A Design Rule Language for Aspect-Oriented Programming

Alberto Costa Neto!, Arthur Marques?, Rohit Gheyi?, Paulo Borba',
Fernando Castor Filho'

! Informatics Center — Federal University of Pernambuco
PO Box 7851, 50740-540 — Recife — PE — Brazil

2Department of Computing Systems — Federal University of Campina Grande
PO Box 10.106, 58.109-970 — Campina Grande — PB — Brazil

{acn, phmb, castor}@cin.ufpe.br
{arthursm, rohit}@dsc.ufcg.edu.br

Abstract. Aspect-Oriented Programming is known as a technique for modular-
izing crosscutting concerns. However, constructs aimed to support crosscutting
modularity might actually break class modularity. This can be mitigated by us-
ing adequate Design Rules between classes and aspects. We present a language
that supports most of the Design Rules found in AO Systems, making easy to
express and verify them automatically. We discuss how our language improves
crosscutting modularity without breaking class modularity. Also, we give some
details about the language semantics expressed in Alloy.

1. Introduction

Aspect-Oriented Programming (AOP) [Kiczales et al. 1997] has been proposed as a tech-
nique for modularizing crosscutting concerns. Logging, distribution, tracing, security,
and transactional management are accepted as examples of crosscutting concerns well
addressed by AOP. Yet, AOP seems to produce modularity problems. In this context, sev-
eral authors argue that in order to reason about classes it is necessary to consider all aspect
implementations [Sullivan et al. 2005, Clifton and Leavens 2002, Steimann 2006].

In the presence of aspects, class modularity is compromised because, when evolv-
ing a class, it might be necessary to analyze the implementation of existing aspects, which
can refer to classes implementation, instead of analyzing only the class and the interface
of other referred classes. In fact, by referring to classes implementation details in as-
pects, one can inhibit modular reasoning and compromise the changeability, requiring
class modifications to be fully aware of the aspects affecting the class. Therefore, con-
structs aimed to support crosscutting modularity might actually break class modular-
ity [Ribeiro et al. 2007].

This weakness can be mitigated by using adequate Design Rules (Sec-
tion 2) between classes and aspects, as discussed in other works [Sullivan et al. 2005,
Lopes and Bajracharya 2006]. Design rules are necessary to reduce such new dependen-
cies in Aspect-Oriented (AO) systems. They are not just guidelines and recommenda-
tions: they generalize the notion of information hiding interfaces and must be rigorously
obeyed. Besides being useful for verification purposes, they serve as a guideline for
developers since the initial phases of the development process. None of the previous ap-
proaches [Sullivan et al. 2005, Lopes and Bajracharya 2006] propose a language with the
specific purpose of describing design rules.

In this paper we present a Language for Specifying Design Rules (LSD) that im-
proves the modularity of AO systems. This is achieved by specifying the essential struc-
ture and behavior that each developed component must provide aiming to establish the
minimum requirements necessary to work in parallel. LSD supports the description of
Design Rules in a declarative manner, making easier the development of automatic verifi-
cation mechanisms of these rules in the written code. We discuss some evolution scenarios
(Section 5) aiming to show how the existence of design rules can help to identify problems
and also help to solve them.

The main contributions of this paper are:

e Present a language for specifying design rules, improving the modularity of AO
systems, in a declarative manner using a syntax similar to Java and Aspect] and
with a defined semantics (Section 3).

e Describes the language semantics in Alloy [Jackson 2006] which, besides being
useful for that purpose, is also helping to refine the language semantics through
its automatic verification (Section 4).

2. Modularity Issues in AOP

We discuss in this section the modularity concept adopted in this work, how AOP con-
tributes to improve (or not) it and how Design Rules can be useful to improve modularity.

Parnas [Parnas 1972] proposes a criteria to consider a design modular, and the
information hiding principle, which is used as the criteria to decompose a system into a
set of modules, hiding the parts of a system that are more likely to changes into modules
with stable interfaces. The following quality attributes are expected in a modular design:

Comprehensibility: A modular design allows developers to understand a module look-
ing only at: (1) the implementation of the module itself; and (2) the interfaces of
the other modules referenced by it.

Changeability: A modular design enables local changes. If the hidden implementation
of a module A changes, other modules that depend exclusively on A’s interface
will not need to change, since there is no modification in the module interface.

