertebrados
terrestres tem sido pouco explorado quando comparado a outros grupos taxondémicos, como
plantas, invertebrados e peixes (De Bello et al. 2010, Calaca & Grelle 2016). Isso decorre da
elevada complexidade e dos altos custos envolvidos na obtencdo de dados funcionais para
muitas espécies de vertebrados, devido a fatores como comportamentos evasivos, habitos
noturnos e baixa abundancia de certas espécies (Wilson 1996, Calaca & Grelle 2016), além da
falta de manuais padronizados para protocolos de coleta e analise de caracteristicas,
especialmente em mamiferos, répteis e anfibios (Petchey & Gaston 2006, Vandewalle et al.
2010, Weiss & Ray 2019). Esse cenério tem resultado em conjuntos de dados incompletos, com
muitas espécies sem estimativas para diversas caracteristicas, e/ou concentrados em
determinadas regides (Hortal et al. 2015). Isso é acentuado pela auséncia de bancos de dados
globais com caracteristicas ecologicas de vertebrados, levando os pesquisadores a uma
compilacdo de extensas informacdes, de maltiplas fontes, resultando em um processo demorado
e potencialmente limitante agravado por desafios associados a variagdes na medicdo dessas
caracteristicas (Aubin et al. 2013, Lefcheck et al. 2015, Gonzalez-Suarez et al. 2018, Cooke et
al. 2019, Schneider et al. 2019, Etard et al. 2020).

Ferramentas cienciométricas sdo amplamente conhecidas por facilitarem o
levantamento e avaliacdo da producgdo cientifica mundial, permitindo o rastreamento de
tendéncias, a medicdo do impacto e a avaliagdo da influéncia da pesquisa em diferentes areas,

inclusive em anélises de biodiversidade (Liu et al. 2011, Azra et al. 2022). Por isso, no presente
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trabalho realizamos uma revisdo sistematica a partir de ferramentas cienciométricas com o
objetivo de quantificar e apresentar analises exploratorias sobre o estado atual das pesquisas
relacionadas a DF de vertebrados terrestres. Para tanto, em nossa revisdo buscamos identificar
a dindmica temporal dos estudos em DF e tracar o perfil de autores que mais frequentemente
publicam sobre o tema, identificar que tipo de tracos e indices funcionais tém sido utilizados
para avaliar a DF e determinar as principais lacunas de conhecimento que nos permitam

direcionar as futuras pesquisas na area.

2. Material e Métodos
2.1 Selecéo de dados

Em setembro de 2024, realizamos uma busca bibliografica usando os bancos de dados
Scopus (https://www.scopus.com/) e Web of Science - WoS
(http://apps.webofknowledge.com), devido a grande visibilidade e reconhecimento

internacional dessas bases de dados, inclusive por seus altos padrdes de qualidade que
possibilitaram 0 acimulo de um volumoso conjunto de metadados, o qual é necessario para este
tipo de estudo (Gaviria-Marin et al. 2019). Selecionamos artigos desde 2003 até 2024 (ou seja,
todo o periodo de publicacdo), a partir da busca com as seguintes combinacdes booleanas e
palavras-chave relevantes no campo “Topico”: TS = (frog* OR amphibian* OR anuran* OR
reptile* OR bird* OR "land mammal*") AND (“function* diversit*" OR "function* trait*").
Como resultado, um conjunto inicial de 1164 artigos foi recuperado (Fig. 1). Selecionamos os
titulos e resumos seguindo as diretrizes PRISMA (Moher 2009) para identificar se os artigos
atendiam aos critérios de incluséo nesta revisao sistematica. Para inclusédo em nossa reviséo, o
artigo deveria atender aos seguintes critérios: i) ser uma pesquisa original revisado por pares,
excluindo resumos de conferéncias, revisdes, livros, capitulos de livros e quaisquer outros
formatos ndo compativeis com o escopo deste estudo; ii) ser escrito em inglés; e iii) abordar a
diversidade funcional em vertebrados terrestres. Excluimos os artigos ndo relacionados a
vertebrados terrestres (anfibios, répteis, aves e mamiferos) ou que abordaram essa tematica em
mais de um tdxon simultaneamente, sendo estes classificados como “multi-tdxon” (Fig. 1). Essa
exclusdo se deve aos desafios associados a variacbes na medicdo das caracteristicas,
inconsisténcias nas unidades, diferencas na nomenclatura, resolucao taxondmica e dificuldades
em comparar dados com diferentes niveis de resolucdo (Aubin et al. 2013, Lefcheck et al. 2015,
Gonzalez-Suarez et al. 2018, Cooke et al. 2019, Schneider et al. 2019, Etard et al. 2020),
gerando viés na informac&o de caracteristicas nesses estudos.
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2.2 Analises de Cienciometria

Apos a aplicagdo dos critérios de inclusdo e exclusdo, os artigos selecionados foram
lidos na integra e, por fim, algumas informag6es foram coletadas, sendo elas: a) Autores, b)
Revista, ¢) Ano de publicagdo, d) Pais, e) Dominio biogeografico em que o estudo foi realizado,
f) Grupo taxondmico, g) Tragos funcionais, h) Tipo de traco, i) Categoria do traco e j) indice
de diversidade funcional (Fig. 1). Em seguida, realizamos um mapeamento cientifico, cujas
analises estatisticas descritivas foram feitas utilizando o pacote Bibliometrix 2.2.1 (Aria &
Cuccurullo 2017), implementado na plataforma R 4.4.1 (R Core Team, 2023). As analises
cienciométricas do nosso conjunto de dados, por meio da funcdo biblioAnalysis no Biblioshiny,
permitiram avaliar a producdo cientifica anual e caracterizar os principais autores. Também
investigamos a tendéncia temporal no nimero de artigos publicados por taxon. O tipo e a
categoria dos tracos funcionais foram representados pelo nimero total de tragos registrados em
todos os documentos, enquanto o grupo taxonémico, o dominio biogeografico e o indice de
diversidade funcional foram expressos pelo nimero total de artigos (Tab. 1). Para a analise
especifica dos indices de diversidade funcional, realizamos um agrupamento por taxon,
contabilizando separadamente a quantidade de indices nas categorias "Aves"”, "Anfibios",

"Répteis"” e "Mamiferos".
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Scopus and Web of Science - WoS database = "“Tdpico™
TS = (frog* OR amphibian* OR anuran* OR reptile* OR bird* OR
"land mammal*") AND ("function* diversit™ OR "function* trait*")

L

Application of filters to removed
Articles from the areas outside the
scope of this research such as:
Physical Geography

Plant Sciences

Biochemistry Molecular Biology
Entomology

Microbiology

Neurosciences

Toxicology

Parasitology

Biophysics

Virology

Polymer Science

Mycology

Horticulture

Immunology

Geology

retrieval strategy:

1. Time:all years of publication
2. Search Language: English
3.Type of Document: Article

|

Number of records initially identified:
Wos - 1529
Scopus - 1278

v information of interest: for scientometrics

. Author, Journal, Year, Country, Ecoregion
The articles from both databases were systematic review - Taxonomic group,

concatenated and the duplicates were Functional traits, Trait type, and Functional
removed, leaving 1164 articles diversity index

Figura 1. Fluxograma das etapas metodolégicas.

3. Resultados

Apos a triagem dos 1164 artigos, com a aplicacdo dos critérios de inclusao e exclusao,
ficamos com 490 artigos publicados entre 2003 e 2024, por estarem alinhados aos objetivos
desta pesquisa. Os resultados da nossa revisao bibliografica indicam um aumento no nimero
de publicacdes sobre diversidade funcional de vertebrados terrestres ao longo do periodo
analisado, principalmente a partir de 2013, atingindo maior nimero de publicacdes em 2022
(Fig. 2). Ao analisar a producéo cientifica por taxon, observa-se uma predominancia de estudos
focados em aves, com um crescimento acentuado apds 2015, enquanto anfibios, répteis e
mamiferos apresentaram uma producdo cientifica significativamente menor, com variacdes

mais discretas ao longo do tempo (Fig. 3).
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Figura 2. Tendéncia temporal do nimero de artigos publicados sobre a diversidade funcional de vertebrados
terrestres.
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Figura 3. Tendéncia temporal do nimero de artigos publicados sobre a diversidade funcional por taxon.

A analise da producdo cientifica dos principais autores ao longo do tempo (Fig. 4)
revelou que a contribuicdo de varios pesquisadores para o tema da diversidade funcional de
vertebrados se intensificou a partir de 2015. Autores e co-autores como Joseph A. Tobias,
Federico Morelli e Yanina Benedetti destacam-se com a maior quantidade de publicacdes, com
uma producdo continua e ascendente ao longo dos anos. Todos estdo vinculados a instituicdes

no Reino Unido e Republica Checa (Fig. 4).
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Figura 4. Producdo cientifica dos autores e co-autores ao longo do tempo.

Das regides biogeogréaficas onde as pesquisas foram conduzidas, a Paleartica concentrou
0 maior numero de pesquisas (n = 173), correspondendo a 35% do total. Em seguida,
destacaram-se a Neartica (n = 114; 23%), a Neotropical (n = 96; 20%) e a Indomalaia (n = 50;
10%). As regides Afrotropical (n = 29) e Australasia (n = 23) apresentaram 0s menores nimeros
de estudos, com 6% e 5%, respectivamente (Fig. 5A). Além disso, foram registrados estudos
abrangendo mais de uma regido biogeografica, classificados como globais (n = 5),
correspondendo a 1% das publicacBes. Nossos resultados também evidenciam uma clara
predominancia de estudos voltados para aves em todas as regides biogeograficas, enquanto 0s

demais taxons, como anfibios, répteis e mamiferos, receberam menor atencéo (Fig. 5B).
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Figura 5. a. Mapa-mundi mostrando a distribuicdo do esforgo de pesquisa entre as regides biogeograficas; b. Os
graficos de pizza representam o nimero de estudos em cada taxon de vertebrados por dominio. *Global: estudos
que avaliaram mais de um dominio biogeografico.

Dentre os tracos verificados nos estudos, os ecoldgicos foram o tipo mais utilizado nos
estudos analisados (n = 1950; 58%), enquanto os morfolégicos tiveram menor
representatividade (n = 1439; 42%) (Fig. 6a). Dentre as categorias de caracteristicas avaliadas,
a alimentacdo foi a mais comum (1269; 37%), ao passo que a fisiologia foi a menos explorada
nos estudos (59; 2%) (Fig. 6b).
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Figura 6. a. Nimero total de tipos de tragos funcionais encontrados nos estudos analisados; b. Ndmero total de
caracteristicas funcionais em cada categoria (Alimentacdo, Uso do habitat, Histdria de vida, Locomogdo,
Fisiologia).
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Foram identificados 15 indices de diversidade funcional nos estudos revisados. Os mais
utilizados para quantificar a diversidade funcional em comunidades de vertebrados foram
riqueza funcional (FRic) (n = 163), uniformidade funcional (FEve) (n = 124), disperséo
funcional (FDis) (n = 103) e divergéncia funcional (FDiv) (n = 94) (Fig. 7).
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Figura 7. indices funcionais encontrados nos estudos revisados.

4. Discusséo

Nossos dados mostraram uma forte tendéncia de crescimento no nimero de publicacdes
sobre diversidade funcional de vertebrados terrestres ao longo do periodo analisado,
principalmente a partir de 2013, atingindo maior numero de publicaces em 2022. Observamos
uma predominancia de estudos focados em aves, enquanto anfibios, répteis e mamiferos
apresentaram uma producéo cientifica significativamente inferior com uma intensificacdo na
contribuicdo de pesquisadores vinculados a instituicdes do Reino Unido e da Republica Checa.
Também verificamos a regido Paleartica como a maior detentora de estudos na area. Além
disso, foi possivel observar que os tracos ecoldgicos foram o tipo mais frequentemente
utilizados e a categoria relacionada a alimentacdo foi a mais aplicada nos estudos analisados.
Por fim, dentre os 15 indices de diversidade funcional utilizados, FRic, FEve, FDis e FDiv

foram os mais frequentes.

O aumento de estudos sobre DF de vertebrados reflete a necessidade de compreender os
processos ecoldgicos que sustentam a biodiversidade e a funcionalidade dos ecossistemas
(Hooper et al. 2005, Cadotte et al. 2011, Wong & Carmona 2021), especialmente diante de
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ameacas como mudangas climéticas e degradagdo de habitats (Chichorro et al. 2019, Atwood
et al. 2020, Carmona et al. 2021, Munstermann et al. 2022). Outro fator que contribuiu para o
crescimento no nimero de estudos foram os esforgos voltados a coleta sistematica de dados de
caracteristicas funcionais e a sua disponibilizacdo de diferentes informacGes em banco de dados
de dominio publico (Cornwell & Ackerly 2009, Hampton et al. 2013, Freitas & Mantovani
2017, Wiest et al. 2020). Essa ampla acessibilidade tem impulsionado o desenvolvimento de
numerosas pesquisas de diversidade funcional em vertebrados, por exemplo acerca dos padrdes
e processos ecoldgicos que envolvem vertebrados terrestres em diferentes escalas espaciais e
temporais (Garcia-Llamas et al. 2019), assim também sobre os efeitos dos distarbios
antropogénicos em mamiferos tropicais (Gorczynski et al. 2021) e os efeitos da perda de habitat

na diversidade funcional de aves na Mata Atlantica (Mariano-Neto & Santos 2023).

