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Effective-temperature concept: A physical application for nonextensive statistical mechanics
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The H-theorem [(df/dt) < 0] for a free-energy functional, f = u — 6s (with u and s representing, respectively,
the internal energy and a generalized entropy of a given physical system), has been proven previously by making
use of a nonlinear Fokker-Planck equation. Herein we focus on a nonlinear Fokker-Planck equation derived
by means of a coarse-graining procedure on the equations of motion of a system of interacting vortices, under
overdamped motion, in the absence of thermal noise (7 = 0). In this case, we show that the parameter 6 is
directly related to the density as well as to the interactions among vortices. Generalized quantities such as
entropy, internal energy, free energy, and heat capacity are analyzed for varying 0: important relations and
physical behavior analogous to those of standard thermodynamics are found, showing that 6 plays the role of
an effective temperature. Estimates of 6 in typical physical situations of different type-II superconductors are
presented; in addition to this, possible experimental procedures for varying 8 are proposed.
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I. INTRODUCTION

For the past 100 years, superconducting materials have
attracted the attention of many workers from both experimental
and theoretical points of view. Most recently, the discovery of
high-T, superconductivity has resulted in a renewed interest
in these materials due to the possibility of many novel
physical applications [1]. These type-II superconductors are
characterized by two critical magnetic fields, B.; and B,,,
signaling distinct physical behavior. For applied fields less than
the lower critical field B.;, the system presents the Meissner
effect, with flux cancellation, in such a way that the entire
sample becomes typically a type-I superconductor. Applied
fields greater than the upper critical field B, result in a
complete penetration of the magnetic field, and the material
returns to a normal conducting state. However, for field
intensities between B, and B, there is partial penetration of
the magnetic field, and the field lines get confined to flux tubes,
called vortices [1,2], forming the so-called vortex lattice along
which the material presents normal resistivity, whereas its
surrounding remains superconducting. These vortices became
a paradigm for testing many statistical phenomena due to
the recent development of the ability to control their density,
interactions, and motion [3-7].

The concept of “effective temperature” is commonly used
in physics [8-10]. As examples, one could mention the
Fermi temperature (7y) in a Fermi-Dirac ideal gas, and the
Einstein (7g) and Debye (7p) temperatures in their respective
crystalline-solid models. These temperatures are related to
intrinsic properties such as the harmonic frequencies, the
mass, and concentrations of particles, leading to well-defined
estimates, which represent reference values for each physical
system. In the later cases, the effective temperatures 7 and Tp
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are usually defined for finite absolute temperatures (7 > 0),
so that distinct physical behaviors are obtained for low tem-
peratures (T < Tg,Tp) and high temperatures (T > Tg,Tp).
However, in the case of fermions, the temperature Tr is
defined for T = 0, being directly related to the concentration
of electrons, and so it may present large variations depending
on the physical system, e.g., T ~ 10* K for electrons in
metals [8,9] or Tz ~ 10° K for electrons in white dwarf
stars [9]. Furthermore, these examples consist of systems
of noninteracting particles, described by Boltzmann-Gibbs
(BG) statistical mechanics, according to which certain ther-
modynamic properties present well-defined behavior for low
temperatures, obeying the third-law of thermodynamics, which
implies that the entropy per particle, sgg — 0,as T — 0.

The applicability of standard concepts of equilibrium
thermodynamics in the study of nonequilibrium states has
been considered for many years [11,12]. Out-of-equilibrium
physical situations, such as those occurring in glasses [13],
chemical reactions [14,15], turbulent fluids, nuclear collisions,
and two-temperature systems, among others, are typical
examples in which usual definitions were extended, such
as thermodynamic potentials, Legendre transformations, and
nonequilibrium susceptibilities, and new ones were proposed,
such as entropy production. Moreover, the above-mentioned
concept of effective temperature has also been introduced in
many nonequilibrium systems [16].

