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Abstract

It has been showed by Byde [5] that it is possible to attach a Delaunay-
type end to a compact nondegenerate manifold of positive constant scalar
curvature, provided it is locally conformally flat in a neighborhood of the
attaching point. The resulting manifold is noncompact with the same
constant scalar curvature. The main goal of this thesis is to generalize
this result. We will construct a one-parameter family of solutions to the
positive singular Yamabe problem for any compact non-degenerate man-
ifold with Weyl tensor vanishing to sufficiently high order at the singular
point. If the dimension is at most 5, no condition on the Weyl tensor is
needed. We will use perturbation techniques and gluing methods.

Keywords: singular Yamabe problem, constant scalar curvature, Weyl
tensor, gluing method.
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Resumo

Foi provado por Byde [5] que é possivel adicionar um fim do tipo Delaunay
a uma variedade compacta ndo degenerada de curvatura escalar constante
positiva, desde que ela seja localmente conformemente plana em alguma
vizinhanga do ponto de colagem. A variedade resultante é ndo-compacta e
possui a mesma curvatura escalar constante. O principal objetivo desta tese
é generalizar este resultado. Construiremos uma familia a um parametro
de solugdes para o problema de Yamabe singular positivo em qualquer
variedade compacta ndo degenerada cujo tensor de Weyl anula-se até
uma ordem suficientemente grande no ponto singular. Se a dimensao da
variedade é no maximo 5, nenhuma condigdo sobre o tensor de Weyl é
necessdria. Usaremos técnicas de pertubacdo e o método de colagem.

Palvras-chave: Problema de Yamabe Singular, curvatura escalar constante,
tensor de Weyl, método de colagem.
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Introduction

In 1960 Yamabe [44] claimed that every n—dimensional compact Rieman-
nian manifold M, n > 3, has a conformal metric of constant scalar curvature.
Unfortunately, in 1968, Trudinger discovered an error in the proof. In 1984
Schoen [38], after the works of Yamabe [44], Trudinger [43] and Aubin [4],
was able to complete the proof of The Yamabe Problem:

Let (M", go) be an n—dimensional compact Riemannian
manifold (without boundary) of dimension n > 3. Find
a metric conformal to go with constant scalar curvature.

See [20] and [42] for excellent reviews of the problem.

It is then natural to ask whether every noncompact Riemannian
manifold of dimension n > 3 is conformally equivalent to a complete
manifold with constant scalar curvature. For noncompact manifolds with
a simple structure at infinity, this question may be studied by solving the
so-called singular Yamabe problem:

Given (M, go) an n—dimensional compact Riemannian man-
ifold of dimension n > 3 and a nonempty closed set X in
M, find a complete metric ¢ on M\X conformal to gg with
constant scalar curvature.

In analytical terms, since we may write ¢ = u*(""2 ¢y, this problem is
equivalent to finding a positive function u satisfying
n— 2 n— 2 n+2
Agt — ——=Rgu + Kum2 =0 M\X
" T g =1y e T g on M (1)
u(x) > ccasx —» X

E
N
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where A4 is the Laplace-Beltrami operator associated with the metric g, R,
denotes the scalar curvature of the metric g9, and K is a constant. We remark
that the metric ¢ will be complete if 1 tends to infinity with a sufficiently
fast rate.

The singular Yamabe problem has been extensively studied in recent
years, and many existence results as well as obstructions to existence are
known. This problem was considered initially in the negative case by
Loewner and Nirenberg [23], when M is the sphere §" with its standard
metric. In the series of papers [1]-[3] Aviles and McOwen have studied the
case when M is arbitrary. For a solution to exist on a general n—dimensional
compact Riemannian manifold (M, go), the size of X and the sign of R, must
be related to one another: it is known that if a solution exists with R, < 0,
then dim X > (n — 2)/2, while if a solution exists with Ry > 0, then dim X <
(n—2)/2 and in addition the first eigenvalue of the conformal Laplacian of go
must be nonnegative. Here the dimension is to be interpreted as Hausdorff
dimension. Unfortunately, only partial converses to these statements are
known. For example, Aviles and McOwen [2] proved that when X is a
closed smooth submanifold of dimension k, a solution for (1) exists with
Ry < 0if and only if k > (n — 2)/2. We direct the reader to the papers
[1]-13], 112], [13], [23], [28]-[30], [33]-[35], [37], [40], [41] and the references
contained therein.

In the constant negative scalar curvature case, it is possible to use the
maximum principle, and solutions are constructed using barriers regardless
of the dimension of X. See [1]-[3], [12], [13] for more details.

Much is known about the constant positive scalar curvature case. When
M is the round sphere 5" and X is a single point, by a result of Caffarelli,
Gidas, Spruck [9], it is known that there is no solution of (1), see [33] for a
different proof. In the case where M is the sphere with its standard metric, in
1988, R. Schoen [40] constructed solutions with R¢ > 0 on the complement
of certain sets of Hausdorff dimension less than (n — 2)/2. In particular,
he produced solutions to (1) when X is a finite set of points of at least
two elements. Using a different method, later in 1999, Mazzeo and Pacard
proved the following existence result:

Theorem 1 (Mazzeo—-Pacard, [30]). Suppose that X = X’ U X" is a disjoint
union of submanifolds in §", where X’ = {p1,...,px} is a collection of points,
and X" = U;ﬁ:]Xj where dim X; = k;. Suppose further that 0 < k; < (n —2)/2
for each j, and either k = 0 or k > 2. Then there exists a complete metric g on
S"\X conformal to the standard metric on §", which has constant positive scalar
curvature n(n — 1).

Instituto de Matematica Pura e Aplicada 2 November 19, 2009
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Also, it is known that if X is a finite set of at least two elements, and
M = 5", the moduli space of solutions has dimension equal to the cardinality
of X (see [33].)

The first result for arbitrary compact Riemannian manifolds in the
positive case appeared in 1996. Mazzeo and Pacard [28] established the
following result:

Theorem 2 (Mazzeo—Pacard, [28]). Let (M, o) be any n—dimensional compact
Riemannian manifold with constant nonnegative scalar curvature. Let X C¢ M
be any finite disjoint union of smooth submanifolds X; of dimensions k; with
0 < k; < (n—2)/2. Then there is an infinite dimensional family of complete metrics
on M\ X conformal to go with constant positive scalar curvature.

Their method does not apply to the case in which X contains isolated
points. If X = {p}, an existence result was obtained by Byde in 2003 under
an extra assumption. It can be stated as follows:

Theorem 3 (A. Byde, [5]). Let (M, go) be any n—dimensional compact Rieman-
nian manifold of constant scalar curvature n(n — 1), nondegenerate about 1, and
let p € M be a point in a neighborhood of which gy is conformally flat. There is
a constant &y > 0 and a one-parameter family of complete metrics g, on M\{p}
defined for € € (0, o), conformal to go, with constant scalar curvature n(n — 1).
Moreover, g, — go uniformly on compact sets in M\{p} as ¢ — 0.

See [5], [27], [30], [33] and [35] for more details about the positive
singular Yamabe problem.

This thesis is concerned with the positive singular Yamabe problem in
the case X is a single point. Our main result is the construction of solutions
to the singular Yamabe problem under a condition on the Weyl tensor. If
the dimension is at most 5, no condition on the Weyl tensor is needeed,
as we will see below. We will use the gluing method, similar to that em-
ployed by Byde [5], Jleli [14], Jleli and Pacard [15], Kaabachi and Pacard
[16], Kapouleas [17], Mazzeo and Pacard [29],[30], Mazzeo, Pacard and Pol-
lack [31], [32], and other authors. Our result generalizes the result of Byde,
Theorem 3, and it reads as follows:

Main Theorem: Let (M", go) be an n—dimensional compact Riemannian man-
ifold of scalar curvature n(n — 1), nondegenerate about 1, and let p € M with
V’éo Weo(p) = 0 fork = 0,..., [”7‘6], where Wy, is the Weyl tensor of the metric
8o. Then, there exist a constant ey > 0 and a one-parameter family of complete
metrics g. on M\{p} defined for € € (0, €o), conformal to gy, with scalar curvature

Instituto de Matematica Pura e Aplicada 3 November 19, 2009
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n(n — 1). Moreover, each g is asymptotically Delaunay and g, — go uniformly
on compact sets in M\{p} as ¢ — 0.

For the gluing procedure to work, there are two restrictions on the data
(M, g0, X): non-degeneracy and the Weyl vanishing condition. The non-
degeneracy is defined as follows (see [5], [18] and [34]):

Definition 1. A metric ¢ is nondegenerate at u € C>*(M) if the operator
Lg: Ci’)"‘(M) — CY%(M) is surjective for some a € (0, 1), where

n—2 4
L;(U) = Agv — ngU + ——un20y,
A, is the Laplace operator of the metric ¢ and Ry is the scalar curvature of
g. Here Ck(M) are the standard Holder spaces on M, and the O subscript
indicates the restriction to functions vanishing on the boundary of M (if

there is one).

Although it is the surjectivity that is used in the nonlinear analysis, it is
usually easier to check injectivity. This is a corollary of the non-degeneracy
condition on M in conjunction with self-adjointness. For example, it is clear
that the round sphere §" is degenerate because Léo = Ag, +n annihilates the
restrictions of linear functions on R"*! to §".

As it was already expected by Chrusciel and Pollack [11] (see also [10]),
when 3 < n <5 we do not need any hypothesis about the Weyl tensor, that
is, in this case, (1) has a solution for any nondegenerate compact manifold
M and X = {p} with p € M arbitrary. We will show in Chapter 4 that
the product manifolds $?(k;) X $%(kz) and $?(k3) X $%(k4) are nondegenerate
except for countably many values of ki /k; and k3/ks. Therefore our Main
Theorem applies to these manifolds. We notice that they are not locally
conformally flat.

Byde proved his theorem assuming that M is conformally flat in a
neighborhood of p. With this assumption, the problem gets simplified since
in the neighborhood of p the metric is essentially the standard metric of R",
and in this case it is possible to transfer the metric on M\({p} to cylindrical
coordinates, where there is a family of well-known Delaunay-type solu-
tions. In our case we only have that the Weyl tensor vanishes to sufficiently
high order at p. Since the singular Yamabe problem is conformally invari-
ant, we can work in conformal normal coordinates. In such coordinates it is
more convenient to work with the Taylor expansion of the metric, instead
of dealing with derivatives of the Weyl tensor, and as indicated in [18], we
get some simplifications. In fact, this assumption will be fundamental to

Instituto de Matematica Pura e Aplicada 4 November 19, 2009
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solve the problem locally in Chapter 2. Pollack [37] has indicated that it
would be possible to find solutions with one singular point with some Weyl
vanishing condition, as opposed to the case of the round metric on 5".

The motivation for [”2;6] in the Main Theorem comes from the Wey!
Vanishing Conjecture (see [39]). It states that if a sequence v; of solutions to

the equation
n-2 42
Ag'l)i - ngUi + ; 2=

in a compact Riemannian manifold (M, g), blows-up at p € M, then one
should have

V';,Wg(p) =0 forevery 0<k< [n 6].

Here W, denotes the Weyl tensor of the metric g. This conjecture has been
proved by Marques for n < 7 in [24], Li and Zhang for n < 9 in [21] and
for n < 11 in [22], and by Khuri, Marques and Schoen for n < 24 in [18].
The Weyl Vanishing Conjecture was in fact one of the essential pieces of
the program proposed by Schoen in [39] to establish compactness in high
dimensions [18]. In [25], based on the works of Brendle [6] and Brendle and
Marques [8], Marques constructs counterexamples for any n > 25.

The order [”T_é] comes up naturally in our method, but we do not know
if it is the optimal one (see Remark 2.2.5.)

The Delaunay metrics form the local asymptotic models for isolated
singularities of locally conformally flat constant positive scalar curvature
metrics, see [9] and [19]. In dimensions 3 < n < 5 this also holds in the
non-conformally flat setting. In [26], Marques proved that if 3 < n < 5 then
every solution of the equation (1) with nonremovable isolated singularity
is asymptotic to a Delaunay-type solutions. This motivates us to seek
solutions that are asymptotic to Delaunay. We use a perturbation argument
together with the fixed point method to find solutions close to a Delaunay-
type solution in a small ball centered at p with radius r. We also construct
solutions in the complement of this ball. After that, we show that for small
enough r the two metrics can be made to have exactly matching Cauchy
data. Therefore (via elliptic regularity theory) they match up to all orders.
See [14] and [15] for an application of the method.

We will indicate in the end of this thesis how to handle the case of more
than one point. We prove:

Theorem 0.0.1. Let (M", o) be an n—dimensional compact Riemannian manifold
of scalar curvature n(n — 1), nondegenerate about 1. Let {p1, ..., pi} a set of points

Instituto de Matematica Pura e Aplicada 5 November 19, 2009
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in M with VéOWgO(pi) =0forj= 0,...,[”2;6] and i =1,...,k where Wy, is the
Weyl tensor of the metric go. There exists a complete metric g on M\{p1, ..., px}
conformal to o, with constant scalar curvature n(n — 1), obtained by attaching
Delaunay-type ends to the points p1, ..., Px.

The organization of this thesis is as follows.

In Chapter 1 we record some notation that will be used throughout the
thesis. We review some results concerning the Delaunay-type solutions,
as well as the function spaces on which the linearized operator will be
defined. We will recall some results about the Poisson operator for the
Laplace operator A defined in B,(0)\{0} ¢ R" and in R"\B,(0). Finally,
in the last section of this chapter we will review some results concerning
conformal normal coordinates and scalar curvature in these coordinates.

In Chapter 2, with the assumption on the Weyl tensor and using a fixed
point argument we construct a family of constant scalar curvature metrics
in a small ball centered at p € M, which depends on n + 2 parameters
with prescribed Dirichlet data. Moreover, each element of this family is
asymptotically Delaunay.

In Chapter 3, we use the non-degeneracy of the metric go to find a right
inverse for the operator L}{O in a suitable function space. After that, we use
a fixed point argument to construct a family of constant scalar curvature
metrics in the complement of a small ball centered at p € M, which also
depends on n + 2 parameters with prescribed Dirichlet data. Each element
of this family is a perturbation of the metric go.

Finally, in Chapter 4, we put the results obtained in previous chapters
together to find a solution for the positive singular Yamabe problem with
only one singular point. Using a fixed point argument, we examine suitable
choices of the parameter sets on each piece so that the Cauchy data can be
made to match up to be C! at the boundary of the ball. The ellipticity of
the constant scalar curvature equation then immediately implies that the
glued solutions are smooth. In the last section of this chapter, Section 4.3,
we briefly explain the changes that need to be made in order to deal with
more than one singular point.

Instituto de Matematica Pura e Aplicada 6 November 19, 2009



CHAPTER 1

Preliminaries

1.1 Introduction

In this chapter we record some notation and results that will be used
frequently, throughout the rest of the thesis, and sometimes without
comment.

We introduced briefly the spectrum of the Laplacian on the unit sphere
§"~1 ¢ R" with its standard metric, and using this we divide the space of
functions on the sphere in low and higher eigenmodes. We discuss quickly the
method of resolution to be employed in this work and define the constant
scalar curvature operator. In Section 1.4, we introduce a family of functions
that is crucial to this work, the family of Delaunay-type solutions. We
discuss and prove some results already known for this family of functions
that will be very useful in the following chapters. Having defined in
Section 1.5 the function spaces on which we will work, in Section 1.6 we
discuss the constant scalar curvature operator on R" linearized over some
Delaunay-type solution. After that, in Section 1.7, we define the Poisson
operator for the Laplace equation defined in B,(0)\{0} € R" and in IR"\B,(0).
Finally, in Section 1.8 we introduce the conformal normal coordinates and
an expansion of the scalar curvature in these coordinates.
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1.2 Notation

Let us denote by 6 — ¢;(0), for j € IN, the eigenfunction of the Laplace
operator on $"~! with corresponding eigenvalue A;. That s,

ASn—le]' + /\jej =0.

These eigenfunctions are restrictions to $"~! ¢ R" of homogeneous
harmonic polynomials in R”. We further assume that these eigenvalues are
counted with multiplicity, namely

/\020,/\12"'22\”:1’1—1, /\n+1=21’l,... and A]'S/\j_,_l,

and that the eigenfunctions are normalized by

f e2(0)do =1,
gn-1 ]

for all j € IN. The i—th eigenvalue counted without multiplicity is i(i +n—2).
It will be necessary to divide the function space defined on $"7!, the
sphere with radius r > 0, into high and low eigenmode components.
If the eigenfunction decomposition of the function ¢ € L*($/ 1) is given
by

$(r0) = Y ¢j(r)e;(0)
j=0

where
6i0= [ o9,

then we define the projection 7;” onto the high eigenmode by the formula

/(§)r0) = Y| $;(ej(0).

j=n+1

The low eigenmode on §~! is spanned by the constant functions and the
restrictions to $/ ! of linear functions on R". We always will use the variable
0 for points in §"~!, and use the expression a - 0 to denote the dot-product
of a vector a € R" with 0 considered as a unit vector in R".

We will use the symbols ¢, C, with or without subscript, to denote
various positive constants.

Instituto de Matematica Pura e Aplicada 8 November 19, 2009
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1.3 Constant scalar curvature equation

It is well known that if the metric ¢o has scalar curvature Ry, and the metric
g= y(n=2) g0 has scalar curvature Rg, then u satisfies the equation
n-2 n—2 n+2
Agou - m qolU + ngum =0, (11)
see [20] and [42].