A predominancia de trabalhos com aves, em detrimento de anfibios, répteis e mamiferos
pode ser explicada pela longa tradicao de estudos consolidados com esse grupo, que resultaram
em protocolos bem estabelecidos para a coleta de tragos especificos e em bancos de dados
amplamente disponiveis, além de preencher uma gama diversificada de nichos ecoldgicos,
contribuindo para muitos servicos ecossistémicos diferentes (Sekercioglu 2006, Pigot et al.
2016, 2020, Tobias et al. 2022). Por outro lado, para os demais taxons, faltam manuais
padronizados de protocolos de coleta com tragos funcionais, bem como, bases de dados
atualizadas (Petchey & Gaston 2006, Vandewalle et al. 2010, Weiss & Ray 2019). Essa baixa
cobertura dos estudos para a maior parte dos grupos de vertebrados é preocupante diante do
cenario atual, principalmente por se tratar de grupos globalmente ameacados pelo sexto grande
evento de extingdo em massa ja em curso na Terra (Ceballos et al. 2017, 2020). Nesse sentido,
estudos recentes ja tém demonstrado que cerca de um terco das espécies de vertebrados
terrestres enfrentam declinios populacionais locais consideraveis. Essa proporcdo varia
conforme o grupo taxondmico, alcancando 30% ou mais em mamiferos, aves e répteis, e
aproximadamente 15% em anfibios (Ceballos et al. 2017). Quadro que também é mantido
quando considerado os diferentes grupos funcionais (por exemplo, Chichorro et al. 2019,
Atwood et al. 2020, Carmona et al. 2021, Munstermann et al. 2022). A extin¢do de espécies de
vertebrados terrestres pode comprometer tanto a estrutura quanto a funcionalidade dos
ecossistemas, resultando na perda de servicos ecossistémicos fundamentais, como a
polinizacdo, dispersdo de sementes, controle de pragas e mudancas nos ciclos e fluxos de
nutrientes (Young et al. 2010, Karp et al. 2013, Ratto et al. 2018, Donoso et al. 2020) gerando
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consequéncias econémicas, sociais e de saude para a humanidade, intensificando desafios ja

existentes (Cardinale et al. 2012).

Nossos resultados mostraram que apesar do crescente nimero de publicagdes sobre a
diversidade funcional em assembleias de vertebrados terrestres, a distribuicdo geografica desses
estudos é feita de forma desigual. Verificamos que a regido Paleartica concentra a maior
quantidade de estudos com o tema, seguida pela regido Nedrtica (n = 114; 23%), com os Estados
Unidos em destaque (n = 74 estudos). Esse pais abriga relevantes pesquisas experimentais sobre
diversidade e funcionamento de ecossistemas, além de sediar os primeiros estudos
experimentais na area, o que justifica seu destaque entre as publicacbes (Lavorel et al. 1997,
Tilman et al. 1997, Hector et al. 1999, Naeem et al. 1999, Calaca & Grelle 2016). Além disso,
a regido Neotropical também ocupa posicdo de destaque (n = 96; 20%) entre os estudos
verificados, com o Brasil (n = 61 estudos) liderando a producao cientifica, impulsionado por
renomados pesquisadores especializados em diversidade funcional. Enquanto, as regides
Afrotropical (n = 29; 6%) e Australésia (n = 23; 5%) registraram 0 menor numero de estudos,
evidenciando a necessidade de maiores investimentos em pesquisas sobre biodiversidade nessas

areas.

E amplamente reconhecido que o esforco global de pesquisa é distribuido de forma
desigual, influenciado por fatores geograficos e socioeconémicos (Parreira et al. 2017). Assim
também, paises com maior produto interno bruto abrigam mais instituicdes de pesquisa, e a
proximidade das infraestruturas com os locais de estudo facilita a producéo e distribuicao global
do conhecimento (Martin et al. 2012, Hortal et al. 2015). Como resultado desses fatores, as
lacunas de conhecimento sobre biodiversidade tendem a ser maiores em regides tropicais
(Collen et al. 2008). Em contrapartida, essas regides abrigam a maior riqueza de espécies e, por
iSs0, necessitam de uma infraestrutura mais robusta, instituicGes de pesquisa mais fortalecidas

e investimentos governamentais mais expressivos para a conservacao da biodiversidade.

Ao analisarmos os tracos utilizados em cada estudo verificamos que as caracteristicas
ecoldgicas foram mais frequentes que as morfoldgicas. Essa tendéncia pode estar associada a
predominancia de conjuntos de dados globais que priorizam atributos ecoldgicos e informacdes
sobre a historia de vida de mamiferos, aves, répteis e anfibios, como os bancos de dados
PanTHERIA (Jones et al. 2009), EltonTraits (Wilman et al. 2014), Amniota (Myhrvold et al.
2015) e AmphiBIO (Oliveira et al. 2017). Portanto, a facilidade de acesso e a abrangéncia das

informacdes prontamente disponiveis nesses bancos de dados tém incentivado pesquisadores a
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utilizarem mais atributos ecoldgicos em suas analises. Por outro lado, os dados de
caracteristicas morfolégicas disponiveis para vertebrados terrestres sdo mais limitados para
muitas espécies. Os Unicos dados completos de caracteristicas morfoldgicas continuas
apresentados em cada caso referem-se a massa corporal. Porém, esse traco isolado fornece
apenas informacdes limitadas sobre nichos ecoldgicos e interacdes troficas (Bender et al. 2018,
Cadotte & Tucker 2017, Pigot et al. 2020, Rigal et al. 2022). Ampliar o uso de caracteristicas
morfoldgicas na ecologia funcional tem sido desafiador, com avancos mais significativos
concentrados na ecologia aviaria (Tobias et al. 2020). Por exemplo, o recente surgimento do
banco de dados AVONET (Tobias et al. 2022) permitiu a analise de atributos ecoldgicos e
morfoldgicos (dieta, dispersdo e locomocdo) com conexdes robustas a padres ecoldgicos
(Pigot et al. 2016, 2020, Sheard et al. 2020), em contraste aos demais grupos taxonémicos

analisados.

Em relacdo a categoria de caracteristicas funcionais, nossos resultados indicaram que 0s
tracos relacionados a alimentacdo foram os mais aplicados nos estudos. A presenca de um
grande nimero de atributos ligados a essa dimensdo fundamental de nicho como nivel tréfico,
tipo de recurso alimentar/dieta e comportamento de forrageamento, principalmente para aves e
mamiferos nos bancos de dados globais pode estar relacionado com esse resultado (ver Jones
et al. 2009, Wilman et al. 2014). Também foi observado um alto nGmero de caracteristicas
morfologicas para descrever a aquisi¢cdo de alimentos, incluindo tragos como formato do bico
(comprimento, largura e altura) (Oliveira & Dos Anjos 2022, Neate-Clegg et al. 2023, Tonetti
et al. 2024), largura da boca (Maria Galindo-Uribe et al. 2022, Avella Machado et al. 2024),
formato e posicdo do disco oral (StrauB et al. 2010, Sun et al. 2023), posicdo e diametro dos
olhos (Dalmolin et al. 2019, Zhao et al. 2022), namero de fileiras de denticulos (Leao-Pires et
al. 2024), tamanho do intestino (Lan et al. 2023, Sun et al. 2023) e massa corporal (Dalmolin
et al. 2023, Sanllorente et al. 2023). No entanto, os tracos que representam as dimensdes da
historia de vida e do uso do habitat tiveram menor representatividade, porém com valores
proporcionais. Isto se deve ao fato dessas dimensdes apresentarem dados escassos para uma
grande gama de espécies, principalmente anfibios e répteis. Por exemplo, aves e mamiferos
demonstram ser esses grupos globalmente bem amostrados para o conjunto de caracteristicas
analisadas (massa corporal, longevidade/expectativa de vida, namero de filhotes/ovos, nivel
tréfico, tempo de atividade e amplitude do habitat), enquanto a disponibilidade de informac6es
de caracteristicas para anfibios e répteis é geralmente menor (Etard et al. 2020). Por fim, o baixo

uso da categoria Fisiologia pode estar relacionado ao fato de ser um trago dificil de ser medido.
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Finalmente, nosso estudo reune os indices mais utilizados para avaliar diversidade
funcional de vertebrados destacando FRic, FEve, FDis e FDiv como os mais frequentes. Trés
desses indices (FRic, FEve e FDiv) quantificam o espaco ocupado pelas espécies em um espago
multivariado definido por suas caracteristicas funcionais, o que justifica o fato deles estarem
entre os primeiros desenvolvidos para avaliar a diversidade funcional (Mason et al. 2005,
Villéger et al. 2008) e terem ganhado destaque ao longo dos anos. Seu carater multifacetado e
capacidade de integrar maltiplas caracteristicas funcionais simultaneamente, considerando a
abundancia relativa das espécies, pode facilitar andlises com vertebrados terrestres. Assim,
esses indices complementarmente atendem a muitos critérios de pesquisas sobre diversidade
funcional, permitindo uma abordagem mais abrangente da diversidade com base em mdltiplas
caracteristicas (Mouillot et al. 2013). Alem disso, os autores demonstraram que a FEve e FDiv
sdo independentes da FRic, como também, os trés indices sdo independentes entre si. O FDis,
por sua vez, é um indice complementar proposto por Laliberté & Legendre (2010), que mede a
distancia meédia de cada espécie em relacdo ao centroide funcional da comunidade. Sua
crescente utilizacdo, superando até o uso de FDiv, pode estar associada a sua ponderacédo pela
abundancia das espécies e a independéncia em relacdo a riqueza de espécies, além de nédo ser
muito sensivel a outliers tornando-o um indice particularmente robusto para estudos de
diversidade funcional (Laliberté & Legendre 2010, Gerisch et al. 2012, Morelli et al. 2021,
Barnagaud et al. 2023).
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Fatores ambientais, processos histéricos e antrépicos direcionam a
diversidade funcional de comunidades de anfibios da Mata Atlantica no
nordeste brasileiro (Capitulo 2)

Resumo

Caracterizar e quantificar as forcas que moldam a diversidade funcional ¢ fundamental para
conhecer o estado da saude dos ambientes tropicais. A Mata Atlantica é um dos ambientes de
floresta tropical mais afetados do planeta pelas atividades antrdpicas. Dentro da grande
diversidade abrigada na Mata Atlantica, os anuros sdo o grupo de vertebrados mais vulneraveis,
estando diversas espécies expostas a fortes riscos de extingdo. Diante deste cenario, este estudo
avaliou a partir de modelos espacialmente explicitos o efeito dos fatores ambientais, dos
processos historicos e antrépicos sobre diferentes dimens6es da diversidade funcional de anuros
da Mata Atlantica. Para isto, quantificamos a diversidade funcional dos anuros a partir de
atributos ecoldgicos classicos (morfologicos, reprodutivos e uso do habitat) e analisamos como
os fatores climaticos, processos historicos e disturbios antropicos (fragmentacéo florestal) tém
afetado os padrbes de diversidade funcional dos anuros da Mata Atlantica, no Nordeste do
Brasil. Neste estudo foram utilizados indices complementares de diversidade funcional, sendo
eles a riqueza funcional (FRic), a divergéncia funcional (FDiv) e a uniformidade funcional
(FEve), de 86 comunidades de anuros distribuidos na regido norte da Mata Atlantica. Foram
avaliados os efeitos ambientais, a instabilidade climatica histdrica e o impacto antropico a partir
de modelos lineares generalizados (GLS) controlados pela autocorrelacdo espacial. Os
resultados revelam que a FDiv dos anuros da Mata Atlantica é influenciada pela instabilidade
ambiental histdrica e pela forma (circularidade) dos remanescentes florestais. Além disso, a
FEve mostrou associacdo com as condi¢des climaticas (precipitacdo média anual). Entretanto,
a FRig se manteve sem uma associacdo aparente com os preditores utilizados. Este estudo
contribuiu para o conhecimento acerca das forcas que dirigem a diversidade funcional, gerando
resultados Uteis para subsidiar acGes efetivas para a conservacdo dos anuros na Mata Atlantica.

Palavras-chave: Anuros, diversidade funcional, fragmentacdo, mata atlantica.