Parallel development: After specifying module interfaces, a modular design enables the
parallel development of modules. Different teams might focus on developing dif-
ferent modules, reducing the time-to-market and the need of communication.

In AO software, crosscutting concerns are implemented with aspects that intercept
join points in classes and change their behavior. One type of problem that denotes lack
of modularity is called unanticipated change in base code. It occurs for example when
a extract method refactoring is applied, removing join points (method call and execution,
for example) and creating others like the call and execution of the extracted method.
Any aspect dependent on that join points will not work adequately, unless the pointcuts
are changed to match the new join points. This problem occurs because the aspect is
dependent on something that can be changed, thus the design is not modular.

Another problem that frequently exists in AO software is the lack of support to
parallel development. This occurs because many aspects require that some details about
classes are defined and codified before aspects programming. For example, it is necessary
to know which methods change an object state in order to write an aspect that intercepts

these methods and implements persistence. Thus, developers must agree on some rule to
name these methods so that aspects can be developed in parallel.

As mentioned in Section 1, these problems can be mitigated by establishing de-
sign rules. Intuitively, many AO developers accord these rules but they do not document
them. Others write them as comments within programs or design models. A small number
of developers try to enforce these rules automatically (writing programs to check them).
Consequently, the design rules are frequently forgotten by programmers and must be dis-
covered every time a developer needs to change the software.

It is important to notice that design rules are not so necessary if aspects are devel-
oped after classes and these classes never change. Since software is in constant change,
we do not consider this as a feasible approach, preferring the design rule based approach.

Our approach, discussed in the next section, address many of modularity prob-
lems through the use of a language to express and enforce design rules to both classes,
interfaces and aspects. Section 4 presents language semantics.

3. A Language for Specifying AO Design Rules

In this section, we present a Language for Specifying Design Rules (LSD). Some LSD
concepts were sketched in a previous work [Désea et al. 2007]. The main objective of
LSD is to decouple classes and aspects, improving modularity and maximizing indepen-
dent development opportunities. Through the definition of Design Rules we argue that
both class and aspect developers can work independently if a minimum set of constraints
is defined and respected. LSD was defined as a mechanism for expressing and checking
design rules during all development phases, specially during software design.

3.1. LSD Overview

Many Object-Oriented (OO) programming languages provide the concept of interface
which specifies a public set of methods and constants expected as being provided by any
class that implements it. This interface notion supports the creation of separated and
narrow interfaces to different clients of the same class, limiting the coupling between
them.

Our concept of interface, which we call a Design Rule, is wider, which means that
it involves more than public methods and constants. It can include, for example required
join points, private members, inter-type declarations, inheritance and implements decla-
rations. A Design Rule contains a set of constraints that must be followed by components
that declare to implement them. These constraints are automatically verified by a tool
(static analyzer) that points out when some constraint is disrespected.

Aiming to explain how design rules can be created, we describe major steps that
can be followed when building an AO system with design rules.

Discuss Design Rules: Developers, based on previous experience, discuss how classes
and aspects will interact and agree on some design rules (Section 3.2).

Write Design Rules: The agreed design rules are written in some form that developers
can understand. LSD supports this task by providing a new language construct that
is called dr (Section 3.2). With LSD, it is possible to express them in a declarative
fashion and verify them during codification.

Develop OO and AO components: Each class, interface or aspect is implemented and
automatically checked against the appropriate design rules (Sections 3.3 and 3.4).

Determine the DR instance: This task involves the binding of design rules, classes, in-
terfaces and aspects. It is necessary because classes, interfaces and aspects are
not coupled and make no reference to each other. LSD determines this binding
through a Design Rule Instance (Section 3.5).

In the following sections, it is presented an example that demonstrates LSD con-
structs and their details. The Display Update example was chosen because it is used in
several AO works. Basically it is part of a simple tool for editing drawings comprising
figure elements like points and lines that are depicted in a display.

3.2. Discussing and Writing the Design Rule

As a result of the first step (discussing the design rules), developers could agree on the
following rules for figure elements, display and display update:

1. FigureElement methods called set* (starting with set, like setX) and moveBy
must be public and return void. Also, all constructors must be public.

2. All FigureElement constructors and methods called set* or moveBy are the only
possible points of state change in figure elements.