In this thesis we seek solutions to the singular Yamabe problem (1)
when (M", go) is an n—dimensional compact nondegenerate Riemannian,
manifold with constant scalar curvature n(n — 1), X is a single point {p},
by using a method employed by [5], [14], [15], [29]-[32], [35] and others.
Thus, we need to find a solution u for the equation (1.1) with Rz constant,
requiring that u tends to infinity on approach to p.

We introduce the quasi-linear mapping Hy,

n—2 u+n(n—2)
4n-1) ¢ 4

4
Hg(u) = Agu — |u|™=2u, (1.2)
and seek functions u that are close to a function ug, so that H g(uo +u)=0,
up +u > 0and (4 + up)(x) — +oo as x — p. This is done by considering the
linearization of H, ¢ about ug,

) nn+2) 4
L (u) = éHg(uo + tu) » = Lou+ T 2u, (1.3)
where )
n —
Lgl/l = Agu — ngu

is the Conformal Laplacian. The operator £ obeys the following relation
concerning conformal changes of the metric

Loyl = v'%ljg(vu). (1.4)

Notice that this implies the corresponding conformal change relation

10 QR - Ay T
v4/(”‘2)gu =v 2 Lo (vu).

The method of finding solutions to (1) used in this work is to linearize
about a function 1o, not necessarily a solution. Expanding H, about 1 gives

Hg(uo +u) = Hg(uo) + L (u) + Q" (u),

Instituto de Matematica Pura e Aplicada 9 November 19, 2009
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where the non-linear remainder term Q" (u) is independent of the metric,
and given by

Q"o (u)

nn-—2 4 n2 42 4
( 1 ) (luo +ul2 (g +u) —uj? - —u”‘zu)

(1.5)

+2) ! 4
= n(n4 )uf (|u0+tu|$—u3‘2)dt.
0

It is important to emphasize here that in this work (M", go) always will
be a compact Riemannian manifold of dimension n > 3 with constant scalar
curvature n(n — 1) and nondegenerate about the constant function 1. This
implies that (1.2) is equal to

n(n —2 nmn-2) s
Hg(u) = Agu — ( 1 )u+ ( 1 )|u|n§2u
and the operator L;,O : C2%(M) — C%*(M) given by
Lég(v) = Ag U + 17, (1.6)

is surjective for some a € (0, 1), see Definition 1.

1.4 Delaunay-type solutions

In Chapter 2 we will construct a family of singular solutions to the Yamabe
Problem in the punctured ball of radius r centered at p, B,(p)\l{p} € M,
conformal to the metric g, with prescribed high eigenmode boundary data
atdB,(p). Itis natural to require that the solution is asymptotic to a Delaunay-
type solution, called by some authors Fowler solutions. In this section we recall
some well known facts about the Delaunay-type solutions that will be used
extensively in the rest of the work. See [30] and [33] for facts not proved
here.

If g = uridisa complete metric in IR"\{0} with constant scalar curvature
Ry = n(n — 1) conformal to the Euclidean standard metric 6 on R", then
u(x) — oo when x — 0 and u is a solution of the equation

mn=2) w2 1.7)

Hs(u) = Au +

in R"\{0}. It is well known that u is rotationally invariant (see [9], Theorem
8.1), and thus the equation it satisfies may be reduced to an ordinary
differential equation.
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Since R"\{0} is conformally diffeomorphic to a cylinder, it will be
convenient to use the cylindrical background. In other words, consider
the conformal diffeomorphism

D: (" X R, gey) = (R"\{0},06)

defined by ®(6, t) = ¢7'6 and where g, := d6* + dt*. Then @*6 = e~ g,

Define o(f) = e’Z*'u(e™'0) = |x|'z*u(x), where t = —log|x| and 0 = &,
Note that v is defined in the whole cylinder. Since the scalar curvature of
the metric g = = eyl is constant equal to n(n — 1) and v does not depend
on 0, by (1.4) we obtain the equation

-2)2 —2)
_ . ) . ”(”4 )5 _ . (1.8)

Because of their similarity with the CMC surfaces of revolution
discovered by Delaunay a solution of this ODE is called Delaunay-type
solution.

Setting w := v’ this equation is transformed into a first order Hamiltonian
system

/7

vo= w
—7)2 _

(n—-2)"  n(n 2)U 2
4 4

whose Hamiltonian energy, given by

-2)? —2)?
2—(n4)02+(n4)v"272, (1.9)

is constant along solutions of (1.8). By examining the level curves of H, we

w o=

H(v,w) =w

see that all solutions of (1.8) where g = v geyl has geometrical meaning
are in the half-plane {v > 0}, where H(v,?v") < 0. We summarize the basic
properties of this solutions in the next proposition (see Proposition 1 in
[30]).

Proposition 1.4.1. For any Hy € (—((n — 2)/n)"/*(n — 2)/2,0), there exists a
unique bounded solution of (1.8) satisfying H(v,v’) = Hp, v'(0) = 0 and
v”/(0) > 0. This solution is periodic, and for all ¢ € R we have v(t) € (0, 1).
This solution can be indexed by the parameter ¢ = v(0) € (0, ((n—-2) )24y,
which is the smaller of the two values v assumes when v’(0) = 0. When
Ho = —((n = 2)/n)""?(n — 2)/2, there is a unique bounded solution of (1.8),

given by
n-—2
o) = ( n )

n-2
4
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Finally, if v is a solution with Hy = 0 then either v(t) = (cosh(t — t))?~"/2
for some ty € R or v(t) = 0.

We will write the solution of (1.8) given by Proposition 1.4.1 as v, where
0:(0) = minov, = ¢ € (0, ((n — 2)/n)"~2/*) and the corresponding solution of
(1.7) as ue(x) = |x|@/2p, (- log |xI).

Although we do not know them explicitly, the next proposition gives
sufficient information about their behavior as ¢ tends to zero for our
purposes. For the sake of the reader we include the proof here. (see [30]).
Proposition 1.4.2. For any ¢ € (0, (n — 2)/n)"2/4) and any x € R"\{0} with
|x| <1, the Delaunay-type solution u.(x) satisfies the estimates

2
< CnEZ_tzlxr”,

() = 51+ kP )

n—2 2
%1910 (%) + x| < cpenix| ™"

and
(n - 2)2 |2—I’l

2
2021, (x) — < cpenz|a ™,

elx

for some positive constant c, that depends only on 7.

Proof. Since the Hamiltonian energy H is constant along solutions of (1.8)
and v.(0) = ¢ is the minimum of v,, then

oy ) _oy2 )
Hoo o) = @ - U202 oty = 222 oy
implies that
N,V on u -2 2
0P = E (@ - - o - ety < e - e,

Taking the (positive) square root, integrating this differential inequality and
using that cosht < el forallt e R, yields the inequality

-2 -
ve(t) < ecosh(nTt) < ee'TM, (1.10)
Next, writing the equation for v, as

(=2 n(n-2) =2

2 _ -2

e P 1
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and noting that cosh (Tz ) satisfies the equation

-2 (n —2)>? (n -2 )
-_- — t =
(cosh( > t)) 1 cosh > 0,
we can represent v, as

-2 -2) g s n— n+2
ve(t) = € cosh i n(n )eTZt e@ s | " Pz (7)dzds. (1.11)
2 4 0 0 ¢

This and (1.10) lead immediately to

- 2 n+. n—.
OSSCOSh(HZ—zt)—Ug(t) < n(n ) ende's th (2~ ")Sf e"dzds

IA
S
| =11
N
M
i3
(9N
X
—
[a\]
[
&

IA

and then

_2 2 n+2  n+
vg(t)—ecosh(n2 t)‘ < n- 3 ei3e zzf,

for every t € R*.
Using the fact that u.(x) = |x|2%nvg(— log |x]),

221 n—-2)\ ¢ 2—n
elx| 2 cosh( 5 t)—2(1+|x| ),

t = —loglx| > O for |x| < 1 and thus lezznen;z“' = |x|™", we deduce the first

inequality.
Finally, differentiating twice (1.11) with respect to t, we get
n-—2

, B -2
v.(t) = > esmh( > t)

i n(n 2)272f (2- n)Sfezz ”2(ZdZdS

_ Hn=2) 2"tfenzzzv;%(z)dz
4 0
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and

” _ ”_22, n-—2
vl(t) = ( > )écosh(Tt)

Hence, in the same way we find

n-—2 n-—2 n+2
vL(t) — 5 esinh(Tt)' < cpeize s

and X
. n—2 n—2
v, () ( > ) € cosh( > t)

where the constant c,, depends only on 7.
Since t = —log|x| > 0 for x| < 1,

2—-n
2

nn—2)

e (x) — x| 7 0l (— log |x]),

|x|dyue(x) =

2Pt (x) e () + (1 — 1)lx| 70 (~ log |x])

2_
+ |xI7 0/ (-log|x]),

n- 2ézlx|% sinh(——n 2 lo le) _I- 2€|x|2—n —1
2 2 O8W= T 2
and
(n _ 2)2 €|x|2%" cosh(—n —2 lo le) = (n _ 2)2 81 +
2 A A ) 2
then we conclude that
n-=2 o>, n-2 € 2—n
~ < s _——
|x|drue(x) + 5 elx| < ue(x) 2(1 + [x|=7")
2, n-— 2 n—2
{2 0 (= Tog ) — 2= Zelx" sinh (— = log |x|)

< cne%lxl‘”
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and
_op _2
P, () — S | < PO - 4 e
2 1 2
. “2 _2

(= 1) W F (= Tog ) — =2 ey 2 sinh(—” —log |x|)
2, n—2\? 2-n n-—2

o (—loglxl)—(T) ez cosh(— - loglxl)

< cne%lxl‘”.

O

There are some important variations of these solutions, leading to a
(2n + 2)—dimensional family of Delaunay-type solutions. These variations
are families of solutions U(s) of Hs(U(s)) = 0 with U(0) = u,, depending
smoothly on the parameter s. The derivatives of these families with respect
to s at s = 0 correspond to Jacobi fields, that is, solutions of the linearization
of Hgs about one of the u.. Since we will not use Jacobi fields, we do not talk
about them in this work.

We describe these families of variations in turn. The first is the family
where the Delaunay parameter ¢ is varied:

(=&,1=¢) 31— Uesp(x).

The second corresponds to the fact that if u is any solution of Hs(u) = 0, then
R@=M/2y(R~1x) also solves this equation. Applying this to a Delaunay-type
solution yields the family

R*>R — |x|%v€(—log x| + log R).

The other two families of solutions correspond to translations. The simpler
of these is the usual translation

R">b — u.(x +b).

The final one corresponds to translations at infinity. To describe this we
use Kelvin transform, given by K(u)(x) = Ix[>~"u(x|x|~2), which preserves
the property of being a solution of (1.7). To see this, consider the map
I: R"\{0} — R™"\{0} the inversion with respect to 51 defined by I(x) = ﬁ
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The inversion is a conformal map that takes a neighborhood of infinity
onto a neighborhood of the origin. It follows immediately that I is its own
inverse and is the identity on "~ 1.

The Kelvin transform appears naturally when we consider the pull back

of g = Uz by I. In fact, since I is a conformal map with I'6 = |x|~46 we get

Ig = I(uizd)

(u(I(x)))72 16

(u(I(x))) 72 |x| 45

()26

(K (u)(x))726.

The main property of the Kelvin transform is given by the next lemma.
Lemma 1.4.3. The Kelvin transform preserves the equation (1.7).
Proof. A computation gives that
AK ) (x) = K (x| Au)(x).
So, suppose that u is a solution of (1.7) on R"\{0}. Then we get
AK@)(x) = K(x*Au)()

_ nn=2) g w2
= 7(( 1 x| "2 (x) )

-2 it
= P (2O e

- —@wrm%(ﬂxrzﬁ
_ 1’1(1’1—2) 2-n -2 =
=~ (hP )
- _—”(”4_ 2 g (u)() i3

O
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Start with a Delaunay-type solution u,(x) = le% v¢(—log |x[), by Lemma
1.4.3, its Kelvin transform will be a solution of the equation (1.7), and is
equal to

2-n
K(ue)x) = P "ue(xlx™) = x| ve(log |x]).

Translate this by some a € R" to get
K (ue)(x —a) = |x - al v, (log |x — al),

which has its singularity at a rather than zero and it still is a solution to
equation (1.7). Its Kelvin transform yields the family

K (K (ue)(- —a)) = |x — alx2] 7 ve(~21og |x| + log |x — alx[2]).

Each function in this family has a singularity at zero again.
For our purposes, it is enough to consider the family of solutions

Ue R a(X) := |x — a7 v (=2 log |x| + log |x — alx[| + log R), (1.12)

where only translations along the Delaunay axis and of the “point at
infinity” are allowed. In fact, in Chapter 2 we will find solutions to
the singular Yamabe problem in the punctured ball B,(p)\{p} only with
prescribed high eigenmode Dirichlet data, so we need other parameters to
control the low eigenmode. The parameters a € R” and R € R" in (1.12)
will allow us to have control over the low eigenmode. The first corollary is
a direct consequence of (1.12) and it will control the space spanned by the
coordinates functions, and the second one follows from Proposition 1.4.2
and it will control the space spanned by the constant functions in the sphere.
Notation: We write f = O’(Kr*) to mean f = O(Kr¥) and Vf = O(Kr*™1), for
K > 0 constant. O” is defined similarly.

Corollary 1.4.4. There exists a constant rg € (0,1), such that for any x and
ain R" with x| < 1, jallx| < 19, R € R*, and ¢ € (0,((n — 2)/n)"2/4) the
solution u, g , satisfies the estimates

ue,R,a(x) = uE,R(x) + ((Tl - Z)ME,R(X) + |x|8ruE,R(x))u X
(1.13)
+ O”(laPxT)
and
Uera(X) = uer(x)+ ((n = 2)ue g(x) + |x|0yue r(x))a - x
(1.14)
+ O"(laPeR% |xP)
if R < |x].
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Proof. To begin, note that

2-n
_ |l x 2
i —axP? = x2 = —aly]
|x|
= 71 -2a-x + aPP)
- 2—n
= ol (1 220 x4 aPP) + O (o))
2n N —2 2-n 6-n
= 7+ a-xxZ + 0" (a7
and
X
log | —akl| = log(l-2a-x+ laP|x )2
X

log(1 —a-x + O”(lal*x|?))

= —a-x+0"(laPlxP),
for |a||x| < rp and some 1y € (0,1). Using the Taylor’s expansion we obtain
that

X
— —alx|
|x|

Ve (— log [x| + log +log R) = v¢(—log|x| + log R)

+ v.(~log x| + logR)log % — alq]|

2
+ v/(~log x| +10g R + ty) (log | & — alx]])

= v.(-loglx| +logR) — v.(—log|x| + log R)a - x
+ vi(—loglx| +log R)O”(|a|2|x|2)

+ v (-loglx| +1logR + ta,x)O”(|a|2|x|2)

for some t,, € Rwith 0 < [t | < |log |ﬁ - alxl”. Observe that t,, — 0 when
|a]|x] — 0.
Therefore, using (1.12), we get

n—2 2n ,
Heka() = er(0) + (TSR () - W E 0L~ loglxl + log R) ) a - x

+ vi(—loglx| +log R)O”(|a|2|x|%)
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+ v/(~log|x| +logR + t,,)0” (laf*|x|*T")
— vl(~log|x| + log R)(a - x)*|x| 2"

+ vi(—loglx| +log R)O(Ial?’lxls_Tn)

8-n

+ v(-loglx| +logR + ta,x)O”(|a|3|x|T)

—1

+ ve(—log x| + logR)O”(|a|2|x|6T)

+ (vi(-loglx| + log R) log |ﬁ - a|x||

+ 0/(~log |x| +1og R + t4,)0" (lal2[x2) 0" (lal?[x| Z*).
Now, by the equation (1.8) and the fact that

-2 5
Heoe, o) = U222 )

where H is defined in (1.9), it follows that |0}| < c,v,, [0)| < cyve, for some
constant ¢, that depends only on n.
Since

X1yt R () = —— it R(¥) — ¥ T 0. (~ log x| + log R),

—log|x| + log R < 0if R < |x|, then (1.10) implies
ve(—log|x| + logR) < é:Rz%nlxlnT_2

and . .
ve(—log|x| + 1og R + t, ) < ceRZ x| 7,

for some constant ¢ > 0 that does not depend on x, ¢, R and a.
Therefore, we conclude the result. m]

Corollary 1.4.5. Forany ¢ € (0, (n—2)/n)"~2/4) and any x in R" with [x] < 1,
the function u,  satisfies the estimates

n+2  n+2

Uer() = 5 (R + RF ) + O (R FE ™,

2—-n

-2 2 2
X101t R (%) = eRT x> + O'(R'T enz|x|™)
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and

-2 2 n-— n+2  n+
PP () = L2 R+ OR'S e ),

Proof. Directly, using the expansion to u, in Proposition 1.4.2, we obtain

n+2  n+2

e r(%) = R 1 (R™1x) = %(RZ_T" + R + O (RF: 55 1 ™).

In analogous way we find the other inequality. a

1.5 Function spaces

Now, we will define some function spaces that we will use in this work.
The first one is the weighted Holder spaces in the punctured ball. They are
the most convenient spaces to define the linearized operator. The second
one appears so naturally in our results that it is more helpful to put its
definition here. Finally, the third one is the weighted Holder spaces in
which the exterior analysis will be carried out. These are essentially the
same weighted spaces as in [14], [15] and [30].