1. Introducao

A variedade da vida no planeta engloba uma miriade de diferentes elementos
bioguimicos, genéticos, morfoldgicos, fisiolégicos, taxonémicos, ecoldgicos e evolutivos
(Gaston & Spicer 2012). Tradicionalmente, o estudo dessa diversidade foi dominado por
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métricas de ocorréncia e riqueza de espécies, todavia, nas Ultimas décadas, abordagens que
exploram a relagdo entre tragos das espécies e processos e servigos ecossistémicos tém crescido,
permitindo a investigacao de diferentes dimensdes da biodiversidade (Petchey & Gaston 2006,
Stuart-Smith et al. 2013). Nesse sentido, a diversidade funcional quantifica, por meio de uma
Unica medida continua, diferentes atributos funcionais dentro do nicho multidimensional a
partir de caracteristicas morfoldgicas, fisiologicas e fenoldgicas da espécie, que definem seu
papel ecolégico em uma comunidade (Diaz & Cabido 2001, Petchey & Gaston 2006, Villéger
et al. 2008). Assim, a diversidade funcional € um conceito que liga espécies e ecossistemas por
meio de mecanismos como complementaridade de uso de recursos e facilitacdo, possibilitando
a pesquisa acerca de uma ampla gama de questfes ecoldgicas e evolutivas em diferentes escalas

espaciais e temporais (Mason et al. 2005, Petchey & Gaston 2006).

Do mesmo modo que a diversidade funcional pode explicar e prever o impacto dos
organismos nos ecossistemas (Petchey & Gaston 2006), também é possivel prever os efeitos de
gradientes ambientais, processos historicos e disturbios antropicos nos papeis funcionais
desempenhados pelas espécies nas comunidades (Arruda Almeida et al. 2018, Matuoka et al.
2020, Su et al. 2022). Variaveis ambientais como temperatura, precipitacdo e estratificacdo de
habitat podem afetar a diversidade funcional (Cowling et al. 1994, Schleuter et al. 2012,
Reymond et al. 2013, Seymour et al. 2015, Ochoa-Ochoa et al. 2019, Correia et al. 2020, Liang
et al. 2020, Byamungu et al. 2021), uma vez que se relacionam fortemente com caracteristicas
adaptativas (ou seja, fenotipicas) (Ridley 2006) e atuam como filtros, favorecendo espécies com
caracteristicas particulares em detrimento de outras para a estruturacdo das comunidades, o que
pode gerar gradientes de diversidade funcional (Lescano et al. 2018, Ochoa-Ochoa et al. 2019,
Tsianou & Kallimanis 2020, Jiménez-Vargas et al. 2021). Adicionalmente, a diversidade
funcional atual também pode estar associada a transformacdes historicas do clima, a exemplo
das glaciacdes e interglaciacdes do Quaternario Superior. Por exemplo, em diversos grupos de
plantas, foi observado que uma alta variabilidade no paleoclima a longo prazo impds restricdes
suplementares a diversidade funcional, afetando o funcionamento e a resiliéncia de
ecossistemas atuais (Ordonez & Svenning 2015, 2016, 2017). Além disso, tem-se observado o
efeito de alteracbes antropicas sobre a diversidade funcional, sendo a perturbacdo e a
fragmentacdo de habitats geralmente relacionadas a perda de diversidade funcional, ou a perda
de tracos em diferentes grupos de organismos (Ernst et al. 2006, Sonnier et al. 2014, Vollstadt
et al. 2017, Almeida-Gomes et al. 2019, Zambrano et al. 2019, 2020, Belcik et al. 2020).

43



No Brasil, a Mata Atlantica é considerada um hotspot de biodiversidade (Myers et al.
2000). Originalmente a Mata Atlantica cobria cerca de 150 milhGes de hectares e estendia-se
desde as latitudes 3°S a 31°S, e longitudes 35°W a 60°W, sendo que 92% da sua distribuicdo
original esta localizada na costa brasileira, apresentando condi¢cGes ambientais heterogéneas,
oriundas de um gradiente de chuvas decrescente do litoral para o interior, de uma ampla
variacdo altitudinal, desde o nivel do mar até as cadeias montanhosas da Serra do Mar e Serra
da Mantiqueira, e de uma variacao latitudinal, abrangendo ambientes tropicais e subtropicais
(Tabarelli et al. 2005, Ribeiro et al. 2009, Cavarzere & Silveira 2012). Essa ¢ a floresta mais
desmatada do Brasil, restando somente 9,1% da mata original (Cabral & Bustamante 2016, SOS
Mata Atlantica 2025). Muitos estudos de diversidade funcional tém sido empregados para
aumentar os esforcos de conservacdo dessas areas de remanescentes florestais (Girdo et al.
2007, Colzani et al. 2013, Warring et al. 2016, Oliveira, Gouveia, et al. 2020, Hepp et al. 2023).
Esses estudos na Mata Atlantica fornecem informacgdes mais objetivas de como mudancas na
paisagem afetam a sobrevivéncia das espécies as quais caracteres devem ser considerados no
momento de conservar uma area ou espécies (Rosenfield & Miuller 2020, Ledo et al. 2021,
Anunciacao et al. 2023). Diante disso, a Mata Atlantica € um potencial modelo de estudo de

como diferentes fatores ambientais e antropicos podem influenciar a biodiversidade.

Dentre os diversos grupos de animais encontrados na Mata Atlantica, a classe dos
anfibios se destaca pela sua alta riqueza no bioma, o qual possui 50% de todas as espécies
presentes no Brasil, sendo quase exclusivamente espécies de anuros (Rossa-Feres et al. 2017).
Estes animais desempenham diversos papéis nos servicos ecossistémicos importantes para a
manutencdo da biodiversidade, na dinamica das teias tréficas e no fluxo de energia nos
ambientes aquaticos e terrestres, influenciando no ciclo de nutrientes, no controle das
populacdes de invertebrados e na decomposicdo de serapilheira, podendo até mesmo mudar a
estrutura do habitat em funcdo de seus comportamentos de forrageamento (Flecker et al. 1999,
Ranvestel et al. 2004, Whiles et al. 2006). Adicionalmente os anuros sdo como boticarios
naturais de diversas substancias importantes para os estudos cientificos e para a elaboracéo de
produtos farmacéuticos (Barbosa et al. 2021). Por outro lado, esses animais possuem alta
adapta¢do morfologica e fisiologica ao ambiente, sendo dependentes de corpos d’agua, de
diferentes niveis de estratificacdo e também da composicdo de solo, principalmente nos
momentos da reproducio (Alvarez-Grzybowska et al. 2020, Zabala-Forero & Urbina-Cardona
2021). Diante disso, devido as pressdes antropicas, como a fragmentacdo de florestas e a

insercdo de espécies exoticas invasoras, 0S anuros se tornaram o grupo mais ameagado a
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extingdo dentre os vertebrados (Stuart et al. 2004, Lips et al. 2005, Wake & Vredenburg 2008,
Collins & Crump 2009, Hayes et al. 2010, Hoffmann et al. 2010, Luedtke et al. 2023). Dessa
forma, o declinio dos anuros pode desencadear efeitos de instabilidade nos ecossistemas e uma

grande perda de potenciais produtos biotecnolégicos (Menéndez-Guerrero et al. 2020).

Diante deste cenario, é urgente a realizacdo de pesquisas que busquem revelar os
processos que moldam as comunidades de anfibios sob perturbacGes e relacionam as
consequéncias destas alteracdes do habitat e da perda da biodiversidade ao funcionamento do
ecossistema, o que pode ser alcangado usando abordagens funcionais baseadas em atributos das
espécies (Cadotte et al. 2011, Mouillot et al. 2013). Tais avaliagdes podem ajudar a entender 0s
efeitos de diferentes fatores no funcionamento do ecossistema, o que é importante para aplicar
medidas de conservacao efetivas antes do declinio grave das populagdes e das espécies no nivel
da paisagem (Edwards et al. 2014). Nesse ambito, o objetivo desta pesquisa foi quantificar a
diversidade funcional dos anfibios anuros a partir de tragos ecologicos classicos (morfologicos,
de uso do habitat e reprodutivos) e analisar como os fatores ambientais, processos histéricos e
antropicos (fragmentacdo florestal) tém afetado os padrdes das diferentes dimensdes da

diversidade funcional dos anuros da Mata Atlantica, no Nordeste do Brasil.

2. Material e Métodos
2.1 Area de estudo

A area de estudo compreende a regido de ocorréncia das formacdes florestais nativas e
ecossistemas associados ao hotspot de Biodiversidade do Bioma da Mata Atlantica (Myers et
al. 2000) na regido Nordeste do Brasil, abrangendo oito estados, localizados de Sul para Norte:

Bahia, Sergipe, Alagoas, Pernambuco, Paraiba, Rio Grande do Norte, Ceara e Piaui (Fig. 1).
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Figura 1. Localizacdo da area de estudo, que compreende a totalidade da cobertura da Mata Atlantica no nordeste
brasileiro. Distribuicdo dos pontos amostrais das comunidades de anfibios anuros dos remanescentes florestais de
Mata Atlantica da area de estudo (Sistema de Coordenadas Geograficas, Datum WGS-84).

2.2 Coleta de dados e delineamento do estudo

O arquivo vetorial (shapefile) dos fragmentos florestais de toda cobertura da area de
estudo foi obtido a partir da versdo atual do Atlas dos Remanescentes Florestais da Mata
Atlantica, o qual incluiu todas as fitofisionomias do bioma disponibilizadas na plataforma
(Floresta Estacional Decidual, Floresta Estacional Semidecidual, Floresta Ombrofila Aberta,
Floresta Ombrofila Densa, Floresta Ombrofila Mista, Formacdes pioneiras) produzido pela
fundacdo SOS Mata Atlantica e o INPE (SOS Mata Atlantica & INPE 2016).

A coleta de dados das assembleias de espécies de anuros para o presente estudo foi
realizada a partir do trabalho de Vancine et al. (2018). Esta base de dados apresenta informacgdes
recompiladas na literatura acerca dos inventarios de anfibios no Bioma da Mata Atlantica da
América do Sul. Dessa forma, as seguintes informacfes foram obtidas para este trabalho:
coordenada geogréafica UTM (latitude e longitude) dos sitios amostrais (id), meses de esforco

amostral, nome do local e 0 nome dos taxons de anuros registrados nos levantamentos. Nesta
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pesquisa foram selecionados apenas os levantamentos com um esforco amostral de no minimo

Seis meses.

Foram identificados e analisados os remanescentes florestais que apresentaram um ou
mais pontos amostrais no seu interior ou no seu entorno (préximo a borda do fragmento),
totalizando 86 pontos de amostragem, distribuidos em 50 fragmentos de Mata Atlantica dentro

da érea estudada (Fig. 1).

2.3 Dados dos atributos funcionais das espécies

Os atributos funcionais utilizados para caracterizar a diversidade funcional das
assembleias de anuros foram obtidas a partir do descritor de dados sobre tracos de anfibios
AmphiBIO (Oliveira et al. 2017), que apresenta um banco de dados abrangente de
caracteristicas para anfibios em todo o mundo. Foram utilizados trés tragos funcionais: (1)
tamanho do corpo (traco continuo); (2) caracteristicas de reproducdo (traco categorico); e (3)

uso geral do habitat (traco categorico) (Tab. 1).

Tabela 1. Tracos funcionais usados para descrever a diversidade funcional de assembleias de anuros da Mata
Atléantica, no Nordeste brasileiro.

Tipo de Traco Categoria Valores Unidades/
traco do trago .

categorias

Morfolégico  comprimento do corpo (comprimento Continuo milimetros

do focinho a cloaca-SVL)

Reprodutivo  Estratégia de reproducéo (Se a espécie  categérico 3 categorias  Direto, larval,
se reproduz via desenvolvimento vivipara.
direto, larval ou vivipara)

Relacionado Habitat (Classificacdo geral do estrato  categérico 4 categorias Fossorial,
ao habitat de forrageamento vertical) terrestre,

aquatico e

arboricola.

Vaérias razdes podem justificar a escolha desses tragos especificos dos anuros. Primeiro,
porque dentre as caracteristicas fenotipicas dos organismos o tamanho corporal tem sido 0 mais
estudado (Gaston et al. 2008), também especificamente com anuros (Thuiller et al. 2015,
Tsianou & Kallimanis 2016, 2019, Campos et al. 2017, Pereyra et al. 2018, Almeida-Gomes et
al. 2019, Lourenco-de-Moraes et al. 2019, Ochoa-Ochoa et al. 2019, Oliveira et al. 2020,
Jiménez-Vargas et al. 2021, Tsianou et al. 2021), uma vez que tende a ser a medida mais

facilmente obtida, além de ser um atributo associado a quantidade e ao tamanho dos recursos
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consumidos, a taxa de crescimento do organismo, a expectativa de vida, ao nimero de ovos por
ninhada, entre outros (Brown 1995, Jiménez-Vargas et al. 2021). Segundo, porque a estratégia
de reproducdo retne informacdes sobre 0 modo de desenvolvimento das espécies de anuros, se
a espécie se reproduz via desenvolvimento direto, larval ou vivipara. De modo geral, essas
caracteristicas representam de forma implicita a relacdo organismo-ambiente, as quais podem
explicar como os organismos respondem individualmente as variacbes ambientais (Lavorel &
Garnier 2002, Violle et al. 2007), e, portanto, resumem a histéria de vida desses organismos.
Adicionalmente, a Mata Atlantica brasileira € apontada como o bioma que abriga a maior
diversidade de estratégias reprodutivas de ras em todo o mundo (Haddad & Prado 2005). Por
fim, a informacdo do hébito (fossorial, terrestre, aquatico e arboricola) apresentado pelas
espécies serve como um descritor da classificacdo geral do estrato de forrageamento vertical da

anurofauna.