3. Methods called set* or moveBy and constructors must change some attribute of
the figure element.

4. Methods called set* or moveBy cannot call any method called set* or moveBy
from a FigureElement.

5. A Display class must have a public void update() method.

6. The aspect responsible for updating the display must declare a pointcut called
stateChange that intercepts calls to the methods/constructors that change figure
elements state based on their names (predetermined).

7. The aspect must also contain an advice that calls Display.update(). This method
cannot be called from any other place in the system.

Structural Rules are design rules that describe constraints about classes and as-
pects members. Their format is similar to the interface description in Java, but it is pos-
sible to include additional constraints (beyond required public methods and constants),
like attributes that must be declared, required private or protected methods and expected
inter-type declarations. Besides, there are specific constraints about aspects structure, like
requiring a specific pointcut declaration and advice declaration. Listing 1 shows a de-
sign rule called DisplayUpdateDR that contains three structural rules: FigureElement
(Lines 2-13), DisplayUpdate (Lines 14-23) and Display (Lines 24-26).

Behavioral Rules provide a mechanism for specifying constraints about compo-
nents behavior. Examples of behavioral rules are required method calls (call/xcall) and
attribute access (get/xget) or change (set/xset), as shown in Listing 1 (Lines 9-11 and 21).

The first rule is expressed in Listing 1 within the FigureElement Structural Rule
(Lines 3-5). Any modifier or return type that appears associated to a member (public
and void in the example), must match with the classes implementing FigureElement
structural rule. When something is not informed it is not considered.

0NN A WN—

Rules 2-3 are expressed in Listing 1 (Line 9) by the behavioral rule xset, which
requires an assignment to some FigureElement attribute within change methods (speci-
fied with an or in Line 7) and prohibits changes elsewhere. If Rule 2 were suppressed, we
could have used set instead of xset, because set does not prohibit assignments from other
places of the program, like xset does. Both set/xset define the places where an assignment
to an attribute must occur, but only xset restricts the assignments to the scope in which it
is present. Equivalent notion is used in get/xget and call/xcall behavioral rules.

Rule 4 is expressed in Listing 1 (Lines 10-11) by negating calls to change methods
within their own. It is important to notice that LSD does not impose any order between
gets, sets and calls within the method. It only check if they are present in the scope.

Listing 1. Design Rule for Display Update.

dr DisplayUpdateDR [FigureElement, DisplayUpdate, Display] {
class FigureElement {
all (% set*x(..)) then public void set x(..);
all (* moveBy(..)) then public void moveBy(..);

all(new(..)) then public new(..);
all (= setx(..) || * moveBy(..) || new(..)) then
#(.) A

xset (*+ FigureElement.x);
lcall (x FigureElement.set x(..));
!call (* FigureElement.moveBy (..));
}
}
aspect DisplayUpdate {
public pointcut stateChange (FigureElement fe): target(fe) &&
(call (* FigureElement+.set*(..)) ||

call (x FigureElement+.moveBy (..) ||
call (FigureElement+.new (..)));

after (): stateChange () {
xcall (x Display.update ());
}

class Display {
public void update ();

}

Also, in Listing 1 (Lines 24-26) the fifth rule is expressed, forcing classes that
implement the Structural Rule Display to provide a public void update() method.

The remaining rules (6 and 7) are expressed, respectively, by Lines (15-18) and
(20-22), within the Structural Rule DisplayUpdate (Lines 14-23) and basically express
that an aspect implementing DisplayUpdate, must provide the pointcut stateChange and
associate this to an advice that obligatorily and exclusively calls Display.update().

Although design rules should be as stable as possible, we believe that it is easier
to change a software with clear design rules than one with no explicit rules. In order to
execute the change, the necessary changes to design rules must also be done.

3.3. Implementing Classes

Considering that the design rules are defined, class developers can concentrate on the
details of classes implementation. They are free to change anything except what is estab-
lished on the design rule. This is equivalent to what happens when a class implements
an interface: all methods present in the interface must be implemented on the class. The

0NN AW~

0NN AW~

[—
N = O O

main differences are more types of constraints and also that some of them involve more
than one component, like an inter-type declaration. But a common idea was preserved:
clients depend only on the component interface.

Listing 2 shows a class Point that implements DisplayUpdateDR as FigureEle-
ment. This means that all constraints (structural and behavioral rules) associated to Fig-
ureElement must be respected by Point. Other figure elements like Rectangle, Line and
Circle could be presented, but to keep the example short we omitted them.

