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Abstract. Aspect-Oriented Programming (AOP) is considered a promising 

approach for Software Product Line (SPL) implementation. In this paper we 

present the problem of dependency in inter-type method declarations as well a 

proposal of two new constructs to AspectJ interfaces: introduces and declares. 

These constructs can be used to declare and check dependency between base 

code and aspects in such a way to support separate development. 

1. Introduction 

Aspect-oriented languages support the modular definition of concerns that are generally 

spread throughout the system and tangled with core features. These are called 

crosscutting concerns and their separation promotes the construction of a modular 

system, avoiding code tangling and scattering [6]. 

Filman and Friedman [4] proposed a concept in aspect-oriented design called 

obliviousness. They advocate that designers of base functionality do not need to 

anticipate or design the code to be advised by aspects. This concept leads designers to 

focus firstly on base functionalities and later on the crosscutting concerns design. A 

recent study [10] reports case studies showing that obliviousness makes it difficult or 

impossible to directly write the necessary pointcuts to intercept the join points and 

execute appropriate code in advices. It also proposes an approach that requires 

establishing design rules between base code and aspect designers. 

We identified, in a J2ME Game software product line (SPL) implemented using AspectJ 

[2], the importance of declaring dependencies between base code and aspects caused by 

inter-type method and attribute declarations. These dependencies, when unplanned and 

uncontrolled, make developers (base and aspects) suffer from evolution problems. 

Additionally, these dependencies usually hinder the separated development of base and 

aspect code, since one depends on the other to compile.  

This paper has two main contributions:  

• Expose the problem of static crosscutting dependencies between classes and 

aspects (Section 2). 



  

• Propose an extension to Java interfaces adding two constructs (introduces 

and declares) aiming at explicitly declaring those dependencies (Section 3). 

We compare our work with others in Section 4. Finally, we present concluding remarks 

and future work in Section 5. 

2. Problem 

After constructing a Mobile Game SPL using an extractive approach by applying a 

series of aspect-oriented refactorings[2], it was noticed that classes and aspects 

presented some degree of mutual dependency, making difficult to evolve both 

independently. These dependencies were categorized with respect to their kind. In the 

next sections they are presented in more detail, using examples extracted from the SPL. 

2.1. Classes depending on introduced class members 

The first kind of dependency identified was of classes with relation to methods and 

attributes introduced by an aspect. In fact, these methods might have different 

implementations according to each specific family requirement. 

The SPL core classes call some of the introduced methods directly at the 

appropriated points in code, requiring that some aspect introduces them during class 

compilation. This situation is different from a call made within an advice, since the 

method called is declared by the proper aspect via inter-type declaration. 

The piece of code below shows calls to two introduced methods: 

paintBeforeScrolling and paintBeforeScrolling within method paint 

(defined in core class GameScreen). 

 

public void paint(Graphics g) { 

   Enemy myEnemy = null; 
   int i = 0; 
   int j = 0; 
   g.setClip(0, 0, Resources.CANVAS_WIDTH, Resources.CANVAS_HEIGHT); 

   paintBeforeScrolling(g); 

   if (this.scroll.isScrolling) { 

      paintScrolling(g); 

   } else if(!isGameOver){ 
   ... 

These methods have different behavior in each platform (Nokia S40, Nokia S60 and 

Motorola T720, for example) requiring a different inter-type method declaration and an 

aspect by platform. For brevity, only the Nokia S40 implementations are presented 

below. 

public void GameScreen.paintBeforeScrolling(Graphics g) { 

   if (this.isToClearAll) { 
      this.scroll.reset(); 
      g.setColor(0); 
      g.fillRect(0,0,Resources.CANVAS_WIDTH,Resources.CANVAS_HEIGHT); 
      this.isToClearAll = false; 
   } 
}  



  

 

public void GameScreen.paintScrolling(Graphics g) {    

   if (MainCanvas.frame % 2 == 0) { 

      this.scroll.paint(g); 

   } 

   this.drawArrow(g); 

   if (!this.scroll.isScrolling) { 

      this.aux = 255; 

      MainCanvas.frame = 1; 
   } 
} 

2.2. Aspects depending on class members 

Another kind of dependency identified was of aspects with respect to attributes and 

methods referred within an inter-type method declaration. These class members can be 

referred by any aspect, including the private ones when an aspect is privileged. Any 

change to class interface may break aspects already written, since the class developer 

does not know which of its members is being used by aspects. 