One of the most important results in standard nonequilib-
rium statistical mechanics is the H-theorem [8,10], which guar-
antees the approach to an equilibrium state. Essentially, this
theorem expresses a well-defined sign for the time derivative of
the entropy, i.e., (dsgg/dt) = 0, in the case of an isolated sys-
tem, or for the free energy (dfsg/dt) < 0 (fsg = u — T'spg),
in the case of a system in contact with a heat reservoir. A
possible proof of this theorem may be achieved by considering
the functional form of sgg[P(x,#)] in terms of the probability
density P(x,r) for finding a particle at a position between x
andx + dx intime?, sgg[P] = —k [ dx P(x,t)In P(x,t), and
making use of the linear Fokker-Planck equation for the time
derivative d P(x,t)/dt. In this way, the H-theorem provides a
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direct connection between the linear Fokker-Planck equation
and the BG entropy.

Recently, nonlinear Fokker-Planck equations (NLFPEs)
have been widely investigated in the literature [17], motivated
by an appropriate description of many complex physical
behaviors characterized by anomalous diffusion [18]. There-
fore, in the same way that the linear Fokker-Planck equation
is associated with normal diffusion and with the BG entropy,
the NLFPEs are usually related to anomalous-diffusion phe-
nomena and to generalized entropies (see, e.g., Refs. [19-21]
among others). A particular interest has been dedicated to the
NLFPE proposed in Ref. [22] related to Tsallis nonextensive
statistical mechanics [23-25]. In particular, the g-Gaussian
distribution, which represents a generalization of the standard
Gaussian (recovered in the particular case g = 1) appears
naturally from an extremization procedure of the entropy
[25], or from the solution of the corresponding nonlinear
Fokker-Planck equation [22]. This distribution has been very
useful for experiments in many real systems [23,24]; among
many, one could highlight the following: (i) the velocities of
cold atoms in dissipative optical lattices [26]; (ii) the velocities
of particles in quasi-two-dimensional dusty plasma [27];
(iii) the relaxation curves of RKKY spin glasses, such as
CuMn and AuFe [28]; (iv) transverse momenta distributions at
LEP [29] and LHC experiments [30]; and (v) the overdamped
motion of interacting vortices in type-II superconductors
[31,32].

In the present work, we will investigate stationary-state
properties of the system of interacting vortices of Refs. [31,32];
this study is motivated by a good agreement found between
the vortex-position stationary-state distributions obtained by
means of molecular-dynamics simulations and the analytical
solution of the associated NLFPE [31]. In the next section
we define the system, the NLFPE, and its related entropy.
In Sec. III, we explore the effective-temperature concept
by showing that it satisfies important relations and physical
properties, playing a role very similar to that of the absolute
temperature in standard thermodynamics. Finally, in Sec. IV
we present our conclusions.

II. THE PHYSICAL SYSTEM AND ITS ASSOCIATED
NONLINEAR FOKKER-PLANCK EQUATION

The following model of interacting vortices has been
used in the literature to represent flux lines in disordered
type-1I superconductors (see, e.g., Refs. [33,34]); the equation
of motion of a flux line i/ under overdamped motion [i.e.,
with (dv;/dt) = 0], in a medium with an effective friction
coefficient , may be written as

nv; =FP +F* (i =1,2,...,N). (1)

In the equation above, v; represents the velocity, whereas the
terms on the right-hand side depict the forces acting on flux line
i. The first contribution, Ff P takes into account the interactions
among vortices [each vortex interacts with the remaining
(N — 1) vortices], whereas F*' represents an external force
acting on vortex i. We consider

1 )
P =2 ) BP0y by BPGy) = foKily/h). @)
J#i
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where r;; = |r; — r;| stands for the distance between vortices
i and j, and £;; = (r; —r;)/r;; is a vector defined along
the axis joining them. Moreover, K| represents a modified
Bessel function of the second kind of order 1 and fj is a
positive constant. These interactions are defined in terms of a
characteristic length scale A, known as the London penetration
length; other lengths of this system will be measured in units
of A. The vortex-vortex interactions BPP(r;;) are repulsive and
radially symmetric, whereas the external forces F{*' should be
associated with a confining type of potential, so that the system
canreach a stationary state after a sufficiently long time. Herein
this problem will be considered in a two-dimensional box of
dimensions L, and L, to conform with previous numerical
simulations [31,32].