Dessa forma, diante das varias fungdes ecossistémicas desempenhadas pelos anuros, as
trés caracteristicas (morfoldgica, reprodutiva e de uso do habitat) aqui selecionadas podem, em
conjunto, retratar de que forma os recursos disponiveis no ambiente estdo sendo utilizados em
diferentes dimensdes pelas assembleias de espécies de anfibios anuros presentes nos fragmentos

de Mata Atlantica, no Nordeste do Brasil.

2.4 Quantificando a diversidade funcional

No presente trabalho foram utilizados trés indices para medir diferentes dimensdes da
diversidade funcional das comunidades de anuros: (i) riqueza funcional (FRic), (ii) divergéncia
funcional (FDiv) e (iii) uniformidade funcional (FEve). A FRic, com base no conceito de
envoltorio convexo, representa o volume do espaco de caracteristicas funcionais ocupado pelas
espécies da comunidade, caracterizando a quantidade de tragos na comunidade; a FDiv reflete
a distancia média das espécies em relacdo ao centroide do espago funcional, caracterizando
qudo diferentes sdo as espécies na comunidade; e a FEve mede quéo uniforme as espécies estdo
distribuidas ao longo desse volume do espago funcional, representando qudo variaveis sdo as
espécies nas comunidades (Mason et al. 2005, Villéger et al. 2008, Schmera et al. 2023). Esses
trés indices, por serem complementares, devem ser avaliados de forma independente para
determinar uma relacdo especifica com os fatores ambientais e fungdes ecossistémicas
(Mouchet et al. 2010). Os indices foram quantificados com o pacote ‘FD’ calculados pela
fungdo dbFD (Laliberté & Legendre 2010), no software R (R Core Team, 2025).
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2.5 Caracterizacdo ambiental e da estabilidade climética histérica

Foram selecionadas quatro variaveis climéaticas que podem influenciar na diversidade
funcional das comunidades, obtidas a partir do banco de dados WorldClim (Fick & Hijmans
2017): temperatura média anual (Biol), sazonalidade da temperatura (Bio4), precipitacdo anual
(Bio12) e sazonalidade da precipitacdo (Biol5). Adicionalmente, foi coletada a altura de dossel
dos fragmentos, permitindo-nos caracterizar a heterogeneidade dos habitats (Gouveia et al.
2014). A altura do dossel foi obtida a partir do banco de imagens da NASA, com dados mensais
de resolucdo de 1 km (link: https:// go.nasa.gov/2Qyl4hd). Por ultimo foi caracterizada a
estabilidade climéatica dos ambientes no tempo histdrico. Para isto obtivemos a métrica de
estabilidade dos biomas proporcionada por Costa et al. (2018). Essa métrica quantifica quantas
vezes 0 bioma de uma localidade tem mudado dentro do espaco geografico nos ultimos 25 mil

anos.

2.6 Caracterizacdo da paisagem

Foram obtidas trés métricas associadas com a fragmentacdo da paisagem, a area, a forma
e o isolamento dos fragmentos de habitat (Metzger 2006b, Morais & Carvalho 2013, Turner &
Gardner 2015). A metrica da area corresponde ao tamanho dos fragmentos, em hectares (ha),
obtidos diretamente do software ArcGIS (ESRI, 2014), por meio da ferramenta
CalculateGeometry da tabela de atributos da camada dos remanescentes florestais. Assim, foi
possivel obter a area de cada fragmento de interesse. Este parametro representa uma forma para
entender ecologicamente estes remanescentes sob a 6tica do modelo de biogeografia de ilhas
de MacArthur & Wilson (1967). A meétrica da forma de um habitat reflete sobre a sua
capacidade em sustentar espécies, ja que se relaciona diretamente a influéncia do ambiente do
entorno sobre este habitat, chamado efeito de borda. Dessa forma, quanto mais circular é a
forma dos fragmentos florestais, maior serd sua proporcdo de area nucleo em relagcdo a sua
borda, resultando numa menor porcao de floresta sob a acdo do efeito de borda (Porensky &
Young 2013). Em contraste, fragmentos mais alongados serdo mais suscetiveis a fatores
microclimaticos, como aumento dos ventos, maior radiacdo solar e menor umidade, o que pode
resultar em mudancas na abundéancia, distribuicdo e interacdo das espécies (Didham & Lawton
1999, Gascon et al. 2000, Fahrig 2003, Kollmann & Buschor 2003, Redding et al. 2003,
Tabarelli et al. 2010, Laurance et al. 2011, Piitz et al. 2011). Sendo assim, foi calculado o indice

de circularidade (IC) dos fragmentos através da seguinte formula de Chaturvedi (1926):

49



IC = (40000 x Tx A)/P?

Sendo que,
n=23.14;
A = érea do fragmento em hectare (ha);

P = perimetro do fragmento em metros (m).

Desse modo, quanto mais proximo de 1 sdo os valores de IC mais circulares sdo os
fragmentos e a medida que o indice se distancia desse valor, tem-se um fragmento alongado
(Greggio et al. 2009).

Por ultimo, o isolamento entre as manchas de habitats fragmentados dentro de um
sistema ecologico tem implicagdes sobre a distribuicdo da biota e, principalmente, na
manutencdo do fluxo génico, o que traz consequéncias sobre a diversidade, no caso especifico
desta pesquisa, acerca da diversidade funcional. Para a obtencdo desta métrica foram
calculadas, de forma automatica a partir da ferramenta Proximity do aplicativo ArcGIS (ESRI,
2014), todas as distancias, dentro de um raio de 50 quilémetros, entre o centroide de cada
fragmento de interesse, 0s quais possuem sitios amostrais, e 0s do seu entorno, atraves do

algoritmo: AnalysisTools — Proximity — PointDistance.

As métricas de paisagem foram quantificadas para cada um dos fragmentos
isoladamente (Lang & Blaschke 2023). Estas analises foram realizadas com auxilio do software
ArcGIS 10.2.1 (ESRI, 2014).

2.7 Anélise dos dados

Para avaliar nossa hipotese ambiental (Biol, Bio4, Biol2, Biol5 e dossel), histérica
(estabilidade climatica) e antropica (circularidade, area e isolamento) sobre a FRic, FDiv e
FEve, utilizamos um modelo de Minimos Quadrados Generalizados (GLS), incorporando as
coordenadas geograficas na estrutura do modelo para controlar a autocorrelacao espacial. Todas
variaveis apresentaram uma correlacdo r < 0.7, evitando assim a autocolinearidade nos modelos
(Tab. S1). Todas as analises estatisticas foram realizadas com utilizacdo do pacote nmle
(Pinheiro et al., 2025) no software R (R Core Team, 2025).
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3. Resultados

Foram contabilizadas 156 espécies de anuros pertencentes a 21 familias (Fig. 2) e 49
géneros, nos 86 pontos de amostragem dos levantamentos selecionados, o que corresponde a
cerca de 29.09% das espécies de anuros conhecidas para 0 Bioma Mata Atlantica e 2.08% da

diversidade de anuros descritas ao redor do mundo.

Neste estudo foram obtidos 50 fragmentos de interesse ao longo de todo o Bioma da
Mata Atlantica nordestina, que compdem uma area aproximada de 574.800 ha (cerca de 5.748
km?). O tamanho dos fragmentos de Mata Atlantica variou entre 8.45-421103.6 ha, com média
de 10644.69 + 57184.54 ha. Os indices de circularidade dos fragmentos variaram entre 0.005-
0.76, com média de 0.19 £ 0.19, indicando que os fragmentos ndo sdo circulares, prevalecendo

o formato alongado e recortado.
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Figura 2. Representatividade das familias no estudo. Frequéncia relativa das familias com base no total de 86
pontos amostrais.

Do total de espécies amostradas 40.8% foram terrestres, 31.9% aquaticas, 21.6%
(Fig. 3).
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Figura 3. Porcentagem das diferentes categorias de uso de habitat.
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Figura 4. Distribuicdo dos pontos amostrais de acordo com os indices, a intensidade de cor nos pontos indica a
variagdo nos valores dos indices. (A) variagdo da riqueza funcional (FRic) ao longo dos pontos amostrais. (B)
variacao da uniformidade funcional (FEve) ao longo dos pontos amostrais. (C) variagdo da divergéncia funcional
(FDiv) ao longo dos pontos amostrais.

Para os resultados do indice de riqueza funcional (FRic) dos pontos amostrais,
fragmentos préximos tenderam a apresentar valores parecidos. Os valores dos pontos amostrais
altos em Pernambuco, baixos na Paraiba e intermediarios no Ceara, exemplificam essa
afirmacdo. Sergipe, por possuir apenas um ponto amostral ndo pode ser comparado
internamente, porém o valor de riqueza funcional desse fragmento é alto e se assemelha ao do
ponto mais proximo deste, em Alagoas. Por outro lado, Bahia e Alagoas ndo mostraram nenhum
tipo de padrdo entre seus pontos amostrais (Fig. 4A). Para a uniformidade funcional (FEve), 0s
valores mais altos se concentraram nos pontos amostrais da Paraiba, mostrando uma relacéo
inversa aos de FRic, e os mais baixos no sul da Bahia. Apesar da proximidade relativa, Alagoas
apresentou valores mais altos enquanto Sergipe apresentou valores mais baixos, de forma
similar aos pontos amostrais proximos dentre os remanescentes em Pernambuco e do Ceara
(Fig. 4B). A divergéncia funcional (FDiv) foi a mais heterogénea entre os trés parametros,

apresentando homogeneidade apenas no estado do Ceara, com valores baixos. Bahia, Sergipe e
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Alagoas apresentaram valores médios e baixos, enquanto que Paraiba e Pernambuco foram os

Unicos estados que apresentaram pontos com alta divergéncia funcional (Fig. 4C).

Nossos resultados evidenciaram que as variaveis ambientais, historicas e antropogénicas
impactaram significativamente as métricas de FDiv e FEve. Entretanto ndo encontramos efeitos
significativos na FRic (Tabela 3). A FDiv mostrou relagdo positiva com a instabilidade histérica
(b =0.0176, p < 0.05) e negativa com a circularidade (b = -0.0216, p < 0.05), indicando que
ambientes mais instaveis e menos circulares apresentam maiores FDiv. Por outro lado,
ambientes com maiores precipitacées apresentaram uma maior FEve (b = 0.0127, p < 0.05)
(Tab. 2).

Tabela 2. Modelos de regressdo GLS entre a varidvel resposta com as variaveis preditoras. FRic: riqueza
funcional; FEve: uniformidade funcional; FDiv: divergéncia funcional; Biol: temperatura média anual; Bio4:
sazonalidade da temperatura; Bio12: precipitacdo anual; Biol5: sazonalidade da precipitacdo; Area: tamanho do
fragmento (ha); Isolamento: distancias médias entre o centroide dos fragmentos (m); Circularidade: indice de
circularidade.; b: inclinacdo da regressao (slope). Valor em negrito p<0.05.

Hipdtese Resposta Preditor b df Valor de p
Biol -0.0010 80 0.9860
Bio4 -0.0508 80 0.5227
Ambiental FRic Biol2 -0.0673 80 0.3029
Biolb -0.0780 80 0.2950
Dossel 0.0003 80 0.9505
Histérica FRic Instabilidade 0.0261 84 0.5034
Area -0.0345 82 0.4346
Antropogénica FRic Isolamento 0.0026 82 0.9505
Circularidade -0.0557 82 0.1407
Biol 0.0056 80 0.2384
Bio4 0.0078 80 0.3210
Ambiental FEve Biol2 0.0127 80 0.0345
Biol5 0.0073 80 0.3090
Dossel -0.00075 80 0.1181
Histérica FEve Instabilidade -0.0061 84 0.1133
Area 0.0035 82 0.4479
Antropogénica FEve Isolamento -0.0082 82 0.0859
Circularidade 0.0037 82 0.3568
Biol -0.0070 80 0.5285
Bio4 -0.0017 80 0.9249
Ambiental FDiv Biol2 -0.0049 80 0.7278
Biol5 -0.0096 80 0.5639
Dossel -0.0015 80 0.1652
Histérica FDiv Instabilidade 0.0176 84 0.0400
Area -0.0017 82 0.8605
Antropogénica FDiv Isolamento 0.0078 82 0.4450
Circularidade -0.0216 82 0.0137
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4. Discusséo

Nossos resultados demonstram que fatores ecologicos, historicos e antrdpicos parecem
moldar as diferentes dimensdes da diversidade funcional dos anuros na Mata Atlantica no
Nordeste. Por um lado, a FDiv esta predominantemente associada com a instabilidade ambiental
historica e os impactos antropicos (circularidade dos fragmentos), evidenciando que as
perturbagdes afetam o qudo diferentes sdo os tragos funcionais nas comunidades. Por outro lado,
FEve mostrou associacdo com fatores climaticos como a precipitacdo, apontando que ambientes
com maiores precipitagdes apresentam comunidades com maior uniformidade dos tragos.
Entretanto, a FRig ndo se mostrou relacionada com fatores ambientais, historicos ou antrépicos,
indicando que um namero similar de funcBes é encontrado em fragmentos com diferentes

condicdes ecologicas e evolutivas.