Listing 2. Classes implementing the DisplayUpdateDR.

public class Point implements DisplayUpdateDR (FigureElement) {
protected int x, y;
public Point(int x, int y) {
this .x = x;
this.y = y;
}
public void setX(int x) { this.x = x; }
public void setY(int y) { this.y = y; }
public moveBy(int x, int y) {
this .x = x;
this.y = y;
}
}
public class Screen implements DisplayUpdateDR(Display) {
public void update () { /+* Updates Screen =/ }
}

DisplayUpdateDR is also implemented by Screen but as Display. This implies
that Screen must provide an update method. Based on the design rule we can detect
when some constraint is disrespected, avoiding to affect other components that depend on
these constraints. This is important because components can be developed independently.

3.4. Implementing Aspect

The ScreenUpdate aspect (Listing 3) implements the design rule DisplayUpdateDR as
DisplayUpdate. In conformity with the structural rule DisplayUpdate, ScreenUpdate
defines a pointcut stateChange and an after advice that calls Display.update().

Listing 3. Aspects implementing the DisplayUpdateDR.

public aspect ScreenUpdate
implements DisplayUpdateDR (DisplayUpdate) {

private Display display;

public pointcut stateChange (FigureElement fe): target(fe) &&
(call(* FigureElement+.set*(..)) ||
call(x FigureElement+.moveBy (..) ||
call (FigureElement+.new (..)));

after (): stateChange () {

display .update ());
}

}

It is important to notice that ScreenUpdate does not make reference to Point or
Screen, what contributes to decouple aspects from them. Considering that, we can under-
stand how it is possible to develop the aspect without classes implementations, achieving
the parallel and independent development of classes and aspects discussed in Section 2.

—_

3.5. Defining a Design Rule Instance

One important question that arises when classes and aspects are completely decoupled is
where the binding between the structural rules of a design rule and their implementing
elements (classes, interfaces and aspects) will occur. In LSD, this binding is performed
at design rule instantiation, which requires the list of classes, interfaces, and aspects that
will play the roles (structural rules) of that design rule. For example, the design rule of
Listing 1 has three parameters (Line 1): FigureElement, DisplayUpdate and Display.
Listing 4 shows the DisplayUpdateDR instantiation by assigning a name to the instance
DispUpd and associating class Point to FigureElement, aspect ScreenUpdate to Dis-
playUpdate and class Screen to Display. It is possible to bind multiples components to
a parameter, like a Point and Line to a FigureElement, by providing a comma-separated
list of these components in the place of Point. The components implements clause is
used to check if the bindings are correct, which means that each structural rule associated
to the component in the design rule instance must be in its implements clause.

Listing 4. Design Rule instance.

dri DispUpd = new DisplayUpdateDR (FigureElement = Point;
DisplayUpdate = ScreenUpdate;
Display = Screen);

The chosen approach is flexible enough to support any number of instances of the
same design rule with different parameters in a single system. Also, the same component
can be bound to different structural rules in different systems. Finally, in an AO Software
Product Line (SPL), design rule instantiation can be used as a configuration mechanism
that supports any number of product instances.

3.6. Additional Language Constructs

In this section we briefly discuss other language constructs present in LSD that were not
shown in other sections, but are also important to express design rules.

Inter-Type Declarations (ITD). ITDs enable aspects to introduce attributes and meth-
ods in classes. At the same time that ITD is a useful mechanism, it may create
dependencies between classes and aspects. This mechanism is frequently used in
AO software product lines to introduce variable method implementations or at-
tribute values in classes. Design rules can be used to explicitly create a contract
between classes and aspects introducing product line variabilities in classes.

Inheritance/Implementation Another type of constraint is to require that a class inherit
from a specific class or implements a certain interface. This can be useful to write
pointcuts in aspects based on a common superclass/interface. LSD provides a
mechanism to enforce this constraint by declaring the superclass/interface in the
class extends/implements clause within the corresponding structural rule.

Member Expressions. LSD supports expressions involving structural rule members, as
requiring a method call to methods m1 or m2 (or). The class implementing this
structural rule will be correct if it calls at least one of them. It is also possible
to require that a method m1 exists and other m2 does not exist (not). Requiring
two or more members to exist at the same time (and) is possible too and in fact
is the default behavior for methods listed individually in a structural rule. These
operators can be combined, providing more expressivity.