Definition 1.5.1. Foreachk € IN, r > 0,0 < a < 1 and ¢ € (0,7/2), let
u € CK(B,(0)\{0}), set

k ) ;
il V&u(x) — V*u
il aytone = sup Z o/IViu(x)| |+ ™ sup e a W)
Ixlelo,20] | =0 I lylelo,20] Ix =yl

Then, for any u € IR, the space Cﬁ’a(Br(O)\{O}) is the collection of functions u
that are locally in C*(B,(0)\{0}) and for which the norm

lull oy, r = sup 0 Fllell ) 0,201
0<o<%
is finite.

The one result about these that we shall use frequently, and without
comment, is that to check if a function u is an element of some Cz’“, say, it is
sufficient to check that |u(x)| < C|x|* and |Vu(x)| < Clx|*~!. In particular, the
function |x|* is in C’L’“ for any k, a, or p.

Note that CI;’“ C Cé’“ if u > 6and k > 1, and lullga)s < Cllullga, for all
ue C’L’“.
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Definition 1.5.2. Foreachk € N, 0 <a <landr > 0. Let¢ € Ck(sr 1), set

Pl == NPl gn1y-

Then, the space C**(§"1) is the collection of functions ¢ € CK(S!~!) for
which the norm ||| «),, is finite.

The next lemma show a relation between the norm of Definition 1.5.1
and 1.5.2.

Lemma 1.5.3. Let a € (0,1) and r > 0 be constants. Then, there exists a constant
¢ > 0 that does not depend on r, such that

Iy (Wnlla),r < K (1.15)

and
||r&r7—(;,(ur)“(l,a),r <cK, (1.16)

for all function u : {x € R*;r/2 < |x| < r} — R satisfying
ull2,),1r/2, < K,

for some constant K > 0. Here, u, is the restriction of u to the sphere of radius r,
Sl c R

Proof. The condition ||ull2,q)[r/2,1 < K implies
lu()| <K, |[Vu(x) <2Kr!, |[V2u(x)| < 4Kr=2

and

|V2M(X) - VZ”(]/)| < 22+aK1’_2_a,

lx — yl|*
forallx,y e {ze R r/2 < |x| <r}.
Since -
u(s) = ) uils)e;
i=0
and ;
!/ (w(s) = uls) - ) uils)e,
i=0
with

we) = [ utse,
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then
lui(r)] < cmax lu(r-)] < cK
G-

and
|7t (u(r-))| < cK,

for some constant ¢ > 0 that does not depend on r. In the same way; it is not
difficult to see that the other norms satisfy the same estimate. Therefore,
we obtain (1.15).

Now, we have

10,u(r0)| = (V|x|, Vu)(r0)| < |Vu(ro)| < 2Kr~ 1.

Since .
Il (u(s”) = duls) = Y w/(5)e;,
i=0
with
ui(s) = dru(s-)ei,
Sn—l
then

|arn;'(u|5¢_1)(r-)| < cldyu(r)| < cKrl,

for some constant ¢ > 0 that does not depend on r. The other norms are
estimated in a similar way. Therefore, we obtain (1.16). O

Remark 1.5.4. We often will write 77"/ (C**($"~1)) and n”(C];[“(Br(O)\{O})) for

{p € CE ) () = ¢)
and
{u € Ci*(BAO)\ON); Y/ (u(s))(0) = u(s6), s € (0,r) and YO € §!~},

respectively.

Next, consider (M, g) an n—dimensional compact Riemannian manifold
and W : B, (0) — M some coordinate system on M centered at some point
p € M, where B, (0) C R" is the ball of radius 1.

For 0 < r < s < r; define

M; := M\W(B,(0))

and
Qr,s = \P(Ar,s)/

where A, := {x e R"; 7 < |x| < s}.
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Definition 1.5.5. Forallk € N, a € (0,1) and v € R, the space Ciﬁ’a(M\{p}) is
the space of functions v € Cl;o? (M\({p}) for which the following norm is finite

||v”C};’a(M\{p}) = ”v”Ckﬂ(M%r]) + ”U 0 \y”(k,a),v,rl/

where the norm || - || 4),r, is the one defined in Definition 1.5.1.

For all 0 < r < s < r;, we can also define the spaces C];’“(Qr,s) and

Cl;l’“(Mr) to be the space of restriction of elements of Cl;[“(M\{p}) to M, and
Q;, respectively. These spaces is endowed with the following norm

lf ”Cf;“(or,s) := sup 0 Y|If o Wllkw),o,20]

s
r<o<3

and

Willctaqugy = Wlctaquy, ) + Wi,

Note that these norms are independent of the extension of the functions f
and & to M,.

1.6 The linearized operator

Let us fix one of the solutions of (1.7), u¢r, given by (1.12). Hence, 1, R,
satisfies Hs(1¢,r ) = 0. The linearization of H; at u, g, is defined by
nn+2) 4

)
4 uE,R,a o

Lera(v) := Ly (v) = Av + (1.17)
where Lg*"R’“ is given by (1.3).

More generally, this operator can also be defined as the derivative at
s = 0 of Hs(U(s)), where U(s) is any one-parameter family of solutions with
U(0) = ugrq, U'(0) = v. Viewed this way, it is immediate that varying the
parameters in any one of the families of Delaunay-type solutions leads to
solutions of L, g ;' = 0. Solutions of this homogeneous problem are called
Jacobi fields. For more details on this, see [30].

In [30], Mazzeo and Pacard studied the operator L, g := L. ro defined
in weighted Holder spaces. They showed that there exists a suitable
right inverse with two important features, the corresponding right inverse
has norm bounded independently of ¢ and R when the weight is chosen
carefully, and the weight can be improved if the right inverse is defined in
the high eigenmode. These properties will be fundamental in Chapter 2.
To summarize, they establish the following result.
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Proposition 1.6.1 (Mazzeo—Pacard, [30]). Let R € R*, @ € (0,1) and u €
(1,2). Then there exists €9 > 0 such that, for all ¢ € (0, &], there is an
operator

Ger 1 C5(BUOMON) — C*(B1(0)\{0})

with the norm bounded independently of ¢ and R, such that for f €
Cg’f‘z(Bl(O)\{O}), the function w := G, r(f) solves the equation

{LS,R(w)=f in - Bi(O\0} (1.18)

7] (wlgi1) =0 on  dB1(0)
Moreover, if f € n”(Cz’fz(BﬂO)\{O})), then w € n”(Ci’“(Bl(O)\{O})) and we
may take u € (-n,2).
Proof. In [5], Byde observed that the statement in [30] is that for each fixed
R the norm of G¢ r is bounded for all ¢, but this bound might depend on R.

Examining their proof one sees that R need not be fixed at the start, but can
vary also. |

We will work in B,(0)\{0} with 0 < r < 1, then it is convenient to study
the operator L, r in function spaces defined in B,(0)\{0}.
Let f € cgffz(Bl(O)\{O}) and w € Cy*(B1(0)\{0}) be solution of (1.18).

Considering g(x) = 72 f(r"'x) and w,(x) = w(r~'x) we get

Aw,(x) = 1 2Aw(@r'x) = 2f(r x)

2—, 4
(r'T u ()2 w(rx),

n(n + 2)
2

SO
n(n + 2)

2

since u, r(x) = R u:(R'x). Thus, the equation (1.18) is equivalent to
, q q

Lesr(wr) =g in  By(0)\{0}
n;'(wr|5¢4):0 on dB,(0)

Awy(x) = g(x) — (“s,rR(x))'szwr(x)/

Furthermore, since Viw,(x) = r/V/iw(r-1x), then

2
ol @iz = sup | Y o/ Viw,(x)
lelo,201 720
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2+a

V2w, (x) — V2w, (y)|
+ O sup -
|x|,lyl€[o,20] lx =yl

an (2] )

IFle[$.2¢]

(0-)2+a |V2w(§) - Vzw(%)

+ |- sup

r . g x_ ¥
Efdefe2e] [

”w”(Z,a),[%,Z%]‘
This implies
lwrll,a,ur = 7 Hllwll 2,001

and in the same way we show

”g”(O,oz),y—Z,r = 7’_““](”(0,04),;1—2,1-

Therefore, we conclude that

”wr”(Z,a),y,r < C”g”(O,a),p—Z,r/
where ¢ > 0 is a constant that does not depend on ¢, r and R. Thus, we
obtain the following corollary.

Corollary 1.6.2. Let u € (1,2), a € (0,1), &g > 0 given by Proposition 1.6.1.
Then for all € € (0, &9), R € R* and 0 < r < 1 there is an operator

Ge,ryr : Coy(BHONO) — Ci*(B,(0)\(0)

withnorm bounded independently of ¢, R and r, such that for each f belongs
to CZ’Z(Br(O)\{O}), the function w := G g ,(f) solves the equation

{ Ler(w) = f in  B,(0)\{0}
n;’(wlqu):O on dB,(0)

Moreover, if f € n”(Cg’fz(Br(O)\{O})), then w € n”(Cf{“(Br(O)\{O})) and we
may take py € (-n,2).

In fact, we will work with the solution u, r 5, and so, we need to find an
inverse to L, r , with norm bounded independently of ¢, R, a and r. But this
is the content of the next corollary, whose proof is a perturbation argument.
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Corollary 1.6.3. Let u € (1,2), @ € (0,1), &0 > 0 given by Proposition 1.6.1.
Then for all € € (0,¢p), R € R*,a € R" and 0 < r < 1 with |a|r < rg for some
1o € (0, 1), there is an operator

Gerra : Cry(BHONO) — Ci® (BO)\{0)),

with norm bounded independently of ¢, R, r and 4, such that for each
fe Cfl’_z(Br(O)\{O}), the function w := G g +4(f) solves the equation

Le,R,a(w) = f in Br(O)\{O}
m/ (wlgi1) =0 on dB,(0)

Proof. We will use a perturbation argument. Thus,

4 4
(LS,R,IZ - LS,R)U = @ (Ll F - ) (%

n-2
&,Ra
implies

4 4
e,Ra — Le,R)UIN0,@),[0,20] = R~ U .5 10,a),[0,20] 0,a),[0,20]~
I(Lega = Leg)ol < durz, - uZ| ol

where ¢ > 0 does not depend on ¢, R, 2 and 7.
Since

e Ra(¥) = Ix — alx? 70, (— log |x] + log X+ log R)

|x]
we have
) 21-2. 7 X
W2 (%) = x - alx 2ol (— loglx| + log | - ~al +logR).
Furthermore,
-2
X
Ix —alxP|? = |x|7?|= —alx|

|x]

IxI72(1 = 2a - x + |a?x|*)~!

xI72(1 + O(lal|x]))

Ix|72 + O(lallx|™1),
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log

X
— —alx|

log(1 —2a - x + |aP|x[)z

log(1 —a - x + O(la|x?))

= O(lallxl)
and
4 x N
v (_ loglxl +log ;> —alx) + log R) = 077 (~log x| + log R)
4 (loglg-an| o,
f (02‘2 v;) (—log |x| + log R + t)dt.
This implies
4 4
Ul () = ulg (x)+
-2 rlog ﬁ—alxw 6n
i|x_| 5 fo (vg”‘z v;) (—log x| + log R + t)dt
s x
+O(allx| "o (— log |x| + log m —alx|| + logR).
Notice that
-2 2 -2 2 " -2 2
CAG (n 1 ) ve(t)? + (n 1 ) 0e(F)i2 = (n : ) (e — 1)

for all t € IR, see Proposition 1.4.1, implies

(0L(1)?

IA

IA

(n —2)*

7 (00 (1 - ve())72) + 2(e72 — 1))

Cn(vs(t)z + 52)

C}’lvz(t)l

where ¢, depends only on 7, since 0 < ¢ < v.(t) <1, for all t € R. From this

yields

and so

’
|vg| < 0,

4 4
g (%) —ulg (] <
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Olallxl) 4
< Cplx| 2 f 0772 (—log x| +log R + t)dt + O(lallx|™h).
0

Thus

4 4
IR = w0 < calallx ™ (1.19)

|u
where the constant ¢ > 0 does not depend on ¢, R and a.
The estimate for the full Holder norm is similar.
Hence .
73, = w2 0. 0201 < clalo™
and then
“(Ls,R,a - Le,R)v”(O,a),y—Z,r < Clalr”z}”(Z,a),y,rr
where ¢ > 0 is a constant that does not depend on ¢, R, 2 and r.

Therefore, L, g, has a bounded right inverse for small enough |a|r and
this inverse has norm bounded independently of ¢, R, 2 and r. In fact, if we
choose r( so that g < %K‘l, where the constant K > 0 satisfies [|G¢r || < K
forall € € (0,¢0), Re R" and r € (0, 1), then

ILe,Ra © Gerr = Il < |ILe,ra = Le RIINGe Rl

<

N —

This implies that L, gz © G¢ r, has a bounded right inverse given by
(Le,R,a o GE,R,V)_l = Z(I - La,R,a o Ge,R,r)iz
i=0
and it has norm bounded independently of ¢, R, a and r,

(o]
1 ;
||(LS,R,11 o Gs,R,r) | < Z ”LS,R,E[ o Ge,R,r - I”Z <L
i=0

Therefore we define a right inverse of Ly rs as Geryra := Geryr © (LeRra ©
-1
Ge,R,r) . O

1.7 Poisson operator associated to the Laplacian A

1.7.1 Laplacian A in B,(0)\{0} c R”

Since 1t} (Ge R ra(f )|5rn_1) = 0 on dB,(0), we need to find some way to prescribe
the high eigenmode boundary data at dB,(0). This is done using the Poisson
operator associated to the Laplacian A.
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Proposition 1.7.1. Given « € (0, 1), there is a bounded operator
P12 7 (C(S") — 1} (C3H(B1(0)\{0)),

so that
{A(P1(¢))=O in  B1(0)
i} (P1(P)lgi-1) =¢ on IB1(0)

Proof. See Proposition 2.2 in [5], Proposition 11.25 in [14] and Lemma 6.2 in
[36]. O

Remark 1.7.2. Although we need not know a expression for $y, if we write
¢ = Z ¢i, with ¢ belonging to the eigenspace associated to the eigenvalue
i=2
i(i + n —2), then
PrO)E) = ) Il
i=2
For p <2 and 0 < r <1 we can define an analogous operator,

P, 1) (CH(S!Y) — 7/ (CrY(B,(0)\{0}))

as

Pr(pr)(x) = Prd)( '), (1.20)
where ¢(0) := ¢,(r0). This operator is obviously bounded and as before, in
Section 1.6, we deduce that

1P PNl 2,a)ur =T HIIP1O2,0),1-
Therefore,

A(Pr(¢pr)) =0 in  B/(0)\{0}
T(;/(Pr((f’r)lsg—l):qbr on 8B,(0)

and
”Pr(ql)r)”(Z,a),y,r < CV—HH(:Dr”(Z,a),r/ (121)

where the constant C > 0 does not depend on r and the norm ||, ||(2,) is
defined in Definition 1.5.2.
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1.7.2 Laplacian A in R"\B,(0)

For the same reason as before we will need a Poisson operator associated
to the Laplacian A defined in R"\B,(0).

Proposition 1.7.3. Assume that ¢ € C>*($""!) and let Q(¢) be the only

solution of
Av=0 in R"\B1(0)
v=¢ on JBi(0)

which tends to 0 at co. Then
”Ql((P)”C%’fn(]R”\Bl(O)) < C“(P”(Z,a),l/

ifpis Lz—orthogonal to the constant function.
Proof. See Lemma 13.25 in [14] and also [16]. m|

Here the space C’L’“(IR"\BV(O)) is the collection of functions u that are
locally in Cr(R™\B,(0)) and for which the norm

U|| . on :=supo "lu
” ”C’;1 (R"\B,(0)) GZI: || ”(k,a),[a,ZG]

is finite.
Remark 1.7.4. In this case, it is very useful to know an explicit expression

for @y, since it has a component in the space spanned by the coordinate
functions and this will be important to control this space in Chapter 4.

Hence, if we write ¢ = Z @i, with ¢ belonging to the eigenspace associated

i=2
to the eigenvalue i(i + n — 2), then

Q@) = Y WP,
i=1

An immediate consequence of this is that if ¢ € (C>*(8" 1)) then

Qi(p) = K(P1(p)),

where K is the Kelvin transform.
Now, define

Qi) (x) := Qu(p)(r ), (1.22)
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where @,(x) := ¢(r~'x). From Proposition 1.7.3, we deduce that

AQ(py) =0 in  R™\B,(0)
Q(pr) =@, on IB,(0)

and, as before
”Qr((Pr)HcffX (R"\B,(0)) < Crn_lll(Pr”(Z,a),r/ (123)

where C > 0 is a constant that does not depend on r.

1.8 Conformal normal coordinates

Since our problem is conformally invariant, in Chapter 2 we will work in
conformal normal coordinates. In this section we introduce some notation
and an asymptotic expansion for the scalar curvature in conformal normal
coordinates, which will be essential in the interior analysis of Chapter 2.

Theorem 1.8.1 (Lee—Parker, [20]). Let M" be an n—dimensional Riemannian
manifold and P € M. For each N > 2 there is a conformal metric g on M such that

detgz-]- =1+ O(YN),

where r = |x| in g—normal coordinates at P. In these coordinates, if N > 5, the
scalar curvature of g satisfies Ry = O(r?).

In conformal normal coordinates it is more convenient to work with the
Taylor expansion of the metric. In such coordinates, we will always write

gij = exp(hij),

where };; is a symmetric two-tensor satisfying h;;(x) = O(|x?) and trh;j(x) =
O(|x[N). Here N is a large number.

n
In what follows, we write d;d;h;; instead of Z didhij.
=1

Lemma 1.8.2. The functions h;; satisfy the following properties:

a) (91‘3]‘}1,‘]' = O(T’N/)}

syt

b) xx9i0jhi; = O(rN Y forevery1 <k <n,
sp1
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where N’ is as big as we want.

n
Proof. Use integration by parts and the fact that Z hij(x)x; = 0. a
j=1

This lemma plays a central role in our argument for n > 8 in Chapter 2.
Using this notation we obtain the following proposition whose proof
can be found in [6] and [18].