Considering an external force in the x direction, F**' =
—A(x)X, a coarse-graining procedure in Eq. (1) leads to the
following NLFPE [31,32,34]:

IP(x,1) AP,
a dx

0x

where D = Nmfy)?/ L,. It should be mentioned that this
equation represents a particular case of the NLFPE introduced
in Ref. [22], which contains a more general diffusion term,
defined by replacing 2D[AP(x,t)] — vD[AP(x,t)]"~", where
v is a real number; Eq. (3) corresponds to the particular
case v = 2. Moreover, similarly to the linear Fokker-Planck
equation [10], the first term on the r.h.s. carries the contribution
of the external potential, whereas the second one comes from
the interaction of a single flux line with the medium, and it is
usually associated with an effective temperature; herein, this
later term represents the effect of N — 1 vortices on the tagged
vortex. Therefore, the distribution P(x,t) will refer to one
flux line of the above-mentioned system, and so all physical
quantities to be derived from this distribution will correspond
to one-vortex properties.

The time-dependent solution of the general NLFPE was

3 AP (x,1)
+2Da{[AP(x,t)] } 3)

found for a harmonic external force, A(x) = —ax (o > 0),
and the initial condition P(x,0) = &(x) [22],
P(x,t) = BO[1 + b()(1 — v)x1Y 7Y, “)

where [u], =u for u > 0, zero otherwise, and the time-
dependent coefficients B(¢) and b(¢) are related to each other
in order to preserve the normalization of P(x,¢) for all times
t. The particular case of interest herein corresponds to v = 2,

P(x,t) = B[l — b(t)x*], ®)

presenting a compact support in the interval [—X(¢),%(7)], with
@) =b~V2).

The H-theorem may be proved using Eq. (3) by imposing
a well-defined sign for the time derivative of the one-vortex
free-energy functional [31,32],

x(t)
FIP1 = u[P]—0s[P], u[P]= f dx $()P(x.1),
—%(0)
©)

where 6 is a positive quantity with units of temperature and
¢(x) represents the external potential [A(x) = —d¢(x)/dx].
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TABLE I. Estimates of the energy in Eq. (11), as well as of the associated effective temperature 6, for typical type-II superconductors at the
lower critical field B,;. The values of the London penetration length A and the dimensionless parameter « (k = A/& denotes the ratio between
the penetration and coherence lengths, respectively) were taken from Ref. [1]. The values of the mean distance between vortices d, as well as
of the density of vortices n, were calculated as described in the text.

Type-II superconductor A (nm) K d/x d (nm) n (10° vortices/m) k6 (10~ J) 0 (108 K)
Nb 50 1.28 7.67 383.41 6.8 24.0 17.0
Pb-Bi 200 10 2.51 502.16 4.0 34 2.5
Nb-N 200 40 1.98 396.74 6.4 5.5 4.0
YBa,Cu30, 170 95 1.79 303.52 11.0 10.0 7.2

As usual, the internal energy is defined solely in terms of
the external potential; the contribution of the interactions
among vortices will appear in the parameter 6. To satisfy the
H-theorem, the associated entropy should be given by [31,32]

x(1)
s[P] =k{1 —A/ dx [P(x,t)]z}, 7
—X(0)
and we have identified k6 = D

Indeed, some of the above-mentioned results follow readily
if one writes Eq. (3) in the form [17]

0Pt _ 0 [, 0 (8
”T_ax[ x.03 (SP(x t))i| ®)

where §f[P]/6P(x,t) denotes a functional derivative with
respect to the probability P(x,?), and the definition D = k6
becomes necessary. In this way, the H-theorem becomes

x(r)
a _ * [(0) + 204 (. L ED (x )
dt —i(l)

1 /*“) 3fIP] a[ <8f[P] >]
= - dx o —| P~ 5 —s
nJ_xw 6P(x,t) ox SP(x,t)
9)

in which we have substituted Eq. (8). Now, integrating by
parts and using the property for the distribution of Eq. (5),
P(x,t)|x=+x¢) = 0, one has

af _ l/m)d P(x.0) (‘V ) <0. (10)
ar 0l [ 8P(x,1) } o

One should notice that the distribution of Eq. (5)
coincides with the one obtained through an extremization of
the above entropy, considering the constraint for probability
normalization, in addition to the constraint of Eq. (6) for
the internal energy, with 6 being a Lagrange multiplier. This
distribution may be recognized as the particular case ¢ = 0 ofa

g-Gaussian that appears frequently in nonextensive statistical
mechanics [cf. Eq. (4) with v = 2 — g]. The “duality” g <
(2 — g) between the distribution index ¢ = 0 and the entropic
exponent that appears in Eq. (7) occurs whenever the entropy
is extremized by considering the energy definition in Eq. (6);
equal indexes appear only when one uses a generalized
definition for the internal energy [23].