—_—

— OO0 0NN WN =

Quantification. Some degree of quantification is supported by LSD, enabling to select
the domain to which it is applied a design rule. Listing 1 (Lines 3-5 and 7-12)
shows examples of quantification over change methods. If necessary, quantifica-
tion can be applied to all types of members.

Exceptions. Besides the declare soft construct, LSD allows the inclusion of throws
clause in structural rules methods. The idea is forcing developers to follow con-
straints related to exceptions that must be included or not in method declarations.

4. Semantics

In this section, we present a translational semantics for our language. We map all con-
structions to a theory specified in Alloy [Jackson 2006], a formal object oriented model-
ing language. Alloy uses signatures to describe the elements presented on its model and
facts to describe the relationship between these signatures or elements that belongs to
them. We chose Alloy due to its simplicity in expressing first-order logic constraints and
its tool support to perform analysis in specifications. In order to explain the translational
semantics first we present our theory (Section 4.1), where we discuss the abstract syntax
used in Alloy, then we give an intuition of DisplayUpdateDR semantics (Section 4.2)
and finally we present the translational semantics (Section 4.3) where we map each de-
sign rule to its counterpart in Alloy according to this theory. We also discuss the benefits
and drawbacks of our approach (Section 4.4).

4.1. Theory

We specified the abstract syntax of all elements (classes, methods, fields, aspects, advices)
in our Alloy theory (specification). For example, Listing 5 presents two Alloy signatures
representing a class and an aspect respectively. An Alloy signature denotes a set of ob-
jects.

Listing 5. Class and Aspect Representations

abstract sig Class extends Type {

vis: one VisibilityQualifier ,
imp: set Interface ,
}
abstract sig Aspect {
attr: set Field,
meth: set Method,
advice: set Advice,
pcut: set PointCut,
decl: set InterTypeDeclaration,
}

A signature may introduce some relations, such as imp. They relate objects in
one signature to another one. For instance, imp denotes the set of interfaces that a class
may implement. The set Alloy keyword denotes that each object of Class is related to a
number of objects of Interface. The one Alloy keyword denotes that each object of Class
is related to exactly one element of VisibilityQualifier. Similarly, we have defined other
relations in the Class signature specifying the attributes, constructors and whether the
class is final, abstract. An Alloy signature may extend other signatures. In the previous
listing, Class is a Type, which represents a type (class or interface). The previous Alloy
signature Class is abstract. Only its subsignatures may have concrete elements. Each
class is declared with a visibility qualifier (public, protected, friendly and private). We
represent them by an Alloy signature (VisibilityQualifier).

NN AW =

0NN WN =

Following the same approach the Alloy signature representing an aspect is shown
in Listing 5. An aspect may declare a set of attributes, methods, advices, pointcuts and
inter-type declarations. Similarly, we defined an Alloy signature for each element of our
language, such as attributes, constructors, interfaces, methods, advices.

4.2. Example

In this section, we specify the display update example using our theory. For each element
presented in Listing 1, we create a singleton signature in Alloy. For example, Listing 6
declares part of the Display class and the update method (Lines 24-26 of Listing 1). The
one Alloy keyword denotes that the signature contains exactly one object.

Listing 6. DisplayUpdateDR Semantics (Part 1)

one sig Display extends Class {}{}
one sig update extends Method {} {
return = void
no update.param
update in Display.meth

}

The Display.meth expression denotes the set of methods declared in Display.
Notice that there are invariants attached to update. It is a signature attached fact. It states
some constraints about update. For instance, it is a void method and it is declared in the
Display class. We add all constraints declared in all elements. The in Alloy keyword
denotes the subset operator. It is important to observe that the update method cannot
have parameters. If you would like to allow it to include any kind of parameters, you
should add the following declaration: update(..). It is important to observe that we do
not include any constraint about the qualifiers of update. For example, since it is not
presented whether the method is static in the declaration of update, this method can be
static or non-static.