Proposition 1.8.3. There exists a constant C > 0 such that
d
IRg = didjhgl < C Y Y WijalPe1=2 + Cli"=2,
lal=2 i,
if x| <r <1, where
B = Y hiax® + O(d"™)
2<|a|<n—4

and C depends only on n and |h|cv g, 0y)-
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CHAPTER 2

Interior Analysis

2.1 Introduction

Now that we have a right inverse for the operator L. g, and a Poisson
operator associated to the Laplacian A, we are ready to show the existence
of solutions with prescribed boundary data for the equation Hg\(v) = 0
in a small punctured ball B,(p)\{p} € M. The point p is a nonremovable
singularity, that is, # blows-up at p. In fact, the hypothesis on the Weyl
tensor is fundamental for our construction if n > 6. But, if 3 < n < 5 we
do not need any additional hypothesis on the point p. We do not know
whether it is possible to show the Main Theorem assuming the Weyl tensor

vanishes up to order less than [”7_6] This should be an interesting question.

In the next section we explain how to use the assumption on the Weyl
tensor to reduce the problem to a problem of finding a fixed point of a
map, (2.8) and (2.12). The main theorem of this chapter is proved in Section
2.3, Theorem 2.3.3. It shows the existence of a family of local solutions,
for the singular Yamabe problem, in some punctured small ball centered
at p, which depends on n + 2 parameters with prescribed Dirichlet data.
Moreover, each element of this family is asymptotic to a Delaunay-type
solution u; R 4.

33
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2.2 Analysis in B,(p)\{p} c M

Throughout the rest of this work d = [”T_Z], and g will be a smooth conformal
metric to go in M given by Theorem 1.8.1, with N a large number. Hence,
by the proof of Theorem 1.8.1 in [20], we can find some smooth function
¥ € C*(M) such that g = Tffzgo and F(x) = 1+ O(]x|*) in g—normal
coordinates at p. In fact, the proof in [20] gives us a function defined in
some neighborhood of p, so we extend smoothly this function to M and we
get . In this section we will work in these coordinates around p, in the
ball B, (p) with 0 < r; <1 fixed.

Recall that (M, go) is an n—dimensional compact Riemannian manifold
with Rg, = n(n—1),n > 3, and the Weyl tensor Wy, at p satisfies the condition

VIWg,(p)=0,1=0,1,...,d 2. (2.1)

Since the Weyl tensor is conformally invariant, it follows that W, the Weyl
tensor of the metric g, satisfies the same condition. Note thatif 3 <n <5
then the condition on W, does not exist.
From Theorem 1.8.1 the scalar curvature satisfies Ry = O(|x|?), but forn >
8 we can improve this decay, using the assumption of the Weyl tensor. This
assumption implies h;; = O(|x|**1) (see [7]) and it follows from Proposition
1.8.3 that
Rq = 9;9jhi; + O(Ix|" ™). (2.2)

We conclude that Ry = O(|x]“1). On the other hand, for n = 6 and 7 we
have d = 2 and in this case, we will consider Ry = O(Ix?), given directly by
Theorem 1.8.1.

The main goal of this chapter is to solve the PDE

H(te,rg +0) =0 (2.3)

in B,(0)\{0} ¢ R" forsome 0 < r < r, € >0, R > 0 and a € R", with
ueRa+0 > 0and prescribed Dirichlet data, where the operator H is defined
in (1.2) and u, g, in (1.12).

To solve this equation, we will use the method used by Byde and others,
the fixed point method on Banach spaces. In [5], Byde solves an equation
like this assuming that g is conformally flat in a neighborhood of p, and
thus he uses directly the right inverse of L. g given by Corollary 1.6.3, to
reduce the problem to a problem of fixed point. The main difference here is

that we work with metrics not necessarily conformally flat, so we need to
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rearrange the terms of the equation (2.3) in such way that we can apply the
right inverse of L¢ g 4.

For each ¢ € 7"/ (C>%(8/71)) define vy = Pr(P) € Tc"(Ci’“(Br(O)\{O})) asin
Proposition 1.7.1. It is easy to see that the equation (2.3) is equivalent to

n—2
Lera(@) = (A= Ag)Hepa+ 0 +0) + oo Ry(ttea + 09 +0)
(2.4)
nn+2) 4

4 us',R,a 0‘7’ 4

= QeRralvp +0) —
since 1, R ; solves the equation (1.7). Here L, r, is defined as in (1.17),

Qe,ra(v) := Q" (0) (2.5)
and Q%R is defined in (1.5).
Remark 2.2.1. Throughout this work we will consider |alr, < 1/2 with

re = &5, srestrictto (d+1-061)7! < s < 4(d—2+3n/2) " and 61 € (0, (8n—16)71).
From this and (1.12) it follows that there are constants C; > 0and C, > 0
that do not depend on ¢, R and 4, so that

Crelx " < uepa(x) < Colxl 7", (2.6)

for every x in B, (0)\{0}.
These restrictions are made to ensure some conditions that we need in
the next lemma and in Chapter 4.

Lemma 2.2.2. Let u € (1,3/2). There exists g € (0,1) such that for each

¢ €(0,&0), a € R" with |alre < 1, and for all v; € Cf,’“(BrS(O)\{O}), i=0,1, and

. 2+d—pu—14-6
we Gy (Br ONOD with ooy, < cr 4 and [0l gy 210, <
for some constant ¢ > 0 independent of €, we have that Q. r , given by (2.5) satisfies

the inequalities

”Qe,R,a(w +71) - Qe,R,a(w + Z70)||(0,oc),‘u—2,rg <
d+1
< Cetrrd oy — oll@,a),ur (10l 2,0) 244~ 2 1,

+||vlll(2,a),y,r£ + ”UOH(Z,a),y,rg)/
and

A, 3+2d-5—u 2
||Q€,R,ﬂ(w)||(0,a),‘u—2,ré~ <Ce ”rg 2 ||w||(2,a),2+d—%,n'

Here Ay, =0for3<n<6,A, = %for n > 7, and the constant C > 0 does not
depend on ¢, R and a.
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Proof. Notice that

2+d—p—-4-6
loillg.ayur. <cre 27" and | n, SC
imply
2+d—2-5 24d—1
i) <crs 2 and  Jw@)| < cr, 2

for all x € B,,(0)\{0}. Using (2.6), yields

24d-1-5
Ue Ra(X) + W +0i(x) = Crelx=" —cr, - !

elx| 7" (C1 — c(lxlr; )T es@r1-on-1),

withs(d+1—-61)—1>0,sinces > (d + 1 — 61)"L. Therefore,
0< CSélxl < usRa(x) + w(x) + vi(x) < C4|x| (2.7)
for small enough ¢ > 0, since |x| < .. Thus, by (1.5), we can write

Qs,R,a(w +01) — QE,R,!Z(w +79) =

n(n al 2) (v1 = Uo)f f (Ue,Ra + szt)" 2z;dtds

Qera(w) = % zf f (e R o + Stw) 2 tdtds,

where z; = w + tv1 + (1 — t)vg. From this we obtain

and

”Qe,R,u(w + Ul) - Qs,R,u(w + Z7O)||(O,oz),[a,20] <

< C”?Jl

2011wl 0,010,

20]
6-n
+||UO||(O,0¢),[U,20]) max ”(ue,R,a + 524)n=2 ”(O,a),[a,Zo]
0<s,t<1

and

20 A ||(u€Ra + stw)n 2||(o a),[0,20]-

From (2.7) we deduce that

6— —6
(UeR,q + 52) 2 (¥)] < CeMr|x| T
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and . ]
- o
(11 R a + stw) =2 (x)| < Ce™|x| 7,

for some constant C > 0 independent of ¢, 2 and R.

The estimate for the full Holder norm is similar. Hence, we conclude

that o s
max ”(ue,R,a + Szt)"lel(o,a),[o,ZU] < Ce'o 2
0<s,t<1

and o s
max ||(1/lg,R/,1 + stw)n=2| 0,a),[0,20] < Ce'ngz .

0<s,t<1
Therefore,
0> H1Qe R a(w + v1) = Qe ra(w + V0)l(0,0),[0,20] <
n-2 _n
< CeMo'7 oy — voll@,a) e (0F 2wl 2,0 2412 1,
+ol'llo1ll@,a),ure + otllvoll@,a), 1)
< CeMrt 1oy — voll,a) . (10l 2,00 242 1,
+||Ulll(2,a),‘u,rg + “00' (Z,a),y,rg)
and

_ n_q_
02 H|IQ&,R,a(w)”(O,a),[a,ZU] < Cg/\*lgz ! H”w”é,a),[a,Zo]

An s3+2d-5—u 2
< Celom™ G b 5,

A, 3+2d=5—u 2

< Celre iy 0 2egos

sincel < p <3/2implies2+d-n/2<pand3+2d —n/2—pu>0.
Therefore, it follows the assertion.

O

Now to use the right inverse of L, r 4, given by G r s, 4, all terms of the
right hand side of the equation (2.4) have to belong to the domain of G, r s, 4-
But this does not happen with the term Rqu, r, if n > 8, since Ry = O(led‘l)

implies Route Rq = O(led"zi) and so Rqute R & CZ"_IZ(BTS (0)\{0}) forevery u > 1.

However, when 3 < n <7 we get the following lemma:
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Lemma 2.2.3. Let 3 <n <7, u € (1,3/2), k > 0 and c > 0 be fixed constants.

Thereexists eg € (0, 1) such that foreach € € (0, €o), forallv € Cf,’“(Brg (0)\{0}) and

_ . 2+d—pu—2-5 2+d—L%—-5
¢ € " (C*SIY) with vllgayur < e+ 2 and [Pl < Kre 2

we have that the right hand side of (2.4) belongs to Cg’f‘z(BrS (0)\{0}).

Proof. Initially, note that by (1.21) we obtain

2+d—p—1-5
o + llgaypn <+ 2,
and so, by Lemma 2.2.2 we get that Q. r (v +0) € Cz’f‘z(Brg (0)\{0}).

Now it is enough to show that the other terms have the decay O(|x|*~2).
Since vy = O(x[?), 8ij = 0ij + O(|x|4+1), Re = O(Ix]?), using (2.6) we obtain

(A = Ag)(vg +0) = Oy = O(Ix2),

Ry(tte r,q + 0 +0) = O(x’~2) = O(Ix|*2)

and \
u'? vy = 0(1) = O 2).

&,Ra

Using the expansion (1.13), it follows that
(A - Ag)us,R,a =(A- Ag)ué:,R +(A - Ag)(ua,R,a - ue,R)/

with u,r, — e = O(Iallxl%n). Moreover, since in conformal normal
coordinates Ay = A + O(lx|N) when applied to functions that depend only
on |x|, where N can be any big number (see proof of Theorem 3.5 in [42], for
example), we get

(A= Aghuer = O™,

where N’ is big for N big.
Since gj; = 6;j + O(Ix|"*1), then

(A = Ag)(tte R — e R) = O(XI™3") = O(xl*2)

when u <3 +d —3/2. Hence, the assertion follows. O

Now this lemma allows us to use the map G¢rr,. .. Let u € (1,3/2) and
¢ > 0 be fixed constants. To solve the equation (2.3) we need to show that
themap N:(R,a,9,-) : Becs, — Ci’“(BrE (0)\{0}) has a fixed point for suitable
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parameters ¢, R, 2 and ¢, where 8B, . 5, is the ball in Cﬁ’“(B,S (0)\{0}) of radius
cr?d_” 7% and N (R, 4, ¢, -) is defined by

NS (Rz a, (P/ 7)) = Gs,R,r,a ((A - Ag)(us,R,a + v([) + Z))
n—2
+ ng(u&Rla + U(p + U)

2.8)
= QeRra(vy +0)

n(n+2)u 4 ” )

n-2
4 &,Ra

Let us now consider n > 8. Since Ry = O(|x|"!), we have Rquie g, =
O(|x|*"2), and this implies that Rette rq ¢ C?l'f‘z(Br{ (0)\{0}) for u > 1. Hence
we cannot use G¢ r . directly. To overcome this difficulty we will consider
the expansion (1.13), the expansion (2.2) and use the fact that d;d;h;; is
orthogonal to {1, x1,...,x,} modulo a term of order O(IxIN") with N” as big
as we want (see Lemma 1.8.2.)

It follows from this fact and Corollary 1.6.2, that there exists w.r €
C>*  (By.(0)\{0}) such that

2+d-3

n—2

Ler(we,r) = -0

(al’a]'h,']‘ - ITI) Ug R (2.9)

This is because u,r depends only on |x| and d;d jhij —h belongs to the high
eigenmode, where 7 is given by

Hs0) = Y 0 9id;hij(s-).
6= 2@ [ ado

From Lemma 1.8.2 we have that & = O(IxIN"), with N” a big number, and
again by Corollary 1.6.2

lwe rll,a)2+d-1 . < cll(didjhij — E)“S,RH(O,a),d—%,rg <gc (2.10)

for some constant ¢ > 0 that does not depend on ¢ and R, since 00 hjjuer =
O(Ixl*~3).
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Considering the expansion (1.13) and substituting v for w,r + v in the
equation (2.4), we obtain

Lera(v) = (A- Ag)(uE,R,a +We R + Vg + v)

n—2 R

+ —4(1’1 — 1) g(ws,R + ZJ¢ + U) — QS,R,u(wg,R + qu + Z))
n-2

" 4(n - 1)aiajhij(”e,R,u — Ug,R)

2.11)

n—2

+ 4(n—1) (Rg = 9idihij)uieR

nn+2) & 4 nn+2) 4

- 2 ( “'1% B 8,1%,11) &R 4 é',Rz,ﬂ (P
n—2 -

T oy R

A 4
where Ry — didjhij = O(x"?), trera — e = O(lall?), ulz, —ulg =
O(allx|™1) by the proof of Corollary 1.6.3, and h = O(Ix]N") with N large.

Hence we obtain the following lemma

Lemma 2.2.4. Letn > 8, u € (1,3/2), ¥ > 0 and c > 0 be fixed constants. There

exists €9 € (0,1) such that for each ¢ € (0,1), for all v € Cf;“(BrS(O)\{O}) and

_ . _y_n_ 24+d—2 -6
¢ € ' (CPSE) with 10l @.a)ur. < cre? 2% and ||Pll,ay,r, < x7e 2,

we have that the right hand side of (2.11) belongs to CZ{"Z(BT{, (0)\{0}).
Proof. Asin Lemma 2.2.3, we have that

QeRa0p + WeR +0) € C%(Br (O\{O)).

Again we only need to show that each term has the decay O(|x|*~2).
Since v = O(|x1%), gij = 6;j + O(Ix**1) and R, = O(Ix|~!), we deduce that

(A — Ag)(we R + Vg +v) = O(Ix|'*2772) = O(|x|*2)

and
Rg(we R + vy +0) = O(lx|'*2472) = O(|x* 7).
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As before in Lemma 2.2.3, we obtain

(A= Ag)ite o = O(Ix["472) = O(Ix|*72),

and \
ulz ve = O(xlt?).

Furthermore,

9:0ihij(Ue g — ter) = O(Ix|'™72) = O(Ix]*2),

(Rg = 9i0hij)te R = O(1x|272) = O(Ix*73),

i s 1+d-1 -2

W2, —ulP)we g = O(x["**2) = Ol ~2)

and

hite g = O(xd*~2).

Therefore, the assertion follows.

O

Let u € (1,3/2) and c > 0 be fixed constants. It is enough to show that
the map N:(R,a,9,") : Be s, — C‘:";a(Br(O)\{O}) has a fixed point for suitable
parameters ¢, R, a and ¢, where B, 5, is the ball in Ci’“(Br(O)\{O}) of radius

cr§+d_“ “27% ond Ne(R,a,¢,) is defined by

Ne@R,8,6,9) = Gerpa((A = AQ)tera+ g +Wer +0)

n—2
+ ng(Uq) + We R+ U)
= QeRra(Vp + WeR +0)

n-—2
+ m(Rg — 9idjhij)ue,Ra

n-—2
+ maiajhzj(”e,&a — Ue,R)

nn+2) 4 nn+2) 4 4

- 4 ue,l%,av‘b 2 (u&[\f - ue,l%,a

n—2 —

h

T A1) R

(2.12)
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In fact, we will show that the map N,(R,a, ¢, -) is a contraction for small
enough ¢ > 0, and as a consequence of this we will get that the fixed point
is continuous with respect to the parameters ¢, R, 2 and ¢.

Remark 2.2.5. The vanishing of the Weyl tensor up to the order d — 2 is
sharp, in the following sense: if ' W,(0) =0,1=0,1,...,d -3, then for
n=6, 8ij = 51']' + O(led) and

(A = AQuie R = O(x|"2).

This implies (A — Ag)ute,ra & C,% (B, (O\{0}), with p1 > 1.

Before continuing, let us prove a lemma that will be very useful to show
Proposition 2.3.2.