Dentro dos biomas da América do Sul, a regido compreendida pela Mata Atlantica foi
uma das regides mais instaveis climaticamente, tendo mudado recorrentemente de bioma ao
longo dos ultimos 20 mil anos (Costa et al. 2018). A FDiv reflete a distancia média das espécies
ao centroide do espaco funcional, ou seja, quanto mais afasta-se de zero, indica que as espécies
apresentam maior grau de diferenciacdo de nicho, e portanto, competem menos por recursos
(Mason et al. 2005). Estes resultados contrapdem a expectativa de que ambientes mais instaveis
ao longo do tempo geoldgico favorecem especies generalistas (Dynesius & Jansson 2000). Uma
explicacdo possivel para esse resultado é que altos niveis de instabilidade climéatica podem
ocasionar maiores taxas de especiacdo ao promover a fragmentacdo das areas e facilitar a
renovacdo das espécies (Morales-Barbero et al. 2021). Essas mesmas areas, onde o clima muda
rapidamente, podem gerar diferentes pressdes seletivas ao longo do tempo, selecionando
organismos com caracteristicas diferentes, capazes de se adaptar aos ambientes (Barreto et al.
2021). Sendo assim, regides altamente instaveis parecem ter permitido o surgimento e acumulo

de novas espécies com caracteristicas funcionais diferentes ao longo do tempo.

Nesse mesmo sentido, a FDiv mostrou que fragmentos menos circulares estdo
associados a comunidades com maiores divergéncias funcionais. Diversos estudos tém
apontado que a FDiv pode aumentar nas areas mais heterogéneas ou nas regides das bordas de
fragmentos remanescentes (Magnago et al. 2014, Sfair et al. 2016, Lee & Martin 2017). Sendo
assim, o aumento da FDiv dos anuros nos fragmentos menos circulares pode indicar a perda de
espécies funcionalmente similares devido aos distarbios nas bordas dos remanescentes
(Mouchet et al. 2010). Desse modo, os fragmentos menos circulares apresentaram espécies

menos redundantes, possuindo um maior risco de extincdo funcional. Estudos prévios ja tém
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apontado que a conversdo de habitat e 0 manejo agricola causam profundas alteracGes na
comunidade de anuros, incluindo a perda dramatica de diversidade de espécie, e aumento da
divergéncia funcional (Piha 2006, Piha et al. 2007, Ribeiro et al. 2017, 2017, Moreira et al.
2020). Desse modo, a divergéncia funcional ou especializa¢cdo podem servir como sinais de

alerta precoce de declinio (Villéger et al. 2010).

O nosso estudo mostrou que a precipitacdo é um preditor ambiental significativo da
FEve, refletindo que nos ambientes com maior precipitacdo as distancias funcionais entre as
espécies sdo mais equitativas. Este padréo estd associado com a distribuicdo e uso dos recursos
no ambiente. Assim, uma alta FEve em regides com alta precipitacdo indica que 0S recursos
nestas regides estdo uniformemente distribuidos e estes estdo acessiveis de forma igual para as
diferentes espécies (Mason et al. 2005). Areas com maior precipitagdo proporcionam uma
ampla gama de opgdes de locais de forrageamento, uma maior disponibilidade de recursos
alimentares e de locais de desova (Vasconcelos et al. 2010, Ficetola & Maiorano 2016). Em
nosso estudo, a maioria das espécies de anuros sdo terrestres (40.8%), e muitas delas
compartilham o mesmo modo reprodutivo (ovos e girinos exotroficos em agua Iéntica). Dessa
forma, a provavel explicacdo para a coocorréncia dessas espécies é a maior disponibilidade de
sitios de oviposicdo em areas com maior precipitacdo. Estes resultados sdo complementares a
estudos anteriores, onde se observou que as fun¢Ges das comunidades de anfibios sdo mais
uniformemente distribuidas em areas com baixa sazonalidade de precipitacdo (Ochoa-Ochoa et
al. 2019, Tsianou & Kallimanis 2020). Por outro lado, os locais com maior FEve sdo
considerados mais estaveis, dado que apresentam uma forte redundancia das fungdes
ecoldgicas, sendo menos vulneraveis a impactos antropicos (Mouchet et al. 2010, Villéger et
al. 2010, Gerisch et al. 2012). Portanto, as regifes da Mata Atlantica com maior precipitacao
parecem apresentar comunidades de anuros mais redundantes, refletindo a estabilidade e

resiliéncia destes fragmentos.

Neste trabalho, ndo encontramos evidéncias de que fatores ambientais, antrépicos e
historicos afetam a FRic das assembleias de anuros da Mata Atlantica, ou seja, esses agentes
parecem ndo alterar o volume do espaco funcional ocupado pelas espécies dentro das
comunidades. Resultados similares foram observados em estudos de diversidade funcional na
Mata Atlantica (Magnago et al. 2014, Anunciacao et al. 2023). Uma possivel explicacdo para a
manutencdo da FRic é que fragmentos menores e isolados apresentam uma menor riqueza
composta por tdxons com caracteristicas funcionais dispares e manchas maiores apresentam um

maior namero de espécies, mas com uma maior redundancia funcional.
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Em suma, essa pesquisa revela que tanto os fatores ambientais, como 0S processos
historicos e antropogénicos estdo associados com diferentes facetas da diversidade funcional
dos anuros da Mata Atlantica. Tendo em vista a ameaca critica que esses animais enfrentam e
as consequéncias ecossistémicas e sociais da perda da sua diversidade, é essencial que as a¢cdes
voltadas a conservacao do grupo levem em consideracao, também, a manutencgéo da diversidade
funcional. Para isso, é importante, em primeiro lugar, a protecdo dos fragmentos florestais
existentes, pois mesmo em fragmentos pequenos, antropizados e com menor precipitacdo é
possivel encontrar uma alta riqueza funcional. Em segundo lugar, € importante monitorar
fragmentos mais instaveis, como aqueles com alta variagdo climética histérica e com maior
efeito de borda, pois essas areas apresentam maior divergéncia funcional, e, portanto, menor
redundancia de fungdes, podendo ser mais vulneraveis a perturbacdes e invasdes biologicas, e
podem ja estar em declinio (Mason et al. 2005). Por fim, ainda que fragmentos com alta
precipitacdo representem atualmente uma menor preocupacao em termos de conservagdo por
possuirem alta redundancia funcional e consequentemente uma alta resiliéncia frente a
disturbios (Villéger et al. 2010), é necessario levar em consideracdo as mudangas nos regimes
de chuva que podem ocorrer com as mudancas climaticas (Vale et al. 2021, McLaughlin et al.

2025), aumentando o risco nessas comunidades.
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Contribuicbes da Morfometria Geométrica na compreensdo da
funcionalidade das comunidades de Anuros (Capitulo 3)

Resumo

A diversidade de espécies em comunidades ao redor do mundo pode ser avaliada por meio de
diferentes abordagens, como a diversidade funcional e a filogenética, amplamente utilizadas no
estudo da estrutura das comunidades. Neste trabalho, investigamos o grau de associagao entre
quatro medidas de diversidade: funcional (FD), morfolégica 3D (MD), filogenética (PD) e de
nicho climéatico (CND) em comunidades de anuros. Além disso, avaliamos a hipétese de que a
MD pode servir como uma proxy eficiente para a FD. Testamos se ha sinal filogenético (K de
Blomberg) nas caracteristicas fenotipicas (classicas e de forma 3D) e de nicho climético das
espécies de anuros e realizamos simulagdes para montar comunidades aleatorias de anuros para
quantificar a associacdo entre a FD, PD, MD e CND. Os sinais filogenéticos das caracteristicas
funcionais, morfologicas (3D) e dos nichos climaticos das espécies de anuros nas comunidades
apresentaram valores variando de baixos a intermediarios. Encontramos que comunidades
maiores tendem a apresentar valores maiores de FD e de CND a medida que aumenta 0 nUmero
de espécies, enquanto esse padrdo ndo foi observado para a diversidade morfologica.
Evidenciamos pela primeira vez que a MD de grupos filogeneticamente proximos estd mais
fortemente correlacionada com a FD do que com a CND ou a PD. Nossos resultados fornecem
evidéncias empiricas que destacam o potencial dos dados de morfometria na compreenséo da
FD em comunidades. Assim também, enfatizamos a importancia dos Museus de Colecdes
Biologicas como repositorios fundamentais para a preservacdo e estudo da diversidade

funcional.

Palavras-chave: Anuros, diversidade funcional, diversidade morfologica.

1. Introducao

A Diversidade Funcional ou FD (do inglés Functional Diversity) tem sido amplamente
utilizada para compreender a dindmica dos ecossistemas ao longo do tempo e do espacgo
(Cadotte et al. 2011, Petchey & Gaston 2006, Song et al. 2014). Nas ultimas décadas, a FD tem
sido medida com base em atributos morfolégicos, bioquimicos, fenoldgicos, estruturais,

fisioldgicos e comportamentais, 0s quais determinam como 0S organismos respondem as
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variagdes do ambiente fisico e bidtico (Violle et al. 2007). Dessa forma, a FD é considerada um
componente essencial da biodiversidade, influenciando diretamente a dindmica e o
funcionamento dos ecossistemas (Petchey & Gaston 2006, Tilman 2001). Além disso, tem sido
uma ferramenta fundamental para compreender as interagdes dos organismos com sSeus
ambientes fisico, quimico e bioldgico (Hooper et al. 2005). Entretanto, uma das limitacdes é
que muitas das caracteristicas funcionais séo dificeis de mensurar e coletar, existindo lacunas
sobre os tragos funcionais de muitas linhagens (Hortal et al. 2015, Stewart et al. 2023).
Adicionalmente, o conhecimento imperfeito sobre quais e quantas caracteristicas e funcdes sdo
importantes em um determinado contexto ecoldgico tem sido frequentemente relatado como
uma questdo critica para estimar adequadamente a FD (Diaz & Cabido 2001, Petchey & Gaston
2006).

A diversidade filogenética ou PD (do inglés Phylogenetic Diversity; Faith 1992) tem
sido proposta como proxy para a FD (Kraft & Ackerly 2010, Parrent et al. 2010, Pavoine et al.
2013, Prinzing 2016, De Bello et al. 2017, Cadotte et al. 2019). O uso da PD como proxy da
FD baseia-se no pressuposto de que as caracteristicas fenotipicas das espécies sdo produto da
sua historia evolutiva compartilhada (Webb et al. 2002). Entretanto, a suposicdo de que a
historia evolutiva das caracteristicas funcionais de uma espécie pode ser inferida a partir da
filogenia, s6 é valida se essas caracteristicas apresentarem sinal filogenético. Isso significa que
as mudancas nos tragos funcionais devem estar relacionadas ao tempo de divergéncia das
espécies, ou seja, as diferencas nos atributos funcionais devem aumentar a medida que as
espécies se afastam evolutivamente (Flynn et al. 2011, Srivastava et al. 2012). Apesar de
frequentemente se assumir que os padrdes de PD refletem a FD nas comunidades, descobertas
recentes demonstram que essa relacéo é fraca, tornando o uso desse proxy questionavel (Cadotte
et al. 2019). Em um estudo feito com comunidades de plantas urbanas europeias a relacdo entre
FD e PD foi significativa e positiva, mas com um tamanho de efeito pequeno (Lososova et al.
2016). Assim também, um estudo recente comparou os tamanhos de efeito padronizados para
FD e PD em comunidades de plantas distribuidas globalmente e demonstrou que essas duas
dimensdes estavam apenas fraca e negativamente correlacionadas (Hahn et al. 2024).
Adicionalmente, outro estudo de comunidades de corais recifais de Cingapura mostrou que ha
uma incompatibilidade entre PD e FD, pois areas com alta diversidade funcional podem nédo
apresentar alta diversidade filogenética e vice-versa (Wong et al. 2018). Um estudo de aves na
Franca mostrou incongruéncia entre PD e FD, além disso, os residuos funcionais e filogenéticos

estavam fracamente correlacionados (Devictor et al. 2010). Sendo assim, dado que diferentes
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tracos ecoldgicos possuem diferentes niveis de sinal filogenético (Kamilar & Cooper 2013), e
a relacdo entre FD e PD vai depender das caracteristicas utilizadas e dos processos evolutivos
que tém moldado os tragos utilizados.