This situation is demonstrated in the piece of code below. The red boxes highlight some 

of the members that aspects assume to exist in the class.  

 
public void Fire.update () { 

   frame++; 

   if (super.isVisible()){ 

      if (this.getY() < -40 || this.getY() > Resources.CANVAS_HEIGHT){ 

        super.setVisible(false); 

        this.setXspeed(0); 

        this.setYspeed(0); 

     } 

     super.setY(getY() + getYspeed()); 

     super.setX(getX() + getXspeed()); 

   } 
} 

 

The inter-type declaration above introduces a method called update in class Fire. It is 

important to notice that in order to develop the aspect, it’s necessary to have access to 

the class Fire. It’s difficult to develop separately classes and aspects because the latter 

requires the existence of the first to compile. 

2.3. Using Java interfaces 

We evaluated how Java interfaces could be used to reduce or eliminate those 

dependencies found. They were useful at some degree but were not able to completely 

solve the problems presented in sections 2.1 and 2.2. 



  

The evaluated approach can be summarized in the following steps: 

1. Define an interface containing the method signatures required by a class. These 

methods must be introduced by some aspect via inter-type method declarations; 

2. Add the interface name to the classes implements clause; 

3. Introduce the methods implementations in the interfaces via inter-type 

declarations. 

Using this approach, it’s possible to express which methods are required by a class. 

Also, it’s possible to the aspect define a method introduction without knowing in 

advance the class. 

The example below shows an interface called ScreenPainter that declares the two 

methods called (step 1) inside the GameScreen’s paint method. GameScreen class 

implements ScreenPainter (step 2). The S40 aspect defines two inter-type method 

declarations required by classes (GameScreen in this example) that implement the 

interface ScreenPainter (step 3). 

 

public interface ScreenPainter { 

   void paintBeforeScrolling (Graphics g); 
   void paintScrolling (Graphics g); 

} 

public class GameScreen implements ScreenPainter {} 

public aspect S40 { 

   public ScreenPainter.paintBeforeScrolling (Graphics g) { 
      // Omitted Implementation 
   } 

   public ScreenPainter.paintScrolling(Graphics g) { 
      // Omitted Implementation 
   } 

} 

One possible improvement is defining an interface that lists all methods that classes 

must provide to aspects (see Drawable interface below). Classes can explicitly 

implement the interface or let aspects using declare parents to define which classes 

implement the interface. This allows declaring and checking which methods aspects can 

call as well as checking if classes provide the required interface. 

public interface Drawable { 

   int getX(); 

   int getY(); 

   void setX(int x); 

   void setY(int y); 

   void setXspeed(int xSpeed); 

   void setYspeed(int ySpeed); 

   void setVisible(boolean visible); 
} 



  

This approach, regardless of requiring no extension to AspectJ, has some important 

limitations that are explained below: 

1. It’s impossible to compile separately classes without an aspect that provides the 

methods declared in the interfaces; 

2. Aspects can be compiled separately from classes in the presence of the 

interfaces, since the methods are introduced in the interfaces and not in the 

classes. On the other hand, since aspects do not know the target class, they can 

only refer to methods declared in the interface, what is not very useful. 

3. Another limitation is that, besides methods, aspects need to refer to attributes in 

order to implement the inter-type method declarations and they can not be 

declared in interfaces (except as constants).  

3. Solution 

Considering the restrictions presented in Section 2.3, it’s proposed in this Section an 

extension to Java interfaces to declare explicitly the dependencies presented in Sections 

2.1 and 2.2.  

The extension consists of adding two constructs to common Java interfaces, named 

introduces and declares. The first one is explained in Section 3.1 and the latter in 

Section 3.2. 

3.1. Introduces 

The introduces construct provides a way of exposing which members (methods and 

attributes) are expected to be introduced by an aspect implementing the interface. 

Classes implementing the interface can refer to these members as if they were defined 

by the proper class or inherited. 

The syntax of introduces for attributes and methods is presented below: 

introduces <modifiers> <type> <attribute-name> 

introduces <modifiers> <type> <method-name>([<params-list>]) 

Where modifiers does not include the visibility modifier (public, protected and 

private). In summary, the syntax is similar to attribute and method declarations but 

preceded by introduces keyword. 

Another difference from Java interfaces is that they must be present in both classes and 

aspects implements clause. This allows checking if an aspect that declares that 

implements the interface is in fact providing what is required by the introduces. 

From the classes point of view, it’s possible to assume that the methods exist and use 

them as if they were declared in the proper class or inherited.  