Lemma 2.2.6. Let g be a metric in B,(0) C R" in conformal normal coordinates
with the Weyl tensor satisfying the assumption (2.1). Then, for all u € R and
v E Ci’“(Br(O)\{O}) there is a constant ¢ > 0 that does not depend on r and p such
that

(A = AQ@)ll(0,0,1-2 < P 10ll(2,09,11-
Proof. Note that

(A = Ag)(0) 819970 — ﬁ&i( VIglg'idv)

—19;log|glg'dv — 9;g1d;v

—+

(6" - g')didjv,

where [g| = det(g;;). Since gif = 6/ + O(|x|?*1), log gl = O(|x|N), where N can
be any big number,

(7||ajv||(0,a),[a,2cr] < C”U”(Z,a),[a,2a]

and
2 119:919ll(0,a) 10201 < CllVll 2,09 10,201
we have
1A = Ag) @001, (0201 < 0" 10l 10,201-
Hence

Z A = Ag) (@l 0.a)[020] < 0o [0l 2,01 (0201,

where ¢ > 0 is a constant that does not depend on r.
Therefore, we conclude the result. O
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2.3 Complete Delaunay-type ends

The previous discussion tells us that to solve the equation (2.3) with
prescribed boundary data on a small sphere centered at 0, we have to show
thatthemap N:(R,a, ¢, ), defined in (2.8) for3 < n < 7andin(2.12) forn > 8§,
has a fixed point. To do this, we will show that this map is a contraction
using the fact that the right inverse G, 4 of L¢r, in the punctured ball
B,.(0)\{0}, given by Corollary 1.6.3, has norm bounded independently of ¢,
R, a and 7,.

Next we will prove the main result of this chapter. This will solve the
singular Yamabe problem locally.

Remark 2.3.1. To ensure some estimates that we will need, from now on,
we will consider RZ" = 2(1 + b)e~!, with |b] < 1/2.

Recall Remark 2.2.1, 7. = ¥ with (d +1—-01)"! <s < 4(d -2 +3n/2)7!
and 61 € (0, (8n — 16)71).
Proposition 2.3.2. Let u € (1,5/4), T > 0, k > 0 and 0, > 01 be fixed

constants. There exists a constant ¢y € (0,1) such that for each ¢ € (0, €g],

bl < 1/2,a € R" with [alr} ™ < 1, and ¢ € 7”/(C>*(S)~1)) with llpll,a)r. <
kr- 270 there exists a fixed point of the map N,(R,4,@,) in the ball of

&

radius 77 % in C24(B,, (0)\(0}).

Proof. First note that |a|r, < rf? — 0 when ¢ tends to zero. It follows from

Corollary 1.6.3, Lemma 2.2.3 and 2.2.4 that the map N:(R,a,¢,-) is well

defined in the ball of radius T1’§+d_# “Tin Ci’“(Bn_ (0)\{0}) for small ¢ > 0.
Following [5] we will show

1 24d—p-2
INeR, 2,6, Oll.ayur. < 577+

and for all v; € CZ%(B,, (O\(0)) with l[oillg.ayr, < T2 * 72, 1= 1,2, we will
have

1
INe(R, a,p,v1) = Ne(R,a,§, 02)ll 2,017, < §||U1 - 0llea)ur.-

It follows from this that for all v € Ci’“(Brg(O)\{O}) in the ball of radius
2+d—u—7%
7,

P we get

||NS (Rr a, (P/ U)”(Z,a),y,rg < ”Ns (R/ a, (P/ ’U) - Ns (R/ a, (P/ 0)”(2,0(),}1,75
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+ [INe(R, a, (Pr O)”(Z,a),‘u,rg

—_

1 244 u—4%
EHUH(Za)yn + ZT ’

and so o
INeR, a,, Olleayur < Tre

Hence we conclude that the map N (R,a,¢,-) will have a fixed point

belonging to the ball of radius ’C?’ EE n 2 "‘(ByL (0)\{0}).
Consider 3 <n < 7. Since G¢r, 4 iS bounded independently of ¢, R and
a, it follows that

”Nt(R/ a, ¢/ 0)”(2,0(),;1,&- < C(”(A - Ag)(ue,R,a + U({))”(O,a),y—Z,n
+ ”Rg(us,R,a + U¢)||(o,a),p—2,rg
+ ”Qe R a(%)“(o a),U=2,1¢ + ||u51§avq)“(0,a),p—2,rg)r

where ¢ > 0 is a constant that does not depend on ¢, R and a.
The last inequality in the proof of Lemma 2.2.6 implies

IA

2 HI(A = Ag) (e, a — e R)0,0), 0,201 co T lue g o — te RIl(2,0),[0,20]

3+d—u—%
7

IA

clalo
since Ug Ry = Ug R + O”(|a||x| ) by (1.13). The condition u < 3/2 implies

3+d—p—14
(A = AQ)(ttera = e R 0,0 -2,r, < clalry™ 72 (2.13)

As in the proof of Lemma 2.2.3 we have that (A — Ag)u g = O(Ix|V), and
from this we obtain

1A = Ag)ue rllio,mu-zr. < cr, (2.14)

where N’ is as big as we want. Hence, from (2.13) and (2.14), yields

”(A - Ag)ue,R”(O,a),y—Z,rE < ”(A - Ag)“s,R”(O,a),y—Z,rg

+

[I(A - Ag)(us,R,u - ”s,R)”(O,a),y—Z,re

clalr TR Y,

IA
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So,
24d—p—1
1A = Ague ralloayu-zr, < clalrery™ 72
(2.15)
< oA
since |a|r;}._62 <1, with 6, > 0.
From Lemma 2.2.6 and (1.21), yields
1A = Avglloampu—zr. < crE vl eay,ur.
1+d—
< o lllar, (2.16)
3+2d—p—2-5
< cxry HTETO
and then A
= A)volloayp—zr, < cxre Oy 2, .
1A = Ag)vglloa-zr, < crert ™ r T 2.17

Furthermore, since 5 — - n/2 > 3 +d — y —n/2, Ry = O(|x[*) and we
have (2.6), we get that

5—u-1 24d—p-1
||Rgue,R,a |(O,zx),y—2,rg <cr, 2 S Crete f 2. (2.18)
Using (1.21), we also get
4- 4-5, 2+d-p-%
IRgvsll 027, < cre " NDllayr, < crre re ™ 2, (2.19)
with 4 —6; > 0.
By Lemma 2.2.2 and (1.21), we obtain
Anydd)|r, (12
1Qe Ra@ MO u-2r. < cere™lloglliy g,
A 1+d—2u 2
< ce¢ "Te ||¢||(2,a),rs
< CKZE/\”T’§+3d_2‘u_n_261
s 2+d—u—1%
= o2

with o’ = A, +s(B+2d —pu—n/2—2061) > 0,since uy <5/4,s > (d+1- 51)7!
and 0 < 81 < (8n — 16)~L. Hence, it follows that

2,8 2+d—u—3
O,)u-2,re < CK7E7 T, z, (2.20)

1Q¢,Ra(vg)]

Instituto de Matematica Pura e Aplicada 45 November 19, 2009



Almir Rogério Silva Santos A Construction of Constant Scalar Curvature Manifolds

Let us estimate the norm ||u: _ﬁa%”(O,a),u—Z,rs-
It is easy to show that

4 _
”ugl_léavtb”(o,a),y—Z,rg < crgy”Qb”(,Za),rg/

but this is not enough. We will need a better estimate.

4
n-2

4
First, (1.19) implies u =ulz + O(lallx|™!). Hence, using (1.21), we

&,Ra
deduce that
|2 — w2y < Clalo™#flogl
o (us,R,a Uer )06ll0,0)[020] < ajo Upll(0,),[0,20]
< Clalo® Hlogllpa,
1_
< Clalre “lloll,ar, (2.21)
5y 24d—u—1
< Cklalr} blr: 2
5 24d—p—1
< C1<r§2 blr: # 2,

since Ialri_‘52 <1, with b, — 61 > 0.
Recall that 7. = &, with (d +1 - 681)"' < s < 4d -2 + 3n/2)"! and
0 < 61 < (8n—16)"1. Hence, if r1** < |x| < 7. with A > 0, then

—sloge < —loglx| < —s(1 + A)loge,

and by the choice of R, R%" = 2(1+b)e~! with |b] < 1/2, see Remark 2.3.1,we
obtain

lo&z+2
€T

1OgR:n—2 -n

log(2 + 2b).

This implies

(n32 —s)loge + log(2 +2b)ﬁ < —loglx| +1logR <

< (% -s(1+ A))log e +log(2 + 2b)ﬁ,
with % —5>0,sinces < 4(d —2+3n/2)~! <2(n—2)"!. We also have

ve(—log x| + log R) < eel"T°s71)loge+log@+2h) — (3 4 ppye"77s
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for small enough A > 0. This follows from the estimate (1.10). Hence

I -2, 72 2,2
urR (x) = x| “v2* (= log |x| + log R) < Cplx| (2.22)
Notice that, A cannot be large, otherwise % -s5(1+A) < 0and —log |x| +
log R > 0 for some x. Hence

( log |X| + log R) < 86(1 s(l+/\)) log e+log(2+2b) _ (2 + zb)EZ—%s(l+/\)

and we can lose control over the maximum value of v, if 2 — ”T_zs(l +A) <0.
So, if we take 0 < A < —1 fixed, then ﬁ —s(1+A) > 0and from (2.22)
we get

s(n 2)

= 2.2
73 l0,0)10201 < Co212,

for r1** < o < 271r,, and then

IA

_4_ 4
02_# ”u:’}? v({) | | 0,a),[0,20] CGZ_# | Iu:’_RZ ”(O,a),[a,ZU] I |U<{) | | (0,a),[0,20]

< 22 ogll o,

(2.23)
< ComHPll,ar.
< Cxr z b1, 2+d b=z
with 2 — 61 > 0.
For 0 < 0 < rl*, we have
02" ”llu R0oll0a) o201 = CoHllvgll2,m)020]
< Co* vl
(2.24)
< P00
Q-p)A-8; 2+d—p—1
< Crrd PR
Since s < 4(d — 2 + 3n/2)"!, we can take A such that 7 < A < S(n % -1

This together with u < 5/4and 0 < 61 < (8n—16)"! 1rnp11es (2=wA=61>0.
Therefore, by (2.21), (2.23) and (2.24) we obtain

4 n
5 -5 2+d— -4
172 Dolloapu-zr, < crt Fligl < exrd T, (2.25)
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for some 6" > §; fixed independent of ¢.
Therefore, from (2.15), (2.17), (2.18), (2.19), (2.20) and (2.25) it follows

that

1 o4g—p-2
INe(R, 2,9, 0ll@.a)pr < 577 7

for small enough ¢ > 0.
For the same reason as before,

INE(R, 2,6, 01) = Ne(R, 2,6, 02l . < €(l(Bg = D@1 = 02l -2
HIRg (01 — v2)ll(0,0), 42,1,

HQe,ra(0p +v1) = Qe,Ra(Vg + V2)l0,0),u-2,1),

where ¢ > 0 is a constant independent of ¢, R and a.
From Lemma 2.2.6 and R¢ = O(|x]?) we obtain

1A = Ag) (1 — v2)ll 0, u-2,r < cr o1 = V2ll 2,000 (2.26)
and
IRg(v1 — 02)ll(0,0),u-2,r. < Crellon — 02ll,), - (2.27)

As before, Lemma 2.2.2 and (1.21) imply
1Qe,Ra(ve + v1) = Qera(Vp + V2)l0,0),u—2,7, <
< ce™ i (([vgll,mur + 10112000,

+o2ll@,a),u )01 = V2ll2,0), 1,7

< 0 M ¥sBH2A—p=5-01) ||, — | Q-

Therefore,
1Qe,Ra(vep +v1) = Qera(Vp + V2)l0,0), 02,7, <
(2.28)

< CKE/\”+S(3+2d_‘u_§

with A, +s(3+2d — u —n/2 - 061) > 0 as in (2.20).
Therefore, from (2.26), (2.27) and (2.28), it follows that

~|lvg — 02ll2,0), 1,7

1
INe(R,a,,v1) = Ne(R, a, , 02)||2,0),1,r. < §||01 — 0ll@a)urer (2.29)
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provided v1, v; belong to the ball of radius Tr§+d_”_% in Ci’“(BrE (0)\{0})) for
¢ > 0 chosen small enough.
Consider n > 8. Similarly

INe(R, 2, &, 0llQayur. < € (II(A — Ag)(Ue,Ra + Vg + We Rl

(0,0),u=2,re
+ IRg(vp + We,R)(0,0),u-2,7

+ 1Qera(vep + We,R)(0,0),4-2,r,

+  [(Rg — 9idjhij)ue R all(0,0), 12,7

+  [10idjhij(ue,Ra — ve, R 0,0),u-2,r.

2

+ (iR volloa),u-2r.
L

+ ”(”:,k - u;}{,ﬂ)we,R”(O,a),y—Z,m

+ e Rllo.mu-2r. )

where ¢ > 0 does not depend on ¢, R and a.
As before, (2.15) and (2.17), we obtain

o 24+d—p—1
A = Ag)(ttera + Oz, < et re V72, (2.30)

for some ¢’ > 0.
The proof of Lemma 2.2.6 implies

Z A = Awerllo,ay o201 < o H [we rll2,a 10201
< o wg kIl ) 24d-2
We deduce from (2.10) that
1A = Agwe llom s, < et A, (2.31)

Since Ry = O(x“~1), it follows that

> 342d——1
0 MR gwe Rll(0,0),[0,20] < €072 Jwe R

l@.a)2+d-12 1.
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and p
> HIRgvpll0,m o201 < €0 H0gll2,0), 10,201
< C0d+l||v¢|(2,a),“,r8 (2.32)
T+d—
< Crg+ y”‘i’”(Z,a),rg-
This implies
1+d—6, 2+d—u-%
”Rg(vqb + We R)I O)u-2r = CK7’5+ e 2 (2.33)

From Lemma 2.2.2 and (1.21) we have

1Qe,Ra(vg + We,R)0,0),u-2,, <
¢ I

Ny, 3205 2 2
< ce'nr, (II%II(ZIQ)IM + ||ws,R||(2,a)l2 +d_%,r£)
<co 8/\,,+s(5+3d—p—n—261)r§+d_ﬂ_%

with A, +s(5+3d—pu—n—-2561) > 0,sinces > (d+1-061)71,0 < 61 < 8n—16)7"
and u < 5/4. Hence, we obtain

§ 2+d-pu-%
”Qe,R,u(v(b + we,R)”(O,a),y—Z,rg <crpr, ’, (2-34)

for some 0’ > 0.
Note that
(Rg — 9idhij)ue,ra = O(Ix|272)

and
az‘ajhij(ue,R,u —UgR) = O(|ll||x|1+d_7)l

by Corollary 1.4.4. This implies

24d—p—1
I(Rg — 90 ihij) e R all0,ap -2, < Crere ™ 2 (2.35)

and N
10:0hij(ue,ra — the,R)0,0),u-2,r. < Clalrere 2 (2.36)
Finally, by the proof of Corollary 1.6.3 we have

4

4
n-2 — -1
Ulp, — Ui = O(allx[™).
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Hence,

4 4
2 H (2 3+d-
UNulz —ulz Jwerlloa) o2 < clalo” 2[ewr, &l 201,242 1.

and we get

i < 2Hd—p=3 2.37
(7 — uig JWeRll0.a),u—2r < clalrere : (2.37)

since ||wr, rll2,a)2+d-2,r. < C-

From Lemma 1.8.2 we have i = O(Ix[N'), where N’ is as big as we want,
and this implies that
[
for N” big for N’ big.
Thus, by (2.25), (2.30), (2.31), (2.33), (2.34), (2.35), (2.36), (2.37) and (2.38),
we conclude that

Oz, ere”, (2.38)

1 24a- -5
7, K

Ve (R/ a, (]5/ O)“(Z,oz),p,ré = 2 ’

for ¢ > 0 small enough.
Now, we have

IN:(R,a,¢,v1) = Ne(R, a,d, 02)l2,0),1,r. < cUll(Ag — A)(01 — 02)l|(0,0),1-2,r.
+||Q5,R,a(v¢> + We,Ra +01) — Qs,R,a(ch) + WeRa t+ UZ)“(O,@(),y—Z/ Te

HIRg (01 = v2)ll0,0),4-2,r.)-

As before we have

(A = Ag)(©1 — v2)ll0,0) 270 < oy — vallo, A re (2.39)

and
IRg(@1 — v2)ll0,0),u-2,r < cr 101 = V2l 0,000 (2.40)

By Lemma 2.2.2 and (1.21), we obtain

1Qe,R,a(Vp + We,Ra + V1) = Qe,Ra(Vp + We,Ra + V2)l0,0), 42,7 <

(2.41)

< € &M CR21=3 700 1oy — vl 0,00,
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with A, +8(3+2d—p—n/2—61) > 0,sinces > (d+1-61)"1,0 < &; < (8n-16)7"
and u < 5/4. Hence,

||Q5,R,a(v¢> + WeRa t+ v1) — Qs,R,a(U¢ + WeRa + UZ)“(O,a),y—Z,rg <
(2.42)

< —llv1 = vall @), 1. s

N =

for ¢ > 0 small enough.
Therefore, from (2.39), (2.40) and (2.42), we conclude that

1
INeR, a,¢,01) = Ne(R, 8, ¢, 02)ll e, e < 51101 = 02ll 2,00 01 (2.43)
provided v1, v, belong to the ball of radius Tr§+d_y_% in Ci’“(Bn_ (0)\{0})) for
¢ > 0 chosen small enough. ]

We summarize the main result of this chapter in the next theorem.

Theorem 2.3.3. Let p € (1,5/4), T > 0, k > 0 and O, > 01 be fixed constants.