Um outro aspecto das espécies que pode estar associado com seu papel no ecossistema
sdo os nichos ecoldgicos, os quais podem mostrar dindmicas diferentes de evolucéo ao longo
do tempo (Wiens & Graham 2005, Holt 2009). A hip6tese do conservadorismo de nicho,
tendéncia das espécies e clados de reter caracteristicas ecoldgicas ancestrais (Harvey & Pagel
1991, Peterson et al. 1999, Wiens & Graham 2005), tem sido bastante testada como limitador
da distribuicdo de espécies e clados (Webb et al. 2002, Ackerly 2003). O conservadorismo de
nicho pode levar espécies intimamente relacionadas a terem tolerdncias ambientais
semelhantes. Devido a isso, espécies relacionadas serdo afetadas por barreiras de dispersédo
semelhantes, sendo um fator importante na estruturacdo das comunidades (Wiens & Graham
2005). Neste sentido, estudos recentes tém buscado quantificar os nichos climaticos das
espécies, os quais definem grande parte dos limites de distribuicéo, e investigar se a evolucéo
dos nichos tem desempenhado um papel importante na determinacdo das distribuicGes
geogréficas de muitas espécies em larga escala (Buckley et al. 2010, Hof et al. 2010, Olalla-
Tarraga et al. 2011). Desse modo, examinar como a diversidade de nicho climatico (CND) esta

associada a FD entre comunidades de espéecies permanece uma questdo em aberto.

O tamanho corporal é um dos tracos mais utilizados em estudos de FD em animais
(Gaston et al. 2008). As caracteristicas morfologicas, como tamanho e massa, estdo
intimamente relacionadas ao desempenho funcional dos organismos no ecossistema e a sua
aptidao individual (Geber & Griffen 2003, Reich et al. 2003, Mcqgill et al. 2006, Violle et al.
2007). Além disso, como muitas caracteristicas importantes dos organismos variam com o
tamanho do corpo, este é frequentemente utilizado como um proxy da guantidade e tamanho
dos recursos consumidos, taxa de crescimento do organismo, expectativa de vida e outros
(Brown 1995). Entretanto, a forma dos organismos também influencia na funcionalidade do
ecossistema. Animais com diferentes formas corporais exploram recursos de maneira mais
eficiente, reduzindo a competicdo e permitindo a coexisténcia entre as espécies (Hutchinson &
MacArthur 1959). Por exemplo, roedores apresentam especializacdes para locomocao, como
membranas interdigitais nos semi-aquaticos, desenvolvimento maior nas patas traseiras e cauda
alongada nos saltadores (Samuels & Van Valkenburgh 2008). Enquanto isso, peixes de aguas
Iénticas apresentam corpos mais robustos e em aguas l6ticas apresentam uma forma corporal

mais hidrodinamica (Foster et al. 2015). Assim também, Anuros do clado Arboranae, que
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habitam regides éridas, tendem a ter uma forma mais globular, como estratégia para
conservagao da agua (Castro et al. 2021). A Morfometria geométrica é um método que permite
caracterizar a forma de maneira independente do tamanho (Mitteroecker & Gunz 2009). Dada
essa caracteristica, ela vem sendo empregada em estudos que buscam desde apenas caracterizar
a forma (Foster et al. 2015), estudos biogeogréaficos (Cardini et al. 2007, Benitez et al. 2024),
taxondmicos (De La Cruz-Aguero et al. 2015, Ruane 2015), na utilizagdo dos biomarcadores
morfolégicos para analisar modificagdes nas formas dos organismos (Farré et al. 2013,
Raffaella Bravi et al. 2014), para analisar as variac6es dos padrdes de crescimento alomeétricos
entre as espécies (Castro et al. 2021). Além disso, também foi utilizada desde uma perspectiva
espacialmente explicita, permitindo a caracterizacdo da diversidade morfoldgica ao longo de
grandes gradientes ambientais (Maestri et al. 2018, Hughes et al. 2022). No entanto, aspectos
morfologicos ainda sdo pouco explorados para quantificar a diversidade das comunidades, e

pouco se sabe se essas caracteristicas refletem a FD.

Enquanto diversos estudos tém explorado a associacdo entre PD-FD (Cadotte et al.
2019), pouco se sabe sobre a forca da relacdo entre MD-FD e CND-FD. Compreender como as
caracteristicas morfologicas e do nicho climatico se associam com as métricas de FD pode
revelar novos caminhos da ecologia funcional, como insights profundos sobre os processos
subjacentes a montagem das comunidades ecologicas. Os anuros constituem um modelo de
estudo ideal para testar as associagdes entre MD, CND e PD com a FD por cinco motivos
principais: (i) sdo localmente abundantes, facilitando a amostragem da maioria dos grupos; (ii)
sdo facilmente preservados, ficando disponiveis nas cole¢fes herpetologicas de museus, as
quais podem ser consultadas para pesquisa cientifica; (iii) existe um banco de dados abrangente
de caracteristicas AmphiBIO para anfibios em todo o mundo (Oliveira et al. 2017), amplamente
utilizado em estudos de ecologia funcional (Carmona et al. 2016, Amado et al. 2019, Oliveira
et al. 2020, Ceron et al. 2022); (iv) as relacGes filogenéticas entre as espécies é bem
estabelecida, existindo uma filogenia abrangente que inclui a maioria das espécies de anuros
existentes (Jetz & Pyron 2018); e (v) existe um bom registro de ocorréncias das espécies no
Global Biodiversity Information Facility (GBIF), que permite caracterizar de forma acurada o
nicho climatico realizado das espécies (Kendal et al. 2018, Segura-Hernandez et al. 2023).
Dessa forma, geramos modelos 3D e caracterizamos a morfologia das espécies por meio de
fotogrametria e morfometria geométrica. Caracterizamos também o nicho climatico e a
diversidade filogenética das espécies. Em seguida, realizamos simulagdes para montar

comunidades aleatorias de anuros para quantificar a associacdo entre a diversidade funcional e
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as diversidades filogenética, morfoldgica e de nicho climatico. Assim, podemos nos aprofundar
sobre os processos de montagem das comunidades e determinar a contribuicdo de diferentes

tracos ecoldgicos na FD dessas comunidades.

2. Material e Métodos
2.1 Coleta de dados para estudos morfométricos

Foram analisados 321 espécimes de anuros adultos pertencentes a 156 espécies
(Aromobatidae, n = 1; Bufonidae, n = 5; Centrolenidae, n = 1; Ceratophryidae, n = 1;
Cycloramphidae, n = 1; Hemiphractidae, n = 1; Hylidae, n = 117, Leptodactylidae, n = 15;
Microhylidae, n = 5; Odontophrynidae, n = 3; Pipidae, n = 1; Ranidae, n = 1; Strabomantidae,
n = 4), abrangendo representantes de 13 familias de anuros ao redor do mundo. O tamanho da
amostra variou entre um e trés espécimes para cada. Os espécimes foram obtidos no London
Natural History Museum (Reino Unido), do Museum fur Naturkunde (Alemanha), na Colecéo
Herpetoldgica da Universidade Federal de Sergipe (Brasil), na Colecdo Herpetoldgica do
Instituto de Pesquisas da Amazonia (Brasil) e Colecdo Herpetoldgica da Universidade Federal
da Paraiba (Brasil). Para evitar problemas associados ao dimorfismo sexual foram utilizadas
preferencialmente as fémeas, sendo identificadas pela auséncia de caracteristicas sexuais
masculinas (sacos vocais, espinhos pré-pélex e almofadas nupciais). Padronizamos 0s homes
taxonémicos das espécies de acordo com (Frost 2023), seguindo as classificacbes mais recentes

de Anura.

2.2 Fotogrametria, modelos 3D e caracterizacdo morfologica das espécies

Foram construidos modelos 3D dos espécimes a partir do método de fotogrametria,
seguindo os protocolos propostos por Amado et al. (2019) (Fig. 1). Essa técnica constroi
modelos 3D a partir de imagens 2D em trés etapas: (i) posicionamento dos espécimes, (ii)
captura das imagens e (iii) construcdo do modelo 3D. Desse modo, cada espécime foi
posicionado verticalmente sobre uma plataforma giratéria de 360 graus, sustentado por uma
haste posicionada na cloaca do anuro e fixado em uma base de isopor semicircular. Em seguida,
cada espécime foi fotografado com uma camera Sony DSLR 06000 (nas configuracdes ISO
100 e F11) fixada a um tripé, em quatro angulos diferentes, visando cobrir as diferentes
estruturas do mesmo. A captura das imagens foi realizada com o auxilio do aplicativo Foldio
360, conectado via Bluetooth a camera fotografica e a plataforma giratéria. Foram tiradas

aproximadamente 76 fotos de cada espécime, imagens 2D, as quais foram utilizadas para a
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construcdo dos modelos 3D, através do software Autodesk Recap Photo
(https://www.autodesk.com). O comprimento do focinho & cloaca (SVL) de cada individuo foi

medido por um paquimetro para calibrar cada modelo no Autodesk Recap Photo.

(b)

Figura 1. Representacdo esquematica do processo de fotogrametria para construcdo de modelos 3D de
anuros, seguindo o protocolo de Amado et al. (2019). (a) Captura das imagens, com a cadmera posicionada em
diferentes angulos ao redor do espécime fixado por uma haste e posicionado sobre uma plataforma giratéria. (b)
Sobreposi¢do das imagens obtidas para reconstrucdo da superficie tridimensional. (¢c) Modelo final gerado a partir

das imagens processadas. Figura retirada do trabalho de Amado et al. (2019).

Utilizamos o software Landmark editor versdo 3.0 (Wiley et al. 2005) para digitalizar a
posicdo de 20 landmarks homologos com o intuito de fornecer uma amostra abrangente da
morfologia dos anuros, capturando as caracteristicas de relevancia para este estudo (Fig. 2).
Desse modo, foram selecionados pontos de referéncia em diferentes partes do corpo dos anuros
para capturar a forma corporal: 10 pontos na cabeca (pegando as distancias do focinho aos
olhos, tamanho dos olhos e largura dorsal da cabeca, além do comprimento e da largura ventral
da cabeca); 8 pontos nos apéndices (4 nos apéndices anteriores e 4 nos apéndices posteriores);
e, 2 pontos na regido da cloaca (1 na por¢do dorsal e 1 na ventral). Para evitar variacdes de
marcacdo por conta do observador, somente uma pessoa foi responsavel pela marcacdo dos

landmarks em todos os modelos.

Para descrever a variacdao da forma do corpo em nossa amostra, realizamos analises de
morfometria geométrica. Para remover os efeitos de escala, translagéo e rotagdo no formato do
corpo foram obtidas as coordenadas de Procrustes através de uma Analise Generalizada de

Procrustes (GPA), usando a funcdo "gpagen" no pacote “geomorph™ em ambiente R v 4.0.7
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(Adams & Otarola-Castillo 2013). Finalmente, obtivemos a média da forma para cada uma das

espécies.

Figura 2. Landmarks usados para caracterizar a forma corporal das espécies de anuros. Um total de 20 Landmarks
foram inseridos no corpo de cada espécime. (a) Vista dorsal; (b) vista ventral e (c) vista lateral.

2.3 Caracterizac¢éo do nicho climatico das espécies
Para caracterizar o nicho climatico das espécies, obtivemos registros de ocorréncia para
as 156 espécies de anuros usando o banco de dados do Global Biodiversity Information Facility

(GBIF — http://www.gbif.org). Posteriormente, compilamos dados de nove variaveis

bioclimaticas (BIO1 = Temperatura Média Anual, BIO4 = Sazonalidade da Temperatura, BIO5
= Temperatura Maxima do Més Mais Quente, BIO6 = Temperatura Minima do Més Mais Frio,
BIO7 = Faixa Anual de Temperatura (BIO5-B106), BIO12 = Precipitagdo Anual, BIO13 =
Precipitagdo do Més Mais Chuvoso, BIO14 = Precipitacdo do Més Mais Seco e BIO15 =

Sazonalidade da Precipitacdo) para cada localidade, usando o bancos de dados WorldClim —

Global Climate Database (https://worldclim.org; Fick & Hijmans (2017). Selecionamos essas
variaveis climaticas que incluem valores médios, extremos e de sazonalidade da temperatura e
precipitacdo, baseado no conhecimento de que estas impdem restricdes a ocorréncia,
sobrevivéncia e tamanho dos anuros (ver Hof et al. 2010, Amado et al. 2019). Todas as variaveis
climaticas foram extraidas com resolucdo espacial de 2,5 arco-min. Por fim, determinamos os
valores climéaticos médios das variaveis bioclimaticas para cada espécie. Estas analises foram

realizadas com o pacote “raster” versdo 3.6-26 disponivel no ambiente R (Hijmans 2010).