III. THE EFFECTIVE-TEMPERATURE CONCEPT

Now, considering the thermodynamic limitas N,L, — oo,
keeping the ratio n = (N /L,) finite, the Lagrange multiplier
6 introduced in Eq. (6) is obtained,

Nﬂfo)\z

y

ko = = n7 for’. (11)

N,Ly—>00

One should recall that the pinning strength is given by
fo= ®}/@Bn?A%) [1], where &y = h/(2¢) represents the
unit of flux quantization; in this way, the above quantity
kO exhibits dimensions of energy and is directly related
to the interactions between vortices, being always positive;
moreover, 6 corresponds to an “effective temperature” for
the present system. Since distinct materials are characterized
by different penetration lengths A (see Tables I and II), the
pinning strength may be altered only by changing the material.
However, for a given material, the density of vortices n may
be varied either by changing the external magnetic field Bext
in the range B.| < Bext < B2, or by applying an alternating
electrical current [3—6]; within this later procedure, one may
even eliminate all vortices, yielding the desirable limitn — 0.
Therefore, any proposal for varying 6 experimentally should
be directly related to an adequate control of the vortex density.

In Tables I and II, we estimate values for the energy k6 as
well as of the associated temperature 6 (herein we consider k as
the Boltzmann constant) for typical type-II superconductors,

TABLE II. Estimates of the energy in Eq. (11), as well as of the associated effective temperature 6, for typical type-II superconductors
at the upper critical field B.,. The values of the London penetration length A and the dimensionless parameter k (k = 1/& denotes the ratio
between the penetration and coherence lengths, respectively) were taken from Ref. [1]. The values of the mean distance between vortices d, as
well as of the density of vortices n, were calculated as described in the text.

Type-II superconductor XA (nm) K d/x d (nm) n (vortices/m) k6 (J) 6 (K)

Nb 50 1.28 2.10 105 9.0 x 10'° 3.0 x 10718 2.2 x 1010
Pb-Bi 200 10 0.27 54 3.4 x 10" 2.9 x 1071 2.1 x 100
Nb-N 200 40 0.0675 13.5 5.5 x 102 4.6 x 10712 3.3 x 10"
YBa,Cu30, 170 95 0.0284 4.8 4.3 x 1013 42 x 1071 3.0 x 10"2
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at both lower (Table I) and upper (Table II) critical fields. For
that, we used the relations [1]

82 B._B 22 (12)
cl «/gdzan’ c2 — Dcl th,

where d represents the mean distance between vortices, and
the dimensionless quantity k = A/& (with ¥ > 1 for type-II
superconductors) denotes the ratio between the two relevant
lengths of a type-II superconductor, namely the penetration and
coherence lengths, respectively. By setting the average internal
field (Bi,) equal to either B, or B, we have estimated the
mean distance between vortices in these two limiting cases.
Then, considering a vortex lattice of size L, x L, (in real
systems, these dimensions are of the order of a few mm [7]),
one may estimate the ration = N/L, ~ LxLy/(d2Ly), i.e.,
n ~ L, /d?; the corresponding values are presented in Tables I
and II for a vortex lattice of a typical linear size L, = 1 mm.

Comparing these two tables, one notices that the density of
vortices, and consequently the energy k6, increases with the
external magnetic field, leading to variations in the associated
values of 6 in the range 108-10!2 K; these estimates should be
compared with the Fermi temperature for electrons in white
dwarf stars (7 ~ 10° K [9]). The main difference is that in the
present case one has the possibility of decreasing the density of
vortices experimentally by applying an alternating electrical
current, as described in Refs. [3-6]. One should recall that
herein we are neglecting the effects of thermal noise (i.e.,
T = 0), which appears to be a good approximation when
considering the order of magnitudes of 8. Moreover, possible
experimental realizations have to occur for T < 6, so that
thermal effects should not influence those associated with
the energy k6; the estimates in Tables I and II suggest that
measurements of some of the properties described below can
be carried even at room temperature.