The piece of code below shows an example of introduces. 

public interface ScreenPainter { 

   introduces static int frameCount; 
   introduces void paintBeforeScrolling(Graphics); 
   introduces void paintScrolling (Graphics); 

} 



  

Above, the interface ScreenPainter could be defined to deal with the example 

problem presented in Section 2.1. It defines three introduces. The first one defines a 

static int attribute called frameCount. The second and third ones define the 

methods called paintBeforeScrolling and paintScrolling that must be 

introduced by aspects that implement the interface and can be used by classes that also 

implement the interface. 

One of the purposes of declaring these introduces is being capable of using what is 

defined in the interface regardless of existence of aspects. As a consequence it should be 

possible to compile classes without aspects. 

3.2. Declares 

The declares construct exposes to aspects (that implement an interface) what methods 

and attributes are guaranteed to exist in the classes. As a consequence, it’s possible to 

write, within inter-type method declarations, commands that manipulate these members, 

differently from the approach based on traditional Java interfaces discussed in Section 

2.3. 

The syntax of declares is presented below: 

declares <modifiers> <type> <attribute-name> 

declares <modifiers> <type> <method-name>([<params-list>]) 

Where modifiers does not include the visibility modifier (public, protected and 

private). This syntax is also similar to attribute and method declarations but preceded 

by the declares keyword. 

public interface Drawable { 

   declares int frame; 

   declares int getX(); 

   declares int getY(); 

   declares void setX(int); 

   declares void setY(int); 

   declares void setXspeed(int); 

   declares void setYspeed(int); 

   declares void setVisible(boolean); 
} 

The interface Drawable above addresses the problem presented as example in Section 

2.2. It uses a declares to guarantee that class Fire (shown in Section 2.2) has the 

attribute frame and also the methods getX, getY, setX, setY, setXspeed, 

setYspeed and setVisible. 

The use of declares permits writing aspect’s inter-type declarations decoupled from 

the target class, since any required member is listed on the interface. 



  

4. Related Work 

Open Modules [1] introduces a strong form of encapsulating join points occurring inside 

a module. It permits defining an interface composed by set of pointcuts that can be 

advised by clients. Any other join point that occurs inside the module is protected from 

external advising. Another work [9] proposes implementing Open Modules as an 

extension to AspectJ, using the AspectBench compiler [3].  

Larochele et al [8] have proposed a mechanism, called join point encapsulation, which 

aims to prevent selected join points from being modified by aspects. They extend the 

AspectJ language to support a restrict advice that prevents the interception to 

specific join points. 

Our work is complementary to those aforementioned since they attack the problem of 

encapsulation of join points, while our proposal attacks the static crosscutting 

dependency problem. Neither of them mentions or solve the problem arose in this paper. 

Sullivan et al [10] proposes the specification of crosscutting interfaces (XPIs) to isolate 

aspect design from base code design and vice-versa through abstraction of crosscutting 

behavior. Griswold et al show how to represent XPIs as syntactic constructs [5]. These 

works are related to ours since we also want to isolate base classes and aspect design. In 

this paper we attack from a static perspective and they are concentrated on the dynamic 

perspective. Another difference is that they do not propose extensions to AspectJ an try 

to enforce their design rules when possible using existing AspectJ constructs. 

Aspect-Aware Interfaces (AAI) [7] proposes an approach to modularity and modular 

reasoning in AOP. An AAI presents the dependencies between classes and aspects in 

bidirectional form, using annotations in both code. It permits better reasoning about the 

existing dependencies, but does not offer a way of avoiding or controlling such 

dependencies. Tools like AJDT offer similar information through the Crosscut 

References view. In fact, it could be used do define and maintain the AAI’s. AAI differs 

from our approach since it does not treat the dependencies from classes to aspects and 

vice-versa found when using inter-type declarations. We propose an extension to Java 

interfaces to declare these dependencies. 

5. Conclusions and Future Work 

In this paper we expose the necessity of declaring static dependencies between classes 

and aspects in the presence of ITD’s. We present two new constructs (introduces and 

declares) to Java interfaces that allow exposing and checking these static 

dependencies between classes and aspects. 

We are planning to implement the constructs proposed in this paper using the extensible 

AspectJ compiler abc [3]. After that, we intend to evaluate this implementation in the 

SPL that motivated this work. 

The addition of constructs introduces and declares is not enough to guarantee 

separate development in the presence of aspects with pointcuts and advices. We are 

currently working on others language extensions that encompass this problem. 
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