2.4 Caracteristicas funcionais e filogenia
Para avaliar as dissimilaridades funcionais foram utilizadas quatro caracteristicas

ecoldgicas obtidas a partir da base de dados AmphiBIO (Oliveira et al. 2017), que apresenta
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um banco de dados abrangente de caracteristicas para anfibios em todo o mundo. As
caracteristicas relativas (i) ao habitat (fossorial, terrestre, aquético e arboricola), (ii) habito
(diurno, noturno efou crepuscular), (iii) ao tamanho do corpo e (iv) as caracteristicas de
reproducdo (nimero de eventos reprodutivos por ano e tipo de desenvolvimento) foram
utilizadas por apresentarem maior proporcdo de completude dos dados (Tab. 1). Os dados
faltantes foram adicionados através de busca em bases de dados especificas e literatura
disponivel (AmphibiaWeb, Haddad et al. 2013, Jorge et al. 2015), ou utilizando a informacéo

mais comum do género, o qual pertence a espécie.

Tabela 1. Tracos funcionais usados para descrever a diversidade funcional das comunidades de anuros.

Tipo de trago Trago Categoria Valores Unidades/
do traco categorias
Morfolégico comprimento do corpo continuo milimetros
(comprimento do focinho a cloaca-
SVL)
Reprodutivo Estratégia de reproducéo (Se a categérico 3 categorias Direto, larval,
espécie se reproduz via vivipara.
desenvolvimento direto, larval ou
vivipara)
Namero de eventos reprodutivos continuo anos
por ano
Relacionado Habitat (Classificacdo geral do categbrico 4 categorias Fossorial,
ao habitat estrato de forrageamento vertical) terrestre,
aquatico e
arboricola.
Relacionado Periodo de atividade categbrico 3 categorias diurno,
ao hébito noturno e/ou

crepuscular

Para as analises evolutivas utilizamos a filogenia produzida por (Jetz & Pyron 2018).
Do total de espécies amostradas 153 estdo presentes nesta filogenia. As trés espécies ausentes
(Pithecopus gonzagai, Trachycephalus typhonius e Vitreorana baliomma) foram adicionados
randomicamente dentro do género, permitindo assim, a inclusdo nas analises (ver métodos em

Lososova et al. 2015).
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2.5 Sinal filogenético

Testamos o sinal filogenético presente em nossos conjuntos de dados de caracteristicas
funcionais, de forma (3D) e de nicho climético das espécies. Para avaliar a estrutura filogenética
dos trés conjuntos de dados, utilizou-se a versdo multivariada da estatistica Kmut (Adams 2014),
que avalia o grau de sinal filogenético em um conjunto de dados multivariado em relacdo ao
que é esperado sob um modelo de movimento browniano (MB). Valores proximos a 1 indicam
que as diferencas ecoldgicas sdo proporcionais ao tempo de divergéncia das espécies, similar
ao esperado pelo MB. Por outro lado, valores de K inferiores a 1 indicam que as caracteristicas
das espécies filogeneticamente proximas sdo menos semelhantes do que o esperado em um
cenario de MB (Blomberg et al. 2003). Em contrapartida, valores de K superiores a 1 indicam
que essas caracteristicas das linhagens sdo mais semelhantes do que o esperado por MB
(Zamudio et al. 2016). Essas analises foram realizadas usando a fungéo "physignal™ no pacote
R “geomorph” (Adams & Otarola-Castillo 2013).

2.6 Simulacao das comunidades de anuros

Realizamos simulacBes para montar comunidades aleatérias a partir do nosso pool de
espécies. A composicdo aleatoria da comunidade foi obtida a partir do sorteio aleatério das
espécies, gerando 100 comunidades de 5, 10, 20 e 40 espécies. Utilizamos este pool de
comunidades para estimar as diversidades funcional, morfolégica, de nicho climético e
filogenética das comunidades simuladas. As simulacdes foram realizadas com base em dois
conjuntos de dados: (i) global, considerando todas as espécies em conjunto (156 espécies
pertencentes a 13 familias); e (ii) hilideos, que representa uma subamostra do conjunto global,

considerando apenas as espécies pertencentes a familia Hylidae (117 espécies).

2.7 Diversidade morfoldgica, funcional, climatica e filogenética

Para quantificar a disparidade morfolégica (MD) nas comunidades simuladas,
utilizamos a variancia de Procrustes, um método amplamente empregado em morfometria
geométrica (Zelditch 2012). O calculo foi realizado com a funcdo morphol.disparity, do pacote
geomorph (Adams & Otarola-Castillo 2013), que compara as formas médias das espécies e
avalia o grau de variacdo entre elas. A forma média de cada espécie foi obtida a partir do

alinhamento de Procrustes, que elimina diferencas de tamanho, posicdo e orientacao,
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preservando apenas a variagdo na forma. Essa abordagem permitiu quantificar e comparar a

diversidade morfoldgica das espécies dentro das comunidades simuladas.

Assim também, calculamos a FD para as comunidades. Para isto, estimamos as
distancias funcionais de tracos entre pares de espécies com base na matriz das caracteristicas
das espécies (Tabela 1). Dado que o conjunto das caracteristicas contém uma mistura de tipos
de dados, utilizamos a fungao “gawdis” (De Bello et al. 2021) que é uma extensdo da funcédo
“gowdis” para distancia de Gower (Gower 1971), no pacote FD. Ao combinar caracteristicas
diferentes em uma dissimilaridade multicaracteristica, a contribuicdo de algumas delas,
especialmente as categoricas, pode ser muito mais forte do que outras. A fung¢do “gawdis”
otimiza a contribuigéo do traco individual para a dissimilaridade multitraco, minimizando essa
contribuicdo desigual. Calculamos as distancias filogenéticas, entre pares de espécies das
comunidades simuladas a partir da arvore filogenéetica com base na soma dos comprimentos
dos ramos do caminho mais curto entre cada par de espécies (distancias cofenéticas), usando o
pacote “ape” no R (Paradis & Schliep 2019). Por altimo, as caracteristicas do nicho climatico
das espécies foram usadas para calcular as distancias climaticas entre pares de espécies
(distancias euclidianas), usando a fungdo “dist” no R. Com base nas distancias (funcional,
filogenética e climatica) entre pares de espécies co-ocorrentes dentro das comunidades
simuladas, foram calculadas as dissimilaridades médias pareadas (MPD) (Weiher et al. 1998),
para cada uma das comunidades simuladas. Calculamos o MPD usando a fungao “melédica”,
que é uma versdo modificada da fungdo “mpd” no pacote “picante” (De Bello et al. 2016). Os
valores da disparidade morfoldgica e do MPD calculados foram armazenados em uma lista
previamente criada, resultando em quatro métricas de diversidade para cada comunidade
simulada: MD, FD, PD e CND.

Finalmente, para examinarmos a significancia e a forca da relacdo FD-MD, FD-PD e
FD-CND entre cada uma das comunidades simuladas foi calculado o indice de correlacéo de

Pearson. Todas as analises foram executadas utilizando o programa R verséo 4.3.3.

3. Resultados

3.1 Sinal filogenético

As caracteristicas funcionais dos anuros apresentaram sinal filogenético significativo

tanto para o conjunto global das espécies (Kmut = 0.441, valor P = 0.001) quanto para o conjunto
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de hilideos (Kmuit = 0.703, valor P = 0.001), indicando que essas caracteristicas funcionais estao
estruturadas filogeneticamente. Do mesmo modo, a forma a partir de morfometria 3D dos
anuros apresentou sinal filogenético significativo e semelhantes tanto para o conjunto global
como para o de hilideos (Kmuit = 0.306, valor P = 0.001; Kmur = 0.311, valor P = 0.001,
respectivamente), porém com baixos valores de sinal filogenético (K). O teste de sinal do nicho
climatico do conjunto de hilideos mostrou um sinal filogenético significativo, indicando que o
nicho climéatico das espécies apresenta uma estrutura filogenética (Kmut = 0.454, valor P =
0.001). Entretanto para o conjunto global o sinal filogenético do nicho climético foi baixo (Kmuit
= 0.257, valor P = 0.015).

Tabela 2. Modelos lineares de sinal filogenético (K de Blomberg) em nossos conjuntos de dados de
caracteristicas funcionais, forma (3D) e de nicho climatico das espécies de anuros.

K P

Caracteristicas funcionais Conjunto global 0.44 0.001

Conjunto de hilideos 0.70 0.001

Forma (3D) Conjunto global 0.31 0.001
Conjunto de hilideos 0.31 0.001

Nicho climatico Conjunto global 0.26 0.015
Conjunto de hilideos 0.45 0.001

3.2 Medidas de diversidade e suas correlacdes

Os resultados mostraram que a FD e MD do conjunto global e nos hilideos variaram
entre as diferentes comunidades simuladas, sendo que comunidades com baixa riqueza de
espécies mostraram uma grande variancia. Em contraste, a medida que o0 nimero de espécies
incluidas cresceu para 10, 20 e 40, a variancia foi reduzida (Fig. 3) e foi encontrado um pequeno
aumento nos valores da FD e MD (Fig. 3). Os valores da CND também variaram entre as
comunidades, mostrando um claro aumento do CND a medida que mais espécies foram
incluidas nas comunidades (Fig. 3). Por Gltimo, a PD mostrou uma diminui¢do da variancia a
medida que aumentamos o nimero de espécies das comunidades, entretanto, em contraste com
a FD e MD, ndo existiu um aumento marcante de PD a medida que aumentamos o nimero de

espécies nas comunidades (Fig. 3).
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Figura 3. Valores comparativos de diversidade Funcional (FD), morfologica (MD), de nicho climatico (CND) e
filogenética (PD) entre as comunidades de anuros do (a) conjunto global e (b) conjunto de hilideos.

Foram calculados os coeficientes de correlagdo de Pearson entre FD-MD, FD-CND e
FD-PD para os dois conjuntos de dados (conjunto global e hilideos). No conjunto global, os
coeficientes de correlacdo apresentaram valores significativos e positivos entre a FD e MD nas
comunidades de cinco (r = 0.259, p = 0.009) e 10 (r = 0.252, p = 0.012) espécies (Figura 4a,b).
Apenas nas comunidades de cinco espécies a FD e CND tiveram uma correlagédo significativa
e negativa (r = -0.247, p = 0.013). Por fim, a FD foi correlacionada significativamente e
positivamente com a PD nas comunidades com 20 e 40 espécies (r = 0.219, p = 0.029; r = 0.363,

p < 0.001, respectivamente) (Figura 4).

No conjunto de hilideos, os coeficientes de correlacdo apresentaram valores
predominantemente significativos e positivos entre a FD e MD nas comunidades com riqueza
de 5(r=0.261, p=0.009), 20 (r =0.489, p < 0.001) e 40 (r =0.408, p < 0.001) espécies. Apenas
nas comunidades de 10 espécies a FD e CND tiveram uma correlacdo significativa e negativa
(r = -0.361, p < 0.001). Nas comunidades de 20 espécies a FD correlacionou-se
significativamente e positivamente com a PD (r = 0.209, p = 0.037) (Fig. 5). Em todas as
comunidades dos dois conjuntos de dados as correlacBes entre a medidas de diversidade foram

predominantemente fracas (Figs. 4 e 5).
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4. Discussao

Nosso estudo evidencia que os tragos associados ao papel funcional das espécies de
anuros nas comunidades apresentam valores de sinal filogenéticos de baixos a intermediarios,
sugerindo que ndo existe uma forte estrutura filogenética dessas caracteristicas. Assim também,
0 nosso trabalho mostra que comunidades tendem a ter valores maiores de FD e de CND a
medida que aumenta 0 nimero de espécies, mas 0 mesmo ndo ocorre para a MD. Por outro
lado, evidenciamos pela primeira vez, que a MD de grupos filogeneticamente proximos
(Hylidae) mostra uma correlagdo mais forte com a FD que a CND e a PD, ressaltando a

importéancia de dados advindos da morfometria para o estudo da estrutura de comunidades.

O sinal filogenético refere-se a tendéncia de espécies estreitamente relacionadas
apresentarem maior semelhanca entre si do que em relacdo a taxons mais distantes, refletindo
uma historia evolutiva compartilhada (Webb et al. 2002). No entanto, a magnitude desse sinal
pode variar, com algumas linhagens mantendo tracos conservados, enquanto outras apresentam
maior divergéncia. Adicionalmente, os diferentes tracos podem responder de forma distinta as
pressdes seletivas. Por exemplo, tem-se observado que tracos comportamentais ou de nicho séo
mais labeis que tracos fisiologicos e morfologicos (Losos 2008). Em nosso estudo,
quantificamos o sinal filogenético em trés tracos funcionais multivariados de 156 espécies de
anuros: Diversidade Morfoldgica, Nicho Climéatico e Diversidade Funcional. Os valores de
sinal filogenético observados, em ambos 0s conjuntos amostrais, para a morfologia, nicho
climatico e diversidade funcional foram relativamente baixos (Tab. 1). Este resultado sugere
que tanto a forma, as caracteristicas de historia de vida, e o nicho climatico das espécies ndo
sdo totalmente explicados pelo grau de parentesco filogenético, indicando que fatores
evolutivos, como adaptacdo a diferentes pressdes seletivas, podem ter promovido uma
diversificacdo morfologica maior do que a esperada sob um modelo de evolugédo neutra (Losos
2008) e que as espécies do nosso conjunto de dados, apesar de aparentadas, ndo apresentam
conservadorismo de nicho (Liu et al. 2018, Li et al. 2019, Maltseva et al. 2021). Isso sugere que
a evolucdo do nicho climatico de anuros pode ter ocorrido de maneira relativamente
independente da filogenia. Estudos recentes indicam que as variacdes ecoldgicas observadas
em anuros, estdo diretamente ligadas a ocupacdo de micro-habitats, onde pressdes seletivas
semelhantes promovem caracteristicas ecoldgicas adaptativas. Esses padrdes de convergéncia
sdo influenciados tanto pelas pressdes seletivas quanto pelo tempo disponivel para que a

adaptacdo ocorra (Moen et al. 2013, 2016, Castro et al. 2021). Sendo assim, dada a baixa
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estruturacdo filogenética dos tragcos ecoldgicos nos anuros é esperado que a diversidade

filogenética seja um pobre indicador da funcionalidade das comunidades.