There exists a constant &g € (0,1) such that for each € € (0,¢0], bl <1/2,a € R"

with alr, ™ < 1and ¢ € 7" (C2(S ) with | Pllg.r, < rr ™

a solution UgR a0, € Ci’“(Br{_ (0)\{0}) for the equation

5 .
' there exists

Hg(us,R,u + WeR +7Up + us,R,a,(b) =0 in Brg (0)\{0}
70 (09 + Ue,Ra,0)l98,,(0) = ¢ on 9B, (0)

where w,r =0for3 <n <7andw.r € ' (C>* (Br.(0)\{0})) is solution of the

2+d-5
equation (2.9) for n > 8.
Moreover,
2td—p—12
”ue,R,a,qb”(Z,a),y,rg < T?’;- 2 (2'44)
and s
IUe R0 — Ue ol < Cre” Ml = dalleur. (2.45)

for some constants 63 > 0 that does not depend on ¢, R, a and ¢;, i = 1,2.

Proof. The solution Ue,R,0,¢ 18 the fixed point of the map N,(R,a, ¢, ") given
by Proposition 2.3.2 with the estimate (2.44).

If ¢; € 7(C24(8!1)) has norm bounded by x> 2™ then using (2.29)
and (2.43) we conclude that

||Ue,R,a,¢>1 - us,R,a,qbz”(Z,a),u,rs =
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= ”NS (R/ a, (Pl/ ue,R,a,¢1) - NS (R/ a, (PZ/ ué‘,R,ll,(bz)”(Z,a),y,rg

IA

”Né (R/ a, le/ uE,R,a,¢1) - Ns (R/ a, le/ us,R,a,q.’)z)”(Z,a),y,m

+ ”Né (R/ a, CPl/ us,R,a,(j)z) - Né’ (R/ a, @2/ us,R,ﬂ,q)z)”(Z,a),y,r{-

IA

1
E ” ue,R,a,@n - ue,R,a,qbz | |(2,a),y,r£

+ ”Ne (RI a, le/ us,R,u,(j)z) - Ne (RI a, @2/ Us,R,u,qbz)“(Z,a),y,ré-~

The definition of the map N.(R, g, ¢;, -), together with (2.8) and (2.11), im-
plies
Ue,Ra,01 — Ue,Ra,poll @) pre <

2|INe (R/ a, (Pl/ ug,R,a,(pz) - N; (R/ a, ¢2/ ue,R,a,(j)z ) | |(2,a),y,r€

IA

IA

C(I(A = Ag)vg, s ll0,a)u—2,r. + IRgUG, -5, ll(0,0), -2,

+

”Qe,R,a (we,R + Uq,'yl + us,R,a,qu) - Qe,R,a(ws,R + U(pz + us,R,a,qbz)l|(O,0¢),‘u—2,rE

4
+ ”ug:]%,a U¢1 -2 | |(O,0:),y—2,ré )

Finally, as (2.16), (2.19), (2.25), (2.28), (2.32) and (2.41) we find an analogous
estimate for each of the terms and then

-
IUe,Ra,01 — Ue,Rapll@a)ure < Cre Hlp1 — dall s
for some ¢’ > 0 fixed independently of ¢ > 0. ]

We will write the full conformal factor of the resulting constant scalar
curvature metric with respect to the metric g as

A (R/ a, (P) = UgRag T WeR T+ U + ue,R,u,¢/

in conformal normal coordinates. More precisely, the previous analysis says
that the metric § = A.(R, 4, qb)ﬁ gisdefined in B, (p)\{p} C M, itis complete
and has constant scalar curvature Ry = n(n — 1). The completeness follows
from the estimate

AR, a,¢) > clx| 7",

for some constant ¢ > 0.
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CHAPTER 3

Exterior Analysis

3.1 Introduction

In Chapter 2 we have found a family of constant scalar curvature metrics

on B, (p)\{p} € M, conformal to gp and with prescribed high eigenmode
data. Now we will use the same method of the previous chapter to perturb
the metric go and build a family of constant scalar curvature metrics on the
complement of some suitable ball centered at p in M.

First, using the non-degeneracy we find a right inverse for the operator
Léo (see (1.6)), in the complement of the ball B,(p) C M for small enough 7,
with bounded norm independently of r, Section 3.2.1. After that, in Section
3.3, we show the main result of this chapter, Theorem 3.3.2.

In contrast with the previous chapter, in which we worked with
conformal normal coordinates, in this chapter it is better to work with
the constant scalar curvature metric, since in this case the constant function
1 satisfies Hgy(1) = 0. Hence, in this chapter, (M", o) is an n—dimensional
nondegenerate compact Riemannian manifold of constant scalar curvature
Rgy =n(n—1).

3.2 Analysis in M\B,(p)

Letry € (0,1) and ¥ : B;,(0) — M be a normal coordinate system with
respectto ¢ = ¥ w2 8o on M centered at p, where ¥ is defined in Chapter 2.
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We denote by G,(x) the Green’s function for Léo = Ag, +n, the linearization of
Hg, about the constant function 1, with pole at p (the origin in our coordinate
system). We assume that G,(x) is normalized such that in the coordinates
WV we have ;1513?) |x|”_2Gp(x) = 1. This implies that |G, o W(x)| < Clx[>™", for

all x € By, (0). In these coordinates we have that (go)ij = 6;; + O(|x]?), since
gij = 0ij + O(x[?) and F = 1 + O(|x?).
Our goal in this chapter is to solve the equation

He(1+AG,+u)=0 on M\B,(p) (3.1)

with A € R, r € (0,r1) and prescribed boundary data on dB,(p). In fact,
we will get a solution with prescribed boundary data, except in the space
spanned by the constant functions.

To solve this equation we will use basically the same techniques that
were used in Proposition 2.3.2. We linearize Hg, about 1 to get

Hgy(1 + AG, + 1) = Lg, () + Q'(AG, + u),

since Hg, (1) = 0 and Lg,o(Gp) = 0, where Q' is given by (1.5). Next, we will
find a right inverse for Léo in a suitable space and so we will reduce the
equation (3.1) to the problem of fixed point as in the previous chapter.

3.21 Inverse for Ly in M\W(B,(0))

To find a right inverse for L;,O, we will follow the method of Jleli in [14]
on chapter 13. This problem is approached by decomposing f as the sum
of two functions, one of them with support contained in an annulus inside
W(B;,(0)). Inside the annulus we transfer the problem to normal coordinates
and solve. For the remainder term we use the right invertibility of Léo on
M which is a consequence of the non-degeneracy.

The next two lemmas allow us to use a perturbation argument in the
annulus contained in W(B;,(0)).

Lemma 3.2.1. Fixany v € R. There exists C > 0 independent of r and s such that
if0 <2r <s <ry, then

g, = M@ Nos .y < Cslollcangy

forall v € CH*(Qys).
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Proof. Note that
(L;,O — A = (Agy — A)v +nv
implies
1
“(Lgo - A)(U)”ng(gns) < ”(Ago - A)U”C?,ixz(gr,s) + n”ﬂlc?fz(gnsy

Since we are working in a coordinate system where (go);; = 6;j + O(Ix]?),
we obtain

I(Ago = A0,y o201 < C (011Vlli0,0110201 + 5XIVZ0ll0,0110201)
for some constant C > 0 independent of  and s.
Furthermore,
allVollo.w oz < I0llay20  and  o2IIV0ll0,a)10201 < 1012010201,
imply

*VII(Agy — M@0, 10201 < Co*10ll2,0), 1020,
and hence

A = D@lcos ) < C Ml czeq,

The result follows, since it is not difficult to show that
2
Pllcos ) < CslIPllc2a g, -

O

Lemma 3.2.2. Assume that v € (1 —n,2 —n) is fixed and that 0 < 2r <s < rq.
Then there exists an operator

Gr,s : Cgixz(Qr,s) - Cgla(Qr,s)
such that, for all f € CY*(Q,s), the function w = G,(f) is a solution of

Aw = f in Bs(o)\Br(O)
w = 0 on dB;(0)
w € R on dB,(0)

In addition,
IlG”rS(f)”Ci’“(Q,,s) < C”f”c?ftz(gr’s)/

for some constant C > 0 that does not depend on s and r.
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Proof. See lemma 13.23 in [14] and [15]. O

Proposition 3.2.3. Fix v € (1 —n,2 —n). There exists r, < 141 such that, for

1
all r € (0, r2) we can define an operator
Grgy : C5 (M) = C (M),

with the property that, for all f € Cgf‘ »(M;) the function w = G;4,(f) solves

Lg, @) = f,

in M, with w € R constant on dB,(p). In addition

”G”'go(f)”C%'a(Mr) < C”f”CS,az(Mr)'

where C > 0 does not depend on r.

Proof. The proof is analogous to the proof of Proposition 13.28 in [14].
Observe that, taking s = rq small enough, the result of Lemma 3.2.2 holds
when A is replaced by Léo. This follows from Lemma 3.2.1 and a
perturbation argument like in the proof of Corollary 1.6.3. We denote by
Gy, the corresponding operator.
Let f € CSf‘Z(Mr) and define a function wy € C>*(M,) by
wo = T]Gr,rl (leml)

where 7 is a smooth, radial function equal to 1 in B 1n (p), vanishing in

M,, and satisfying |9,n(x)| < c|x|™' and [9?n(x)| < clx|™? for all x € B,,(0).
From this it follows that [[7]l|2,) (0,201 is uniformly bounded in o, for every
r<o< %rl. Thus,

IA

oV lwoll2,a),[0,201 ColIGrr (fla,, NM.aylo20]

IA

C||Gr,r1 (ler,rl )”CE’& (Qr,rl)

IA

C||f|Qr"’1 “Cs’fz(gnrl)

IA

C”f”CSftz(My)’

that s,
”wOHCE’”(Mr) < C”f”CSiYZ(Mr)’ (32)
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where the constant C > 0 is independent of r and 4.
Since wy = Gy, (flo,,,) in Qr,%rl' the function

h:= f — Ly, (wo)

is supported in M . We can consider that / is defined on the whole M with
h=0in B%rl (p), and we get

”h“CO""(M) ||h||C0r“(M%rl) < Cr1||h”(j8ftz(M%rl) < C"1||h||cgf"2(M,)

IA

1
C’1(||f||CSf‘2(M,) + ||Lg0(w0)||cgf2(Mr))

IA

Cri(Ifllcos g,y + lwollaaqug,))-

From (3.2) we have
Fllcosquay < CrallFllcon g, (33)

with the constant C,, > 0 independent of r.
Since Li,o : C2*(M) — C%*(M) has a bounded inverse, we can define the
function

wr = X)),

where y is a smooth, radial function equal to 1 in My,,, vanishing in B,,(p)
and satisfying |9,x(x)| < clx[™' and [2x(x)] < clx|™? for all x € By,(0)
and some 1, € (7, %rl) to be chosen later. This implies that ||x|l2a),[0,20] iS

uniformly bounded in o, for every r < ¢ < 1ry.
Hence, from (3.3)

lorllcnyy < Call L) llczan < Crllitlconn < Crllflcom oy (B:4)

since v < 0, where the constant C,, > 0 is independent of r and ;.

Define an application F, g, : CS’f‘Z(Mr) — C>%(M,) as

Fr’go(f) = wo + wl.

From (3.2) and (3.4) we obtain
s (Dl < Crallflcos o, (3.5)

where the constant C,; > 0 does not depend on r and 7.
Now,
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i) In Q,,, we have wy = G, (f |le) and w; = 0. Therefore
LY Frg(F) = f.
ii) In Q,, 2., we have wy = G, (f lo,,) and wq = X(Léo)‘l(h). Hence
LY (Fro(F) = £ + L (r(LL) ™ ().
iii) In My,, we have w; = (L;,O)‘l(h) and this implies

Léo(Fr/go(f)) = Léo(wO) +h= f

Thus, by (3.3)

L5 Frga() = flloastozsl < Mgy 0(Lg)™ (Do) o201
< ClILg, (X (Lg) ™ M)llcos )
< Cllx(Lg,) ™ Wllcza)
<

Ci’l 1’;3 | | (Lé())_l (h) | |C2,uz (M)

< Crry IRl cosuy

< Crl”£3||f||co"’2(Mr)’
e

where the constant C;, », > 0 does not depend on r.

Then,
1 _ 1
||Lg0 (Ff’,g[)(f)) - f”cgfcz(My) = “LgO(Fr,go (f)) - f”c?fz(gml)
= sup 0* IILy, (Frgo(f) = fll0.a,[0201
r<o<rp
< Cy1y® sup N fllcos -
r<o<r, v-2
Therefore
”L(glgo (Fr,go(f)) - f”CS-wz(M') < C1’1 rgl_v”f”Cgf‘Z(Mr) (36)

since1—n <v < 2—nimplies that2—v > 0 and —1-v > 0, for some constant
C;, > 0 independent of r and r,. The assertion follows from a perturbation
argument by (3.5) and (3.6), as in the proof of Corollary 1.6.3. m]
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3.3 Constant scalar curvature metrics on M\B,(p)

In this section we will solve the equation (3.1) using the method employed
in the interior analysis, the fixed point method. In fact we will find a family
of metrics with parameters A € R, 0 < r < r; and some boundary data.

For each ¢ € C**(§"1) L?~orthogonal to the constant functions, let
Uy € C%’“(M,) be such that 1, = 0 in M,, and uy, o ¥ = nQ(p), where Q; is
defined in Section 1.7.2, 1 is a smooth, radial function equal to 1 in B 1 0),
vanishing in IR"\B,,(0), and satisfying |9,1(x)| < clx|™! and [9?n(x)| < c|x|~2
for all x € B;,(0). As before, we have ||1l/2,4)[020] < ¢, for every r <o < %7’1.
Hence,

A

”u(p © \Ij”(Z,a),[G,ZU] = C”Qr((P)”(Z,a),[U,Zo] < CGl_n”Qr((P)Hcif“ (R1\B1(0))

IA

Cal—nrn—l ||(P||(2,a),r
and so

””@”CE'“(M,) = ”u(pllclzj:a(le) = SUP,SUS% U_V”u(p o W”(Z,az),[o,Za]
3.7)

IA

crt1 SUP,<;<71 O 1ol ,wr < cr Vel

forallv>1-n.

Finally, substituting u := u, + v in equation (3.1), we have that to show
the existence of a solution of the equation (3.1) it is enough to show that for
suitable A € R, and ¢ € C>*($/~!) the map M,(A, @, ) : C2*(M,) — C>*(M,),
given by

M4, 9,0) = =Grg)(Q'(AG, + 11 +0) + Ly, (4)), (3.8)
has a fixed point for small enough r > 0. We will show that M,(A,¢,-) is a
contraction, and as a consequence the fixed point will depend continuously
on the parameters r, A and ¢.
Proposition 3.3.1. Letv € (3/2-n,2-mn), 04 € (0,1/2), > 0and y > 0 be
fixed constants. There exists r, € (0,71/4) such thatif r € (0,7;), A € R with
IA]2 < 1243 and @ € C>*(8~1) is L2—orthogonal to the constant functions
with [|plla,a), < Br2*@=27%, then there is a fixed point of the map M,(A, ¢, -)
in the ball of radius yr2*%"~% in C2*(M,).

Proof. As in Proposition 2.3.2 we will show that

2+d—v—-%

1
”Mr(A/ (O 0)”c§“(Mr) < EVV
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and ,
”Mi’(A/ @, Z)1) - Mi’(A/ @, UZ)HCE’”(MJ < E”vl - UZHC%LY(M”/
for all v € C2(M,) with [0l 2y < 772 *,i=1and 2.