In what follows, we will analyze the behavior of important
physical properties of the system as the effective temperature
0 varies; we will show that 6 plays a role very similar to the
absolute temperature in standard thermodynamics. One should
recall that certain quantities, such as entropy and specific heat,
become zero for T = 0 in BG statistical mechanics; however,
in Ref. [31], a curious situation concerning the third law
of thermodynamics was verified, where sgg — 0, keeping a
generalized entropic form s > 0, as T — 0. Herein, we will
analyze generalized forms of these quantities, related to the
entropic form of Eq. (7), showing that they present a nontrivial
behavior for varying 6, being different from zero even for zero
thermal noise. For convenience, herein these quantities will
be referred to by means of the same nomenclature used in
standard thermodynamics.

Let us then introduce the dimensionless variable,

kO I’lJTf()
= - = 5 13
’ aA? o (13)

(Bin> =B

which corresponds to the ratio between the effective thermal
energy k6 (associated with the repulsive interactions among
vortices) and a typical confining harmonic energy, aA>. Since
this confining energy is responsible for the system reaching
its stationary state, one should have k6 ~ aA? in such a way
that all important physical phenomena are expected to occur
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for t ~ O(1); this gives further support for the introduction of
the variable in Eq. (13).

The stationary-state solution of Eq. (3) may be found easily
[31],

o 1 %\ x\?
P. = — 2_ 42 = — - — | —
W) = g5 (o= x7) 4rx[<x) (A) ] el < xe,

(14)

where x, = lim,_, o %(t) = lim,_, o0 b~'/?(¢). The normaliza-
tion condition for Py(x) yields x, = (3DA /(x)l/ 3 or in terms
of the variable 7, x, = (37)"/3A. Its even moments can be
calculated,

(x?) = /xa dx x* Py(x)

—Xe

3
T2+ DH2I+3)

from which one obtains the special case [ = 1,

(%) = 130?22 = (x?) ~ 075, (16)

BB (1=0,1,2,...), (15

The anomalous diffusion, obtained previously from a dynam-
ical analysis of this system, i.e., (x2) ~ /3 [31,32], together
with the above result suggest that (x2) ~ (6¢)*? (this is to be
compared with (x2) ~ Tt, valid in standard diffusion [8]).

The distribution Pg(x) is exhibited versus x (in units of 1) in
Fig. 1 for typical values of 7, where one sees the spreading of
the distribution as t increases, following Eq. (16); one should
recall the similarity of this effect with normal diffusion as the
temperature 7" increases. In the inset, we present Py (x) for the
special value 7* = 0.072, leading to a very narrow distribution;
as will be shown next, 7* corresponds to the value at which
the entropy becomes zero.

The knowledge of the equilibrium distribution in Eq. (14)
allows for the computation of one-vortex physical properties,
such as those in Egs. (6) and (7). For the internal energy,

FIG. 1. The dimensionless equilibrium distribution A Py(x) is
represented vs the position x (in units of A) for typical choices of
7, namely 7 = 1,2,4 (from top to bottom). In the inset, we present
the same distribution in the special value 7* = 0.072, for which the
entropy becomes zero, in a different scale.
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FIG. 2. The internal energy u (in units of «A?) and the entropy s
(in units of k) are represented vs the dimensionless parameter 7. The
entropy becomes negative only for very small values of t, namely for
T < 0.072.

one has

Xe 2 1 32/3
u= / dx % Py(x) = o ozxe2 =10 ar? T3, (17)

—Xe

which is shown versus t in Fig. 2. One notices a monotonic
increase of u# with 7, as well as a curvature, which are very
similar to those of the internal energy of physical systems for
increasing the absolute temperature 7' [8—10]. From Eq. (7),
one obtains the entropy

1/3
s:k[l—%(g) } (18)

as represented in Fig. 2. The entropy above may be written
also in terms of the internal energy of Eq. (17),