Listing 7. DisplayUpdateDR Semantics (Part 2)

one sig DisplayUpdate extends Aspect {...}{...}
one sig advl extends Advice {}{
advl in DisplayUpdate.advice

)
fact {

update in advl.call

all m: Role — advl | update not in m.call
}

Listing 7 expresses the semantics of Listing 1 (Lines 20-22). It states that there is
an advice declared in the DisplayUpdate aspect. The all and not Alloy keywords denote
the universal quantifier and negation, respectively. Similar to a signature attached fact,
an Alloy fact declares a set of invariants about the model. In the previous fact, we state
that the update method cannot be called by any method, constructor or advice but the
advice declared in the DisplayUpdate aspect. In our theory, the Method, Constructor
and Advice signatures, which extend the signature Role, declare the relation call. This
relation specifies all methods calls that are syntactically presented in the declaration of a
method, constructor or advice. We map the other elements of Listing 1 similarly.

4.3. Translation

In this section, we present some of our general translations used in the example (Listing 1)
to translate a specific design rule to its counterpart in Alloy. Translation 1 shows how the

xcall is mapped to its counterpart in Alloy. Each translation contains two templates. The
left hand side (LHS) template contains a design rule in LSD. The right hand side (RHS)
template shows an Alloy model specified using our theory.

Translation 1 (xcall)

DS
one sig M1 ext T{ ... }
ds { ...}
oo M1 () A one sig M2 ext T{ ... }
zeall(... M2(...)); { ...}
= |fact {
} M2 in M1.call
all m: Role — M1 |
M2 not in m.call
}

The ds and ps meta-variables denote a set of design rule declarations and Alloy
signatures, respectively. On the RHS of Translation 1 there is one fact stating that M2
must be called in M 1. Additionally, it cannot be called by any other constructor, method
or advice. This translation is used in the example presented in Section 4.2 in order to map
xcall in Listing 7.

Translation 2 presents how the rules introduced by a method declaration is ex-
pressed in our language. This translation is used in the example presented in Section 4.2
in order to map the update method in Listing 6. We have 20 translations for classes,
aspects, advices, behavior rules. Each translation deals with one construct. Therefore,
Translation 2 just presents the parts of the language translated to our theory in Alloy. For
example, it does not show how the parameters and qualifiers are mapped. We have other
translations for them.

Translation 2 (method declaration)

cds ps
class C { one sig C ext Class {}
M)A { ...}
one sig M ext Method
} =y A
} M in C.meths
}

4.4. Discussion

The first-order logic constraints can be easily mapped to Alloy. When specifying design
rules, it may happen to introduce an inconsistency, which can be detected by the Alloy
Analyzer. For example, consider that in the DisplayUpdateDR example (Listing 8) we
have a call and a xcall to the same method update in different parts (FigureElement.set*
and in the DisplayUpdate advice). Using our translations, we yield the constraints that
are contradictory (Listing 9).

0NN AW =

S S G —
01NN AW~ OO

—_

Listing 8. Inconsistent Design Rule

dr DisplayUpdateDR [FigureElement, DisplayUpdate, Display] {
class FigureElement {
public void setx(..) {
call(x Display.update ());
}
}
aspect DisplayUpdate {
public pointcut stateChange (FigureElement fe): target(fe) &&
(call(* FigureElement+.set*(..)) ||
call(x FigureElement+.moveBy (..) ||
call (FigureElement+.new (..)));
after (): stateChange () {
xcall (+ Display.update ());
}
}
}

Listing 9. Inconsistent Alloy Constraints

update in methSet.call
all a: Role — advl | update not in a.call

As explained before, the Role signature represents all methods, constructors or
advices. The variables advl and methSet represent the advice declared in DisplayUp-
date and the methods set* declared in FigureElement in Listing 8, respectively. This
inconsistency may be difficult to detect in a larger specification. Using our approach, the
Alloy Analyzer can detect that the design rule is inconsistent since we map each design
rule to a specific Alloy model. In this case, the Alloy Analyzer performs a complete anal-
ysis, since we know all elements involved. Additionally, the tool contains a functionality
(the unsat core) that allows us to extract the minimum set of constraints that is making the
model inconsistent. In the previous example, the Alloy Analyzer highlights the problem
in the Alloy specification. As a future work, we intend to build a tool that highlights the
problem in LSD.