O aumento no numero de espécies em uma comunidade possui efeito direto sobre
valores de diversidade (Connell & Orias 1964). De forma geral, em nossos resultados,
observamos que o padrao de resposta das medidas de diversidade é similar, quando comparados
0s conjuntos global e dos hilideos (Figura 3). Nesse sentido, enquanto a diversidade funcional,
diversidade morfolégica e de nicho climatico apresentam um aumento a medida que o nimero
de espécies cresce nas comunidades, os valores de diversidade filogenética ndo sofrem
alteracOes significativas (Figura 3). Apesar de a diversidade funcional aumentar inicialmente,
observamos uma tendéncia a estabilizacdo a medida que o nimero de espécies na comunidade
cresce (Figura 3). Embora a FD seja correlacionada com a riqueza de espécies (ver Pavoine et
al. 2013, 2017), o resultado observado indica redundancia funcional, e conforme espécies séo
adicionadas, a variedade de fungdes ecologicas atinge um limite (Lawton & Brown 1994,
Rosenfeld 2002). Por outro lado, a relagdo de aumento observada para diversidade morfoldgica
com o tamanho da comunidade (Figura 3), indica que morfologia pode estar sujeita a limites
evolutivos ou ecoldgicos que restringem a variacdo morfolégica, mesmo com o aumento do
numero de espécies (Foote 1993, Foote et al. 2016, Schluter 2008). Esse padrdo sugere que a
adicao de novas espécies ndo necessariamente amplia fortemente a variacdo morfoldgica dentro
dos conjuntos analisados. Enquanto isso, a diversidade de nicho climéatico tende a aumentar
proporcionalmente ao tamanho da comunidade (Figura 3). Esse padrao pode ser explicado pelo
fato de que, conforme aumenta o nimero de espécies nas comunidades simuladas, a
probabilidade de incluir espécies climaticamente mais distintas também cresce (Kleidon et al.
2009, Wiens et al. 2010, Andrew et al. 2021, Huang et al. 2024). Adicionalmente, como as
espécies podem apresentar uma ampla faixa de tolerancia climatica, sua adicdo a comunidade
pode resultar em um grande aumento da diversidade de nicho climéatico (Quintero & Wiens
2013). A diversidade filogenética parece estar mais relacionada ao grau de parentesco entre as
espécies do gque a quantidade de espécies presentes em uma comunidade (Faith 1992). Além
disso, 0 aumento no nimero de espécies nem sempre resulta em um aumento proporcional na
diversidade filogenética, especialmente quando as espécies pertencem a linhagens filogenéticas
proximas (Miller et al. 2018).

Nosso estudo mostrou que as relagdes entre a FD e PD ndo foram significativas, tanto
nas simulacdes do conjunto global com 5 e 10 espécies, quanto nas simulagdes do conjunto de

hilideos com 5, 10 e 40 espécies (Figuras 4i-I e 5i-1). Esse resultado é consistente com diversos
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trabalhos que analisam a relagdo entre essas duas dimensfes da diversidade. Por exemplo,
estudos realizados em comunidades de plantas (Lososova et al. 2016, E-Vojtké et al. 2023,
Hé&hn et al. 2024), em corais recifais (Wong et al. 2018) e em aves (Devictor et al. 2010) nédo
encontraram uma associacdo clara entre FD e PD. Em nosso estudo os tracos ecoldgicos estdo
pouco estruturados na filogenia. Sendo assim, essa fraca associacdo PD-FD encontrada no
nosso conjunto de dados, reforca a ideia de que muitas vezes a historia evolutiva ndo esta
fortemente associada as fungdes ecoldgicas que as espécies desempenham. Por outro lado,
observamos que MD-FD foram correlacionadas significativa e positivamente, tanto nas
simulacdes com 5 e 10 espécies do conjunto global, quanto nas simulagdes com 5, 20 e 40
espécies do conjunto de hilideos, indicando uma congruéncia consistente entre essas duas
dimensdes da diversidade (Figuras 4a-d e 5a-d). Estes resultados ficam evidentes quando se
realizam simula¢Ges com um grupo monofilético como os hilideos, sendo a correlagdo de MD-
FD mais intensa que a apresentada por CND-FD e PD-FD. Muitas funcdes ecologicamente
relevantes como, forrageamento, alimentagdo, locomocdo, fuga de predadores, busca de
parceiros sexuais € modo reprodutivo dependem da morfologia (Samuels & Van Valkenburgh
2008, Schulte et al. 2004, Ligon et al. 2018, Fraker et al. 2021).  Especificamente em anuros,
a morfologia esta, também, intimamente ligada a grande variedade de habitats e micro-habitats
que eles podem ocupar, os quais demandam adaptacdes morfologicas especificas. Por exemplo,
espécies terrestres/fossoriais, que apresentam membros posteriores mais fortes e curtos devido
ao habito de saltar, em comparacdo com espécies aquaticas ou arboricolas (Zug 1972, 1978,
Enriquez-Urzelai et al. 2015). Sendo assim, alta correlacdo entre MD-FD, pode ser um
indicativo de que as caracteristicas morfoldgicas, capturadas pela morfometria 3D, podem ser
um bom proxy para estimar a diversidade funcional, pois consegue capturar as variacoes
morfoldgicas, principalmente dentro de grupos monofiléticos. Uma das principais vantagens da
MD é que grande parte das informacdes estdo disponiveis nas colecbes bioldgicas, permitindo
0 estudo de montagem das comunidades a partir de uma nova perspectiva. Estes resultados
abrem novas portas para a utilizacdo da MD como um proxy da FD em grupos monofiléticos,
onde a diversidade de formas pode representar adequadamente a diversidade de fungdes das

espécies nas comunidades (Dehling et al. 2016).

Nosso estudo conectou diferentes dimensdes da biodiversidade, auxiliando no
entendimento da contribuicdo de diferentes tragos ecoldgicos na FD das comunidades de
anfibios anuros. Aqui, evidenciamos pela primeira vez, que a MD (quantificada a partir de

modelos 3D) de comunidades de anuros pertencentes a um clado monofilético (Hylidae),
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mostrou uma correlagdo muito mais forte com a FD quando comparada a PD e CND das
espécies. Nossos achados fornecem evidéncias empiricas para a utilizacdo de dados de
morfometria para entender a FD em comunidades, abrindo novas possibilidades para o estudo
do funcionamento dos ecossistemas. Entretanto, considerando a auséncia de uma correlagéo
consistente entre diferentes niveis taxonémicos, consideramos que a utilizacdo integrada de
dados funcionais, climéticos, filogenéticos e morfométricos pode ser fundamental para entender

a contribuicdo de cada uma das dimensfes na montagem das comunidades.
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Conclusdes gerais

No primeiro capitulo, nossos achados revelam a necessidade de maiores investimentos
em pesquisas com enfoque funcional para vertebrados terrestres, especialmente anfibios, répteis
e mamiferos. A principal lacuna do conhecimento que limita a aplicabilidade dessa abordagem
¢ a escassez de dados sobre caracteristicas funcionais de muitas espécies, em grande parte

devido a auséncia de protocolos padronizados para a coleta desses tragos.

Dessa forma, enfatizamos a importancia de ampliar os investimentos materiais e
humanos tanto para o desenvolvimento e implementagdo de manuais padronizados de
protocolos de coleta dos tracos quanto para a disseminagao dessas informagdes em bases de
dados globais atualizadas. Além disso, reforcamos a necessidade de incorporar a dimensao
funcional nos planos de conservaciao, considerando que os estudos relataram perdas na
diversidade funcional dos vertebrados em ecossistemas terrestres € os impactos dessas perdas

no funcionamento desses ecossistemas.

Em suma, o segundo capitulo revela que os fatores ambientais (precipitagdo), os
processos historicos (instabilidade ambiental histérica) e os fatores antropogénicos
(circularidade dos fragmentos) estdao associados com diferentes facetas da diversidade funcional
dos anuros da Mata Atlantica no nordeste brasileiro. Diante da ameaca critica que esses animais
vém enfrentando e das consequéncias ecossistémicas e sociais da perda da sua diversidade, ¢
essencial que as agdes de conservagdo do grupo considerem, também, a manutengdo da
diversidade funcional. Para isso, ¢ fundamental proteger os fragmentos florestais existentes,
pois, mesmo em remanescentes pequenos, antropizadas e com menor precipitagdo, ainda ¢é

possivel encontrar uma alta riqueza funcional.

Além disso, ¢ essencial monitorar fragmentos mais instaveis, como aqueles sujeitos a
alta variacdo climatica historica e com maior efeito de borda (fragmentos menos circulares),
pois essas dareas apresentam maior divergéncia funcional e, consequentemente, menor
redundancia de fungdes, o que pode torna-las mais vulneraveis a perturbagdes e invasdes

biologicas, além de ja poderem estar em declinio.

Por fim, embora fragmentos com alta precipitacdo representem atualmente uma
preocupacdo menor em termos de conservacao, devido a sua alta redundancia funcional e,

consequentemente, maior resiliéncia a disturbios, ¢ fundamental considerar as mudangas nos
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regimes de chuva associadas as mudancas climaticas futuras, que podem aumentar o risco para
essas comunidades. Nesse contexto, torna-se urgente a realizacdo de pesquisas sobre diferentes
aspectos da diversidade funcional e seus impulsionadores, a fim de preencher essa lacuna de

conhecimento.

Por ultimo, o terceiro capitulo do nosso estudo estd entre os poucos que buscaram
conectar diferentes dimensdes da biodiversidade, contribuindo para uma melhor compreenséo
do papel de diferentes tragos ecoldgicos na diversidade funcional das comunidades de anfibios
anuros. Evidenciamos, pela primeira vez, que a diversidade morfol6gica, quantificada a partir
de modelos 3D, em comunidades simuladas de anuros pertencentes a um clado monofilético
(Hylidae), apresentou uma correlagédo muito mais forte com a diversidade funcional do que com

a diversidade filogenética e a diversidade de nicho climatico das espécies.

Nossos achados fornecem evidéncias empiricas para o uso de dados morfometricos na
compreensdo da diversidade funcional em comunidades, abrindo novas perspectivas para o
estudo do funcionamento dos ecossistemas. No entanto, dada a auséncia de uma correlagéo
consistente entre diferentes niveis taxondmicos, ressaltamos que a integracdo de dados
funcionais, climaticos, filogenéticos e morfometricos pode ser fundamental para entender a

contribuicdo de cada dimensdo na montagem das comunidades.

Portanto, ressaltamos a importancia de que estudos futuros busquem combinar
informacGes sobre as maltiplas facetas das diferencas ecoldgicas, morfolégicas e de nicho
climatico, bem como da sua historia de diversificacdo. Essa abordagem integrada pode fornecer
um avanco importante na compreensao do grau de contribuicdo de cada um desses componentes

para a coexisténcia das espécies nas comunidades.
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Apéndices

Tabela S1. Matrix de correlagdo (Pearson) das variaveis preditoras. Biol: temperatura mé’dia anual; Bio4:
sazonalidade da temperatura; Biol2: precipitacdo anual; Biol5: sazonalidade da precipitacdo; Area: tamanho do
fragmento (ha); Isolamento: distancias médias entre o centroide dos fragmentos (m); Circularidade: indice de

circularidade.

Variaveis Bio4 Biol2 Biolb Instabilidade  Dossel Isolamento Area  Circularidade
Biol -0.58 0.49 0.2 -0.06 0.08 -0.35 -0.03 0.35
Bio4 -0.42 -0.65 0.14 -0.04 0.38 0.16 -0.15
Biol2 -0.2 -0.55 0.5 -0.19 -0.05 0.04
Biol5 0.11 -0.41 -0.16 -0.23 0.07
Instabilidade -0.07 0.05 -0.01 -0.01
Dossel 0.08 0.05 -0.04
Conectividade 0.6 -0.38
Area -0.33

91