3/ a)\? 172
s(u)=k|:1—§<@) } (19)

where one notices that s is a concave function of u, as ther-
modynamically expected. An interesting point concerns the
negative-entropy anomaly, i.e., the entropy becomes negative
for sufficiently small values of 7, or equivalently, for small
u/(akz). In fact, one obtains that s = 0 for t* = (9/125) =
0.072; this corresponds to u* = (9/250)aA? = 0.036 2A? as
well as to x, = 0.6\ In fact, for T < t* one gets a very narrow
Py (x), for which all vortices get confined in a small region
(typically of order 1), as shown in the inset of Fig. 1, with
each vortex feeling strongly the presence of the remaining
ones; clearly in this case, a quantum-mechanical treatment
should be used instead. Hence, the threshold 7* signals
the region of validity of the present classical results. This
anomaly is similar to those appearing in standard statistical
mechanics of classical systems, where the entropy becomes
negative for sufficiently low values of T'; a typical analogous
situation occurs in the classical ideal gas when the mean
distance between molecules becomes of the order of the

PHYSICAL REVIEW E 86, 061113 (2012)

de Broglie wavelength [8—10]. Therefore, one can define two
distinct physical regimes associated with the variable 7: (i)
the quantum regime (v < t*), where the confining potential
dominates, leading to a narrow Pg(x); (ii) the classical
regime (t > t*), where one finds vortices far apart from
each other, due to strong repulsion effects, yielding broad
stationary distributions. The present analysis applies to the
latest situation.

From Eq. (19) one verifies analytically the fundamental
relation

ds(u) _ 1
u 0
showing that 6 plays a role very similar to the absolute

temperature of standard thermodynamics. In addition to this,
one may calculate the free energy of Eq. (6)

(20)

2 33 2/3
f=ar| — 17" — 1|, 21

which satisfies (3f)/(060) = —s, yielding additional support
for the interpretation of 6 as an effective temperature.

The specific heat may be calculated in three different ways,
namely from the internal energy, or the entropy, or the free
energy; such calculations lead to

82 f 32/3

(= — —f— — gL ——___

a0 20 920 15

Notice that ¢ diverges for 8 — 0, revealing the unphysical
behavior signaled by the negative entropy; indeed, for t = t*
one has ¢ = k/3, which represents its maximum acceptable

value. The specific heat above is directly related to energy
fluctuations,

8u_ 8s_

k173, (22)

b0
<E2>—<E>2=17—892c2, (E?) = / dx ¢*(x)P(x,1),
—Xx(1)

(23)

leading to the expected result (E?) > (E)? [herein (E) = u,
as defined in Eq. (6)]. Since in the present application one has
g = 0, the above relation may be written as (E?) — (E)?
(k6)*(c/k)*~4, suggesting a generalization of the well-known
relation (E2) — (E)? = kgT?c.

Furthermore, the results above are fully compatible with
the definition of a partition function [23,35],

1
frog = 3 oy Zoy, Uy = % ny_y Zo g,
xi7t -1
g x = ——7~): (24)

where we have defined g = 1/(k0); the partition function in
the present case (¢ = 0) is given by

10

Zzsz

(25)

IV. CONCLUSIONS

We have presented the concept of an effective temperature
6 for a system of interacting vortices under overdamped
motion in the absence of thermal noise (7 = 0). This
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quantity is directly related to the density as well as to
the interactions among vortices, being always positive by
definition. Generalized thermodynamic functions, within the
framework of nonextensive statistical mechanics, such as
entropy, internal energy, free energy, and specific heat, have
been studied for varying this effective temperature. Apart
from preserving important thermodynamic relations in terms
of 0, these quantities presented a behavior very similar to the
corresponding ones found in standard thermodynamics, as one
changes the absolute temperature 7.

The present system appears naturally as a typical physical
application for nonextensive statistical mechanics; the pre-
dictive power of the results above could be tested by means
of adequate experiments in type-II superconductors under
an appropriate confining potential. Through the experimental

PHYSICAL REVIEW E 86, 061113 (2012)

techniques available nowadays, which allow changes in the
density of vortices and consequently lead to variations in
0, some of the properties discussed above will hopefully be
measured. Other physical systems, characterized by repulsive
particle-particle interactions decaying with distance, may also
be described by the same nonlinear Fokker-Planck equation,
with a different value for the diffusion parameter D; these
systems should exhibit properties similar to those presented
herein.
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