We have focused on the semantics of the language. As a future work, we intend
to formalize the type system and the well-formedness rules of the language. We have
identified a number of well-formedness rules. Mostly are based on the Aspect] and Java
static semantics (well-formedness rules and type system) since we have closely followed
them in order to be easier to understand by developers. We also have some rules specific
to our language. We are aiming at choosing another language to specify the type system
and well-formedness rules. Based on our experience, since the specification will increase,
it will be difficult to have the benefits of the Alloy Analyzer analysis. Moreover, the
current version of Alloy does not allow recursive definitions directly. This may turn the
specification difficult to read and maintain.

We have a tool support that implements many of the translations proposed from
LSD to Alloy. We have implemented them in parallel when specifying the translations
rules. The case studies and some toy examples specified in our language were mapped
to their counterparts in our theory in Alloy using the tool support. Moreover, most trans-
lations are simple and deal with one construction each time. These facts increase our
confidence that the set of translations is complete.

5. Evolution Scenarios

In this section we discuss some evolution scenarios (used in other
work [Griswold et al. 2006]) that could occur in the system presented in Listing 1.
The main objective is showing how the existence of design rules can help to identify
problems and also help to solve them.

Adding Color to Figure Element: One possible evolution to the system is supporting
colors. Considering that color is an attribute common to all figure elements, it
is natural to add it to the FigureElement class. As occurs to other FigureEle-
ment attributes, its value will be changed by invoking the setColor method. Thus
the design rule will not be changed, but it will help developer to understand
the change constraints. If the developer does not respect the naming conven-
tion, which establishes that all methods that change FigureElement state must be
called moveBy or start with set, and tries to define a method called changeColor,
the developer will receive an error message.

Modifying moveBy to Call set Methods: Another possible evolution is changing
moveBy method replacing direct assignment to attributes by calls to correspond-
ing set methods. This change would not be allowed by the design rule and
will generate an error because, as shown in Listing 1 (Line 10), calls to meth-
ods with names starting with set are prohibited within change methods (methods
with names starting with set, or exactly moveBy or any constructor). In this sit-
uation, the change must be aborted or the design rule must be adapted. This last
option must involve the aspect developer because some assumptions, like “no call
to change methods within change methods”, will not be true anymore. In this case,
developers must agree in a new set of rules and rewrite them in the design rule.
The current design rule helps developers to understand the dependencies.

6. Related Work

Sullivan [Sullivan et al. 2005] presented a comparative analysis between an AO system
developed following the widely cited oblivious approach and the same system developed
with clear design rules that document interfaces between classes and aspects. This last
approach promises benefits when relevant crosscutting behaviors are anticipated and when
new code, anticipated or not, can be written against existing interfaces (design rules). Its
main problem is expressing the design rules in natural language, leading to sometimes
long and ambiguous interpretation.

Griswold [Griswold et al. 2006] showed how to express (using Aspect] con-
structs) part of the design rules into a set of Crosscutting Programming Interfaces
(XPIs) that are useful to document and check part of the design rules (contracts). Al-
though it was possible to check part of the design rules, the use of a language not designed
to this purpose leads frequently to complex specifications (contracts imposed by aspects).

Program Description Logic (PDL) [Morgan et al. 2007], inspired by the point-
cut language in Aspect], allows succinct declarative definitions of programmatic struc-
tures which correspond to design rule violations. However, PDL is useful only in OO
systems and does not support a clear definition of rules for parallel development.

Open Modules [Aldrich 2005] supports the definition of an interface composed
by a set of pointcuts that can be advised by clients, introducing a form of encapsulating

join points occurring inside a module and protecting them from external advising. Al-
though join point hiding is an important concern, it does not provide information to the
aspect developer (beyond exported join points) that could be useful for establishing design
rules that serve as interface between the OO and AO developers, like LSD provides.

7. Conclusion and Future Work

We discussed how LSD can improve modularity due its interface notion with a solution
that eliminates the ambiguity and reduces the complexity found in other approaches, like
XPIs [Griswold et al. 2006]. With LSD, it is possible to independently develop classes,
interfaces and aspects, as long as the design rules are preestablished.

We noticed that design rules are important in many types of aspects, but there are
some basic aspect implementations that are so general that make no reference to classes or
interfaces (no coupling), like for example basic Tracing and Logging aspects, that do not
demand design rules. LSD does not impose restrictions that constrain the development of
these basic aspects, since it is not obligatory that aspects implement design rules.