From (3.8) and Proposition 3.2.3 it follows that
”Mr(A/ @, O)HC%’U‘(MV) < C(“Ql(/\Gp + u(p)”cBiXZ(Mr) + ”L;fo(u(p)”(j?fz(g ))1

T,

for some constant ¢ > 0 independent of r.
From definition of the norm in Cg’f‘z (M;), we have

”Ql(/\Gp + u‘P)”CBfE(M,) = ”Ql(AGP)”CUrU‘(M%rl) + ”Ql(AGp + u(p)”cgffz(gr’rl)/
since uy = 0in M,,. Note that
NGyl < cr'*571,

with1+d/2 —n/4 > 0 and ¢ > 0 independent of r, and from (1.5)

2 e
Ol = M1 +2) f f (1 + stu) " sdsdt (3.9)
n—2 0o Jo
for 1+ stu > 0. Since 0 < ¢ <1 +stAG, < Cin M,, for small enough r, then
6—n
1 2 || coa <c
max I+ stAGy) 2oy ) < €

and
||Gp||c0,w(erl) <¢ (3.10)
2

where c > 01is a constant independent of . Thus, by (3.9) and (3.10)we have

IQ (AG)lIcoau, P CIAPR < ¢ y?ri—v=3, (3.11)
7?’

where the constant C > 0 does not depend on rand ¢’ = 2n -4 +v > 0 since
v>3/2—-n.
Now, observe that (3.7) implies

Jip(x)] < cﬁrz+d‘%‘54, Yx e M,,

with 2 +d —n/2 — 64 > 0. From this and |AG,(x)| < cr'*5-1 for all x € Qrys
we get0 <c <1+HAGy+1uy) < Cforevery 0 <t < 1. Again, using (3.7) and
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IAVGy| < cr%‘%, we conclude that the Holder norm of (1 + t(AG, + “(p))% is
bounded independently of r and t. Therefore,

6=n
62?;% “(1 + t(/\Gp + uq))) n=2 ”(O,a),[a,Za] <C

Notice that

2— 2 2— 2 2
9 Vllu(P”(O,a),[U,ZG] S CU v”n”(o,a),[a,ZU]”Qr((P)”(O,a),[a,Za]

IA

4-2n—v 2
Co ||Qr((P)”C§gz(nzn\Br(0))

< CG4_2” -V r2n—2 | |(P | |(22,a),r

< Cp)21,6+2d—v—n—264 ,

since from r < 0 we deduce that 472" < 172"~ furthermore |I1l(0,) [020]
is bounded uniformly in ¢ € (r, %1’1). From (3.9) we obtain

IA

> IQ Gy + tg)lompozel S COPVIAG +ugll

< C(|/\|20'6_V_2n + 02_V||”<P”(20,a),[a,20]

< Cﬁ(l/\lzr%_v_zn + 7,6+2d—1/—n—264)
< Cﬁ?’g+d_v_%,

sincen > 3,04 <1/2,r <oandv > 3/2-nimplies that 6 +2d — v —n — 2064 >
5/2+d—-v—-n/2and 9/2 —v-2n<0.
Therefore :
1 L oigy-n
||Q (AGP + u(p)“CSf‘z(le) S Cﬁ}"zr ’ Y 2’ (3'12)

and from (3.11) and (3.12), we get

IQ"AGy + ugp)licon oy < Cpr rPHi72, (3.13)

2

for some constant 6" > 0 independent of r.
Notice that

1 ..
Agoly = §8i log det gggzo](nanr((p) +dnQ(¢))
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+ 9:87(n0,Q () + ImQ(9))
+ (g] - 6)19,0,Q(p) + g1(0ma,Q(¢)

+  9ndiQH(¢p) + 9:d MQHP)),
since AQ, = 6ij8ianr = 0. Hence, using that (g0);j = &;j + O(x?), det go =
1+ O(|x?),

G”Verl(O/a)/[g/Z(y] < C”Qr”(Z,a),[a,Z(r]

and
IV Q0,010,201 < ClQ 2,010,201

we obtain

||Agg(u(p)”(0,a),[a,2a] < C(”Qr((P)”(Z,a),[U,Za]

+ 0 2INll0,0)102011Q @)l 2,0, [0,201),

where the term with 072 appears only for o > 11, since i = 0in B 1 (0).

Then
”Ago(u(p)”(o,oz),[o,Za] < Cr1 ||Qr((P)||(2,a),[U,20]-

Therefore, using that 3 —n —v > 0 we get

GZ_V”L}gO(u(p)”(o,a),[(r,Za] < Cr1GZ_V”Qr((P)”(Z,a),[a,ZU]

IA

3_ —_
Cr o™ NQPMl 2 (g, (0))

IA

Cr1 rn_lll(P”(Z,a),r (3'14)

IA

Cr1 ﬁr1+d+§—64

n
— Cr1 ﬁrn—1+v—64 r2+d—v— 7,

withn—-1+v—04>0,sincev > 3/2 —nand 64 € (0,1/2).
This implies

IIL§0(u<p)IIC3f2(Qm) < Cp, priirvTos v, (3.15)

withn—1+v—04 > 0.
Therefore, by (3.13) and (3.15) we obtain

IM(A, @, O)”C%“(M,) < yr2+d—v—%,
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for r > 0 small enough.
For the same reason as before, we obtain that

”MT(/\I (PI Ul) - MT(/\/ (PI UO)”CE/“(M},) <
< clQ'(AG, + ug +v1) — QYAG, + up + v0)llcos -
Furthermore,

QYAGy + ugp +v1) — QUAG, + Uy + v9) =

1 1
- B - [ [ s,
n—2 0 Jo

where z; = AG), + uy + vg + t(v1 — vp), since for small enough r > 0 we have
0 < ¢ <1+sz <C. This implies

6-n
”(1 + SZt)"_Z ||C0,a(erl) <C
2

and o
(1 + sz¢) =2 |0, (0,201 < C,

with the constant C > 0 independent of r. Then, by (3.10), we have

IQ"(AGy + 1) = QY(AG) + v0)llcoaqu, ) <

IA

C(Al+ ”vlllcgra(Mr) + “UOHC%H(MT))lIUl - UO”C%’“(M,)

C(r%‘“%" + r2+d—v—§)|lvl

IA

~ ollc2aug,)

and

GZ_V”Ql(AGP + Uy + Ul) - Ql (AGP + Uy + UO)”(O,LX),[U,ZG] <

< C(AMo*™™ + o llugll 2,010,201 + 0201 1l2,0), 10,201

+02([00/l(2,0), 10,2010 " 101 = V0ll(0,00, 10,201 (3.16)

< COMoP™ + 0> IQ@Nlcas o, oy + 7 Ionllcasu,

+O—2+v||00||C3’“(M,))||01 - UO”C%’“(M,)
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n

d
< C(or?* 271 + r2||g0||(2,a),r + pA+d-

n

2)”01 - UO”C%’“(M,)
d_n

< Cry pr** 2 H o1 = voll 20y,

sincel+v<0,2+d/2-n/4<3+d—n/2<4+d-n/2-04and 0 < d4 < 1/2.
Notice that2 + d/2 —n/4 > 0.

Therefore,
1
”Mi’(A/ @, 7)1) - MY(A/ @, vZ)”Ci’”(Mr) < Ellvl - U2I|CE’“(Mr)’ (317)
for small enough r > 0. O

From Proposition 3.3.1 we get the main result of this chapter.

Theorem 3.3.2. Let v € (3/2—-n,2—-n), 64 € (0,1/2), p > 0 and y > 0 be
fixed constants. There is ro € (0,71/2) such that if r € (0,12), A € R with
AR < #2%% and ¢ € C2%(8"Y) is L2—orthogonal to the constant functions
with ||pllo,a, < ﬁr2+d_%‘54, then there is a solution V,, € C%’“(Mr) to the
problem
{ Ho(1+AGy +up+Vap) =0 in M,
(Ll(p + V/\,(p) o \Ij|33r(0) —QE R on oM,

Moreover,

IVagllaagy, < 772, (3.18)

and
Vi = Vagallczapg,y < Cr™llpr — 2l (3.19)

for some constant 65 > 0 small enough independent of r.

Proof. The solution V) ,, is the fixed point of M,(A, ¢, ) given by Proposition
3.3.1 with the estimate (3.18).

As in the proof of Theorem 2.3.3, using (3.8), (3.17) and Proposition 3.2.3,
we get

||V/\,<p1 - V/\/(PZHCE’“(M,) < 2||Mr()\/ P1, V/\,(pz) - Mr(A/ P2, V/\,(Pz)llcg'“(Mr)

< c(IQUAG) + gy + Vi) = QUAGy + ity + Vigolllon o

1
+ IngO (u(m—((Jz)”Csz(Qr’yl))/
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since u,, = 0in M,,, i = 1,2. Now, in the same way that we obtained the
inequality in (3.16), we get

GZ_V”Ql(AGP + Up, + V)\,(Pz) - Ql (/\Gp + Ugp, + V/\,(pz)”(O,a),[a,Za] <

d_n _
< Cr2*e107ug, - ll0,0), 10,201

2442 1_p—vy
<Crz271 ”ugol_‘f’Z”Cff“n(R"\Br(O))

d_n_
< Cr* 27 17lpy — ol

(2,0(),1’/

sincel—-n—-v<0and with2 +d/2 -n/4 > 0.
Finally, the third inequality in (3.14) implies

1 -1
”Lgou(f’l_(PZHCSftz(an) < crt ”(Pl - (p2”(2/0‘)/7”

where the constant C > 0 does not depend on r.
Therefore, we conclude the inequality (3.19), sincen — 1+ v > 0. m]

Define f := 1/F, where ¥ is the function defined in Section 2.2. We have

go=1f w2 ¢ with f =1+ O(jx]?) in conformal normal coordinates centered at
p. We will denote the full conformal factor of the resulting constant scalar
curvature metric in M, with respect to the metric g as 8,(A, ¢), that is, the
metric

3=8,)g

has constant scalar curvature Ry = n(n — 1), where

Bi(A, @) = f+AfGp + fup + fVaep.
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cHAPTER 4

Constant Scalar Curvature on M\{p}

4.1 Introduction

The main task of this chapter is to prove the following theorem:

Theorem 4.1.1. Let (M", o) be an n—dimensional compact Riemannian manifold
of scalar curvature Rg, = n(n — 1), nondegenerate about 1, and let p € M be such
that VKW, (p) = 0 for k = 0,...,d — 2, where Wy, is the Weyl tensor. Then there
exist a constant g and a one-parameter family of complete metrics g on M\{p}
defined for ¢ € (0, &) such that:

i) each g. is conformal to go and has constant scalar curvature Rq, = n(n—1);
ii) g¢ is asymptotically Delaunay;
ii1) ge — go uniformly on compact sets in M\{p} as ¢ — 0.

If the dimension is at most 5, no condition on the Weyl tensor is needed.
Let us give some examples of non locally conformally flat manifolds for
which the theorem applies.

Example: The spectrum of the Laplacian on the n—sphere 5" (k) of constant
curvature k > 0 is given by Spec(A,) = {i(n +i—1)k;i = 0,1,...}. Consider
the product manifolds $%(k;) X $%(k2) and $%(k3) X $3(ks). If we normalize so
that the curvatures satisfy the conditions k; + k» = 6 and k3 + 3ks = 10, then

the operator given in definition 1 with u = 1 is equal to Lém = Agu +4 and
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Lés , = Ag,, +5, where g1 and g34 are the standard metrics on S2 (k1) % S*(k2)

and $?(k3) x$°(ky), respectively. Notice that we have Ry, = 12and R,, = 20.
It is not difficult to show that the spectra are given by

Spec(Léu) = Spec(Ag,,) — 4 = Spec(Aq,) + Spec(Ay,) — 4

and

Spec(L,,,) = Spec(Ag,,) — 4 = Spec(Ag,) + Spec(Ag,) — 4,

gs1)
&34
where g; and g4 are the standard metrics on $?(k;) and $3(ky), [ = 1,2,3,
respectively. Observe that

Spec(Aq,) + Spec(Ag,) = {i(i + k1 + j(j + Dko;1,j=0,1,2,...}
C {ii+Dkyym=1,2andi=0,1,...} U[12, ),
and

Spec(Ag,) + Spec(Ag,) = [i(i+ ks + j(j + 2ky;i,j = 0,1,2,...)

C i + 1)ks, i(i + 2)ka;i = 0,1,...} UTL0, o).

The product $?(k;) x $%(kz) with normalized constant scalar curvature
equal to 12, is degenerate if and only if ky = 4/(i(i + 1)) or k, = 4/(i(i + 1)) for
some i = 1,2,... For the product $?(ks) X $°(ks) with normalized constant
scalar curvature equal to 20, we conclude that it is degenerate if and only if
ks =4/@GG + 1)) or kg = 4/(i(i + 2)), for some i =1,2,...

Therefore we conclude that only countably many of these products are
degenerate.

In previous chapters we have constructed a family of constant scalar

curvature metrics on B,,(p), conformal to gy and singular at p, with
parameters ¢ € (0, &) for some & > 0, R > 0, 2 € R" and high eigenmode
boundary data ¢. We have also constructed a family of constant scalar
curvature metrics on M, = M\B,(p) conformal to go with parameters r €
(0, ) for some r, > 0, A € R and boundary data ¢ Lz—orthogonal to the
constant functions.

In this chapter we examine suitable choices of the parameter sets on
each piece so that the Cauchy data can be made to match up to be C! at the
boundary of B;, (p). In this way we obtain a weak solution to Hg, (1) = 0 on
M\{p}. In other words, we obtain a function u defined on the whole M\{p}
and satisfying the equation
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-2 nmn-—2) u
f ((Vgou,vgo<p>g0 20— ReottP ( I )3 %¢)dvgo =0,
M\{p) 4n-1)

for all ¢ € C°(M\({p}) := smooth functions defined on M\{p} with compact
support. It follows from elliptic regularity theory and the ellipticity of H,
that the glued solutions are smooth metric.

To do this we will split the equation that the Cauchy data must
satisfy in an equation corresponding to the high eigenmode, another one
corresponding to the space spanned by the constant functions, and n
equations corresponding to the space spanned by the coordinate functions.

4.2 Matching the Cauchy data

From Theorem 2.3.3 there is a family of constant scalar curvature metrics in
B:.(p)\1p}, for small enough ¢ > 0, satisfying the following;:

g = AR, a,0)7g,
with Ry = n(n - 1),
A:(R,a,¢) =tuera + Wer + 0y + UeRao,
in conformal normal coordinates centered at p, and with
I1) R =2(1 + b)e~! and [b] < 1/2;

2) ¢ € n(C2(S!Y) with [[Pllgayr, <wre 1

x > 0 is some constant to be chosen later;

1,61 €(0,(8n—16)"1) and

13) |alrl™® < 1 with &, > 6y

M4) w,g=0for3<n<7 w.,remn '(Ccx

Yed-t (Br,(0)\{0})) is the solution of
the equation (2.9) forn > §;

0, satisfies the
,withu € (1,5/4)

I5) Uerag € Ci*(Br (OO with 7/ (U ra6l98, o)

inequality (2.45) and has norm bounded by Tr?d_”
and 7 > 0 is independent of ¢ and «.

n
2
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Also, from Theorem 3.3.2 there is a family of constant scalar curvature
metrics in M,, = M\B,,(p), for small enough ¢ > 0, satisfying the following:

§=8.(L o),
with Ry = n(n - 1),

B (A, @) =f+AfGp+ fup + Ve,
in conformal normal coordinates centered at p, with

E1) f =1+ f with f = O(IxP);

3n
-2+
& 7

E2) A € Rwith AP <*

E3) ¢ € C?>*(§}1) is L2~orthogonal to the constant functions and belongs

to the ball of radius ﬁr§+d_§_64, 64 € (0,1/2) and B > 0 is a constant to
be chosen later;

E4) Vyp € C%’“(Mre) is constant on dM,,, satisfies the inequality (3.19) and

n
-5

has norm bounded by yr?d ,withve (3/2-n,2-n)and y > 0is
a constant independent of ¢ and .

Recall that r, = &® with (d+1—-061)7! <5 < 4(d—2+3n/2)7!, see Remark
2.2.1. For example, we can choose 1 =1/8nands =2(n -1 — 1/2n)71L

We want to show that there are parameters, R € Ry, 2 € R, A € R and
Q€ CZ'“(S’T“L_‘l) such that

AR, a,¢)
9rA:(R, a,¢)

8.\, )
28, (1, ¢) @1)

on dB, (p).

First, let 5; € (0, (8n — 16)7!) be fixed. If we take w and 9 in the ball of
radius r?d_%_él in CZ'“(Sﬁ_l), with w belonging to the space spanned by the
coordinate functions, 9 belonging to the high eigenmode, and we define
@ = w + 9, then we can apply Theorem 3.3.2 with § = 2 and 64 = 01, to
define B, (A, w + V), since [|Qll2,4)r. < 2r§+d_%_bl.
Now define

(PS = T(,/,: ((Bre (A, w + 8) - u‘g,R’a - wis)ls;lS—l)
B B 3 (4.2)
= T(;: ((f + /\pr + fuw+9 + fV/\,(,Hs —UeRa — wg,R)|S:.£-1) + \9,
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where in the second equality we use that 71}/ (1,45 |S’ri'1) =39, 1/ (Viw+s |S;?;1) =

0and f =1+ f, with f = O(lxP).

We have to derive an estimate for [|s|2,), - To do this, we will use the
inequality (1.15) in Lemma 1.5.3. But before, from (1.14) in Corollary 1.4.4,
we obtain

7 (e Ralgy 1) = O(alr?), (4.3)

since r. = & and R*Z = 2(1 + b)e~! with s < 4(d — 2 + 3n/2)"1 < 2(n — 2)~!
and |[b] < 1/2 implies that R < 7, for small enough ¢ > 0.

Let 1+d/2 —nj4 > 6, > 6, and leta € R" with Jaf2 < # 7 (5, = 1/8,
for example). Hence we have that |ajr. ™ < ri+%_%_62 tends to zero when ¢
goes to zero, and 13) is satisfied for ¢ > 0 small enough. Furthermore, since
la|?r? < r§+d_%, we can show that

2+d-4
”7—(;: (Ue,Ra |5'r1{—1 )||(2,a),rg <Cr, 7, (4.4)

for some constant C > 0 independent of ¢, R and a.

3n

Observe that (fGp)(x) = x> + O(|x[>™") and |A]? < ri_2+ > imply
’ 2+4-4
T4, (A(f Gp)|s;l;1) = O(r, ),
with2+d/2-n/4>2+d—-n/2. Thus
I Gl lar, < Cre 2. (4.5)

Now, using (1.23), (2.10), (3.18), (4.2), Lemma 1.5.3 and the fact that f =
O(x[?), we deduce that

24d-12
lps = SMa,ayr. < cre 2, (4.6)

for every § € ”/(C**($!~1)) in the ball of radius r?d

¢ > 0 that does not depend on ¢. Hence,

n
-
277! for some constant
2+d—-5%-0
lipslla,r, <Cre 27,

for some constant C > 0 that does not depend on ¢. Therefore we can
apply Theorem 2.3.3 with « equal to this constant C and A(R, a, py) is well
defined. The definition (4.2) immediately yields

T (AR, 8, P9)lgp-1) = 1 (Br. (A, @ + Dlgy).
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We project the second equation of the system (4.1) on the high
eigenmode, the space of functions which are L2(S”‘1)—orthogonal to eg
,...,ey. This yields a nonlinear equation which can be written as

rear(vS - uS) + SE(a/ b/ /\/ C‘)/ ‘9) = 01 (47)
on d,B,,(0), where

S:(,b,A,w,9) = rdv4, s +71:0,m) (uS,R,aIS;;;l) + 10y W, R

+

Vsarn;/f:.((ug,R,a,cﬁs - ? - /\pr - ?ua)+8)|5;1{—1)

- rgarn;z((fV/\,a)+8)|5;1;1)-

Since vy = P,(9) and ug = Q,(9) in Qrg,%rl C M,, for some r; > 0, see
Section 3.3 in Chapter 3, from (1.20) and (1.22), we conclude that

redp(vy — ug)(rer) = (P1(91) — Qi(91)),

where 91 € C>%(§"!) is defined by 91(6) := 9(r0). Define an isomorphism
-Z . 7_(u(CZ,oz(SH—l)) - nu(cl,a(sn—l)) by

Z(9) := 3 (P1(9) — u(9)),

(see Chapter 14 in [14], proof of Proposition 8 in [30] and proof of Proposition
2.6 in [36]).