LSD requires the creation of new artifacts (design rules) that demand enough ex-
perience from software designers. Additionally, developers must get used to new language
constructs. In spite of that, explicitly expressing design rules, and specially being capa-
ble of verifying them, eases the task of developing new components and also adapting
existent components.

Another important point is that although we consider defining design rules as a
necessary step to modular AO development, it is possible to write classes and aspects,
and later establish the design rules that were used. In this case, they will not help during
development but will be useful for preventing errors and to give assistance to developers
during software maintenance and evolution. This approach can be used whenever the best
design is unknown (lack of experience) or in agile development processes.

Another interesting point was using Alloy to specify LSD semantics. It helped us
to deeply understand some constraints that we wanted to express and lead us to think about
some options and take decisions that influenced LSD expressivity and understandability.

As future work we plan to continue the formal semantics definition, specifying
the type system and well formedness rules. Also, more constructs (specially more be-
havioral rules) are necessary to support other constraints. Additionally, we plan to eval-
uate the language in more real case studies, that include AO SPL. Finally, we are ex-
tending the AspectBench Compiler for Aspect] (abc) [Avgustinov et al. 2005] to sup-
port LSD constructs, but using the new frontend based on the AO meta-compiler Jas-
tAdd [Ekman and Hedin 2007], which supports a constrained form of static AOP (inter-
type declarations) that associated to demand-driven evaluation and attribute grammars,
enable composable extensions and flexible modularization.

Acknowledgments

This work was partially supported by CNPg/Brazil, grant 308383/2008-7, and the Na-
tional Institute of Science and Technology for Software Engineering (INES'), funded by
CNPq and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08.

Thttp://www.ines.org.br

References

Aldrich, J. (2005). Open modules: Modular reasoning about advice. In ECOOP ’05:
Proceedings of 19 th European Conference on Object-Oriented Programming, pages
144-168. Springer.

Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhotdk, J., Lhotdk, O.,
de Moor, O., Sereni, D., Sittampalam, G., and Tibble, J. (2005). abc: an extensible
aspectj compiler. In AOSD ’05: Proceedings of the 4th international conference on
Aspect-oriented software development, pages 87-98, New York, NY, US. ACM.

Clifton, C. and Leavens, G. T. (2002). Observers and assistants: A proposal for modular
aspect-oriented reasoning. In Foundations of Aspect Languages, pages 33—44.

Désea, M., Neto, A. C., Borba, P., and Soares, S. (2007). Specifying design rules in
aspect-oriented systems. In First LA-WASP, Joao Pessoa, Brazil.

Ekman, T. and Hedin, G. (2007). The jastadd extensible java compiler. In OOPSLA
'07: Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented
programming systems and applications, pages 1-18, New York, NY, US. ACM.

Griswold, W. G., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y., and Rajan,
H. (2006). Modular software design with crosscutting interfaces. IEEE Software,
23(1):51-60.

Jackson, D. (2006). Software Abstractions: Logic, Language and Analysis. MIT press.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M.,
and Irwin, J. (1997). Aspect-oriented programming. In ECOOP: Proceedings of the
European Conference on Object-Oriented Programming.

Lopes, C. and Bajracharya, S. (2006). Assessing Aspect Modularizations Using Design
Structure Matrix and Net Option Value. LNCS Transactions on Aspect-Oriented Soft-
ware Development I, pages 1-35.

Morgan, C., Volder, K. D., and Wohlstadter, E. (2007). A static aspect language for
checking design rules. In AOSD ’07: Proceedings of the 6th international conference
on Aspect-oriented software development, pages 63—72, New York, NY, USA. ACM
Press.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053—-1058.

Ribeiro, M., Désea, M., Bonifacio, R., Neto, A. C., Borba, P., , and Soares, S. (2007).
Analyzing class and crosscutting modularity with design structure matrixes. In SBES
'07: Proceedings of 21 th Brazilian Symposium on Software Engineering, pages 167—
181.

Steimann, F. (2006). The paradoxical success of aspect-oriented programming. SIGPLAN
Not., 41(10):481-497.

Sullivan, K., Griswold, W. G., Song, Y., Cai, Y., Shonle, M., Tewari, N., and Rajan, H.
(2005). Information hiding interfaces for aspect-oriented design. In ESEC/FSE’05,
pages 166—175, New York, NY, USA. ACM.