To solve the equation (4.7) it is enough to show that the map
He(a,b A, w,”): D, = 7 (C>*(S" 1)) given by

7_{6(”/ b/ /\/ w, ‘9) = _Z_l (SE(a/ bl /\/ w, ‘91’5)(78'))/

has a fixed point, where D, := {8 € ”/(C>*S")); [I9ll,m1 < r§+d_%_6l} and

9. (%) := 9(r7 ).

Lemma 4.2.1. There is a constant ey > 0 such that if ¢ € (0, &), a € R" with
_n D431

aP <72 band Ain R with |b] < 1/2 and AP < 72242 and w € C2o(§!Y)

belongs to the space spanned by the coordinate functions and with norm bounded

by r§+d_%_6], then the map He(a, b, A, w,-) has a fixed point in D,.

Proof. As before, in Proposition 2.3.2 and 3.3.1 it is enough to show that

1 24d-2-5
[He(a,b, A, @, 0)llgayr < =7 2 "

ST (4.8)
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and
1
||7_{€(a/ b/ A/ w, ‘91) - 7-‘{€(a/ b/ A/ w, ‘92)”(2,(1),1 < 5”‘91 - ‘92“(2,0(),1/ (4'9)

for all 94,9, € D,.
Since Z is an isomorphism, we have that

||7-{€ (a/ b/ /\/ w, 0)”(2,0(),1

IA

Cllredrvgoll1,apr. + ||7’s3r71§f.(Me,R,a|5;;¥—1)||(1,a),rg
+ 1redwe Rllw,a)r. + 1170707 (Ue Ragolsi-)ll1,a,r,
+ lredr e (Fle)llar

+ ||1’58r7'(;: (/\(pr)ls;lg—l)”(l,a),rg

+ lrede ! (Frw)lgy 1)l

+ Ired i (FVals-Dllwa,r),

where C > 0 is a constant that does not depend on ¢ and

Po = 7 ((f + AfGp + frt + fVr = te,Ra =~ WeR)lgy),

by (4.2). Thus, from (4.6),

2+d-4
Ipoll@ayr, < Cre 2,

where the constant C > 0 is independent of ¢.
We will use the inequality (1.16) of Lemma 1.5.3. So, from (1.21) we

obtain
2+d-4%
70100l < cliPollayr, S e 2.

Asin (4.4) and (4.5), we obtain

2+d-4
7010y, (e Ralgp-MLar, < e 2

and

a3

’” 2
Iredr ey, (Af Gl la,anr. < cre’
From (2.10), (2.44) and (3.18), we get

2+d-%
e Rl 31 ) < €Te 7
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2+d-4
IUeragollg,m3r,rg S €7e

and B

2+
Vol 2 Scre 2,

for some constant ¢ > 0 independent of ¢. From this, (1.23) and the fact that

f = O(|x|?) we show that the other terms are bounded by r§+d_%_61 , for small

enough ¢ > 0. Therefore we get (4.8).
Now, we have

IH:(a,b, A, w,91) = He(a, b, A, w, 92)|2,a)1 <
< Cllredrvgs  —8,.1-s, oSl re
Hiredr ) (Uerags, | = Uerags, lsrIllwar
HIred i (F(Vawes, s = Vawrs, Dlsg)llwar.

+||7’ear77;z ((qu,é,,l—S,S,z)lSy{-l )||(1,a),rg )

where, by (4.2)

03,1~ Ot = (@3, = V1. 2) = ﬂ;;((?us,{.,l—s,&z + ?(VA,ms,&l = Vawt9,,2)lgi-1)-
Using the inequality (1.15) of Lemma 1.5.3, (1.23), (3.19) and the fact that
f = O(|x[*), we obtain
19,1 = Srn = (s, = S My < 181 = S allowyrs

for some constants ¢ > 0 and ¢ > 0 that does not depend on ¢. This implies

70705, 8,015, -2 la)re < cr2®l191 = S2ll2,1- (4.10)
From (2.45) and (3.19) we conclude that

o
”ué',R,H,(f)Snﬂ - ug’R’a’q)si‘{»/z||(2/a)r[%r¥rr8] S Crglllsré"l - Sy{,,ZH(Z,a),r{_

and
IV w8, 1 = Viwrs,all@ayiord < Critlld 1 = S, 2l
for some 6; > 0 and 65 > 0 independent of ¢. From this, (1.23) and the fact

that f =1+ ?, we derive an estimate like (4.10) for the other terms, and
from this the inequality (4.9) follows, since ¢ is small enough. m|

Instituto de Matematica Pura e Aplicada 74 November 19, 2009



Almir Rogério Silva Santos A Construction of Constant Scalar Curvature Manifolds

Therefore there exists a unique solution of (4.7) in the ball of radius
r§+d_%_6l in C%¢ (S’ﬁg_l). We denote by 9, ;1 , this solution given by Lemma
4.2.1. Since this solution is obtained through the application of fixed point
theorems for contraction mappings, it is continuous with respect to the
parameters ¢, 4, b, A and w.

Recall that R2* = 2(1 + b)e~! with |b| < 1/2. Hence, using (4.3) and
Corollary 1.4.4 and 1.4.5 we show that

52 2-n
4(1+b)

U Ra(re0) = 14+b+ Te

+ ((n=2)uer(re0) + royu, g(r:0))a - x
o n+2

+ O(laPr?) + O(e*=2r:™),

where the last term, O(EZ% rz"), does not depend on 6. Hence, we have

2
— € 2-n
A:(R,a,¢s,,,,,)r:0) = 1+b+ a+D Te
+  ((n = 2)ug r(r:0) + 1:9p1ie r(r:0))rea - 0
+

we r(re0) + 065,00 (r:0)
+ uE’R’u’¢sg,u,b,A,ar (re0) + O(|LZ|21"ZT)

+ O(ez%rg”).
In the exterior manifold M,,, in conformal normal coordinate system in
the neighborhood of dM;,, namely Q, 1, , we have
el
Br (A, @ +Beap1,)re0) = 1+ A" 4ty (re0) + f(r:0)

t(Ftta9, 1 1) (T7e0) + (F Vs, 0y 1) (e0) + O(AIF™).

gf i (B, (0)\{0})), we now project the system (4.1)

on the set of functions spanned by the constant function. This yields the
equations

Using that w, g € n”’(C
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82 2-n
b+(4(1+b)_)\)r€ = Ho(a b A w)
, (4.11)
62 2-n
2-n) (4(1 i )\) rs = 1:0;Hoe(a,b, A, w)
where
Ho,e(a,b, A, w) := — f UeRags, . (Fe)eo
g1 &a,b,\,w
- = 2+d-5%
+ l(f + fuw+8&a/bl/\,w + fV/\,w+SE,,,,b,,\,m)(re')eO + O(rs )
s
and

7‘88;’7_(0,8((1, b, A, CL)) = —f

Te . Ver
-1 Larué’R’a’qus,a,b,/\,m( & )eO/

- = 2+d-%
G Ftars i+ FVes S0 4 06T
s

_n _ny3n
since [a2 <72, MR <77 24 d/2—n/4 > 2+d—n/2and r, = & with
s < 4(d — 2+ 3n/2)~! implies that 2% —sn > s(2 +d —n/2). Moreover, by
(1.23), (2.44), (3.18) and the fact that? = O(|x|?), we obtain

Hoe(a,b, A, w) = OG- ?) (4.12)

and e
redyHoe(a,b, A, w) = O ?). (4.13)

Lemma 4.2.2. There is a constant €1 > 0 such that if ¢ € (0,¢1), a € R"

with al* < rg_% and w € C>*(8"~1) belongs to the space spanned by the coordinate

2+d—5-0

unctions and has norm bounded by r, ' then the system (4.11) has a solution
YTe Y

2 . 2 d—2+%
(b,A) e R%, with |b] < 1/2and |A]* <,
Proof. First, the hypothesis and Lemma 4.2.1 imply that the system (4.11) is
well defined.
The second equation of (4.11) implies

2 n—1

< rf_ 287’7_{0,8 ([1, b/ A/ a))

A= 1a+n) T n
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From this and the first equation in (4.11) we get

r

b = n _{ 231‘7{0,8 (ﬂ, b/ A/ CU) + 7{0,8 (El, b/ A/ Cl))

Now, define a continuous map G 4, : Do,e — R2 by

Ye
n—2

GenwlbA) = ( 0, Hoe(a,b, A, @) + Ho,.(a,b, A, w),

2 rn—l

€ &
4(1+b) + n— zarWO,s(ar b, A w)|,

Q_1+3n

where Dy := {(b,A) € R%|b| < 1/2and |A| <72 *}.
Since r. = ¢° withss < 4(d—2+3n/2)71, it follows that 2 > s(d/2—1+3n/4).
Then, using (4.12) and (4.13) we can show that

gs,u,a)(DO,e) - 'Z)O,é‘/

for small enough ¢ > 0. By the Brouwer’s fixed point theorem it follows
that there exists a fixed point of the map G 4. Obviously, this fixed point
is a solution of the system (4.11). O

With further work, one can also show that the mapping is a contraction,
and hence that the fixed point is unique and depends continuously on the
parameter ¢, a and w.

From now on we will work with the fixed point given by Lemma 4.2.2
and we will write simply as (b, A).

Finally, we project the system (4.1) over the space of functions spanned
by the coordinate functions. It will be convenient to decompose w in

n
W= Z wiei, (4.14)
i=1
where
w; = f cu(rg~)e,'.
Sn—l
Hence,

lwi| < ¢y sup |wl.
st

From this and Remark 1.7.4 we get the system
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F(rs)rsai —w; = 7_{i,e(ar a))
(4.15)
G(rs)reai - (1 - n)wi = rgarq_{i,e(a/ a))/

i=1,...,n, where
F(re) == (n— Z)us,R(re 0) + rsarue,R(ree)/

G(re) := (n = 2ue g(r:0) + nredyue g(r:0) + 2%, r(r:0),

Hotw,0) = =i [ Uiago,, =T = Foss .
~FVrorsoppn)(reder + O 2
and
rdHi@,w) = o fs U, ~ T~ Flossia,
—FVrrs. o )reder + Oy,

where the constant ¢,,; > 0 depends only on 7 and i.
In the same way that we found (4.12) and (4.13), we get

Hiea, ) = OG22 (4.16)

and e
redy Hie(a, ) = O, ). (4.17)
Lemma 4.2.3. There is a constant €3 > 0 such that if ¢ € (0, &2) then the system
(4.15) has a solution (a,w) € R" x C**(8~1) with |af* < r‘j_i and w given by

24d-1-5
(4.14) of norm bounded by . 2",

Proof. From Lemma 4.2.1 and 4.2.2 we conclude that the system (4.15) is
well defined.

Multiplying the first equation in (4.15) by n — 1 and adding the second
equation we obtain

(G(re) + (n =1)F(re))rea; = (n — 1)7{i,s(ar w) + rearﬁi,s(ar w).

Sinces < 4(d —2+3n/2)7! <2(n-2)"tand 2 —s(n — 2) < 2222 — sp, then
by Corollary 1.4.5 and recalling that R% = 2(1+b)e ! and r, = ¢°, we have
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F(r) = (1 —2)(1+b) + O(e2502)) 4 O(e2i3 51
= (n — 2)(1 + b) + O(Ez—S(Vl—Z))
and
G(re) + (n—1DF(re) = n(n—2ueg + (2n — Vredpute g + r2%u, g

= n(n—2)(1+b) + O(e>5(-2))
with 2 —s(n — 2) > 0. Thus,
a; = (G(re) + (n = DF(re)) g (n = DHi (@, @) + 1e9,Hi o (a, @)).
Putting this in the first equation of (4.15), we get
Wi = (Glre) + (1 = DE(r)) " Fro)(red, Hie(a, ) + (n = 1)H;,) = Hi..
Now, define a continuous map K : D;, — R? by

K e (@i, i) = ((G(re) + (1 = DF(ro)) e (red Hie(a, @) + (n = 1)H;e),
(G(re) + (n — 1)F(r£))_1F(76)(75‘877'{i,e(ﬂ/ w)+(n—-DH;.) - 7'{1‘,5) ,

where D; . = {(a;, w;) € R%|a* < n‘lr‘z—% and |w;| < n‘lki‘lirim_%_él} and
kin = lleill@,a),1-
From (4.16) and (4.17) we can show that

7<i,e (Di,s) c Di,s/

for small enough ¢ > 0. Again, by the Brouwer’s fixed point theorem there
exists a fixed point of the map K; . and this fixed point is a solution of the
system (4.15). |

Now we are ready to prove the main theorem of this thesis.

Proof of Theorem 4.1.1. We keep the notation of the last chapter. Using
Theorem 2.3.3 we find a family of constant scalar curvature metrics in

B:.(p) € M, for small enough ¢ > 0, given by

g = ﬂS(R/a/ (P)%g/
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with the parameters R € R*, 2 € R" and ¢ € n”(CZ'“(Sf:l)) satisfying the
conditions I1-I5 in Section 4.2.

From Theorem 3.3.2 we obtain a family of constant scalar curvature
metrics in M\B,, (p), for small enough ¢ > 0, given by

3=8.(A g,

with the parameters A € R and ¢ € C**(8!"!) satisfying the conditions
E1-E4 in Section 4.2. As before, the metric g is conformal to the metric go.

From Lemmas 4.2.1, 4.2.2 and 4.2.3 we conclude that there is ¢y > 0 such
that for all € € (0, &) there are parameters R, a., ¢, A and ¢, for which the
functions A (R, a¢, p¢) and By, (A¢, @) coincide up to order one in dB;. (p).
Hence using elliptic regularity we show that the function ‘W, defined by
We := A(Re,a:,¢¢) in By, (p)\p} and W, = B, (A, @) in M\B,,(p) is a
positive smooth function in M\{p}. Moreover, ‘W, tends to infinity on
approach to p.

4
Therefore, the metric g, := W/ g is a complete smooth metric defined
in M\{p} and by Theorem 2.3.3 and 3.3.2 it satisfies i), ii) and iii). O

4.3 Multiple point gluing

In this final section we discuss the minor changes that need to be made in
order to deal with more than one singular point. Let X = {py, ..., px} so that
at each point we have VleO (pi)=0,forl=0,...,d-2.

As in the previous case, there are three steps. In Chapter 2 we do not
need to make any changes, since the analysis is done at each point p;. Here,
we find a family of metrics defined in B, _(p)\{p}, with & = tie, ¢ > 0,
t;€ (5,6 ) and 6 > 0 fixed,i=1,...,k.

In order to get a family of metrics as in Chapter 3 we need to make some
changes. Let W; : By,,(0) — M be a normal coordinate system with respect

4

to gi = 7:1@ go on M centered at p;. Here, ¥; is such that as in Chapter 3.
Therefore, each metric g; gives us conformal normal coordinates centered at
pi. Recall that ; = 1+ O(|x[?) in the coordinate system ;. Denote by G, the
Green’s function for L;,O with pole at p; and assume that }gr& |x|”_2Gp,.(x) =1

in the coordinate system W;. Let Gy, .., € C*(M\{p1, ..., px}) be such that

k
Gpy,..pp = Z AiGp,,
i=1
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where A; € R.

Let r = (r¢,...,7¢). Denote by M, the complement in M of the union
of W;(B,..(0)) and define the space Clv'“(M\{pl, ..., Px}) as in Definition 1.5.5,
with the Ifollowing norm

k
lolles oy = Wellcsqay )+ Y10 © Willgay
i=1

The space C5*(M,) is defined similarly.

It is possible to show an analogue of Proposition 3.2.3 in this context,
with w € R constant on any component of dM,.

Let @ = (1,...,¢x), with ¢; € C**(§"1) L>—orthogonal to the constant
functions. Let u, € C>*(M,) be such that up o Wi = nQ, (i), where 1 is
a smooth, radial function equal to 1 in B,(0), vanishing in IR"\By,,(0), and
satisfying |9,1(x)| < clx|~! and |9?n(x)| < c|x|72 for all x € By, (0).

Finally, in the same way that we showed the existence of solutions to
the equation (3.1), we solve the equation

/////

The result reads as follows:

Theorem 4.3.1. Let (M", o) be an n—dimensional compact Riemannian manifold
of scalar curvature n(n — 1), nondegenerate about 1. Let {p1, ..., px} a set of points
in M so that V(]ggwgo(Pi) =0forj=0,..., [”—56] andi=1,...,k where Wy is the
Weyl tensor of the metric go. There exists a complete metric g on M\({p1, ..., pk}
conformal to o, with constant scalar curvature n(n — 1), obtained by attaching
Delaunay-type ends to the points p1, ..., px.
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