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First Mott lobe of bosons with local two- and three-body interactions
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Using the density matrix renormalization group method, we determine the phase diagram of the Bose-Hubbard
model with local two- and three-body interactions, describing polar molecules in one-dimensional optical lattices.
The difference in the block von Neumann entropy with different system sizes was used to establish the critical
points. We found that the quantum critical point position increases with the three-body interaction. We show that
the model studied is in the same universality class as the model with pure two-body interactions.
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I. INTRODUCTION

The intense investigation of cold atoms loaded into an
optical lattice has made possible the experimental observation
of quantum phase transitions in degenerate gases. For instance,
Greiner et al. [1] observed a quantum phase transition from
a superfluid to a Mott insulator phase by loading 87Rb atoms
into a three-dimensional (3D) optical lattice potential. Working
with the same atoms, Stöferle et al. [2] used an optical lattice to
realize a strongly interacting Bose gas in one spatial dimension
(1D), and they study the transition between the Mott insulator
and superfluid phases in the crossover regime from 1D to 3D.

The above experimental results were reasonably described
using the Bose-Hubbard model in any dimension. In one
dimension, this model with pure two-body interactions has
been intensively studied [3–7]. A compressible superfluid state
or a Mott insulator state can be obtained, and we know that
the model is in the universality class of the XY spin model
so that there is a Kosterlitz-Thouless phase transition with
the Tomonaga-Luttinger parameter K = 1/2, and the gap
is exponentially small in the vicinity of the critical point.
Recently, more precise calculation found that the critical point
is located at tc = 0.305 ± 0.001 [7].

The most common interaction effects in condensed matter
physics are due to two-body interactions, and the other
higher-order many-body interactions are negligible correc-
tions, usually treated within perturbation theory. However,
Büchler et al. [8] showed that polar molecules in optical lattices
can be tuned to a regime where the three-body interactions are
dominant, opening a route for theoretical and experimental
research of new exotic quantum phases [9,10].

In this Brief Report, we study 1D bosons interacting by
local two- and three-body terms motivated by the recent
mean-field calculations of Chen et al. [11] and Zhou
et al. [12], who found that the Mott-insulating surfaces rotate
with respect to a fixed point.

II. MODEL

Using the single-band approximation [13], bosons confined
in optical lattices can be described by the Hamiltonian

H = −t
∑

i

(b†i bi+1 + H.c.) + U

2

∑
i

ni(ni − 1)

+ W

6

∑
i

ni(ni − 1)(ni − 2), (1)

where, in standard notation, i varies along the sites of a one-
dimensional lattice of size L, b

†
i (bi) creates (annihilates) a

boson at site i, and ni = b
†
i bi is the number of particles on

site i. The first term in the Hamiltonian (1) is the kinetic
energy with strength t (hopping amplitude), the second term
considers the on-site two-body repulsion (U ), and the last term
stems from the short-range interaction between three bosons,
while the parameter W characterizes its strength. The energy
scale is set by choosing U = 1, and we assume that the lattice
constant is equal to 1.

Without three-body interactions, it is well known that at
integer filling the Bose-Hubbard model shows a quantum
phase transition at a critical value of tc = (t/U )c from a
superfluid phase (t/U > tc), in which the atoms are de-
localized, to a Mott insulating phase (t/U < tc) in which
the atoms are localized. The latter phase has a finite gap
for single-particle excitations, which is given by �μ(L) =
E0(L,N + 1) + E0(L,N − 1) − 2E0(L,N ), where E0(L,N )
is the ground-state energy for L sites and N particles. At
the thermodynamic limit, N,L → ∞ and ρ = N/L integer, a
finite gap is expected, i.e., �μ = limN,L→∞ �μ(L) > 0.

The superfluid phase is gapless and the low-energy physics
of the 1D Bose-Hubbard model can be described as a Luttinger
liquid, which is a conformal field theory with central charge
c = 1. Using conformal field theory, it was possible to find
an expression for the von Neumann entropy with different
boundary conditions [14].

Now we define the von Neumann entropy. For this, we
consider a system with L sites divided into two parts: A with
l sites (l = 1, . . . ,L) and B with L − l sites. If the system is
in a pure state, the von Neumann entropy of the block A is
defined by SL(l) = TrρA ln ρA, where ρA = TrBρ and ρ is the
density matrix of the whole system.

The behavior of the von Neumann entropy (block entropy)
SL(l) as a function of l depends on whether the ground state
is critical or not, i.e., the von Neumann entropy saturates
(diverges) if the system is gapped (gapless), namely [14,15],

SL(l) =
{

c
3η

ln
[

ηL

π
sin

(
πl
L

)] + θ, critical,
c

3η
ln[ζL] + θ ′, noncritical,

(2)

where c is the central charge, ζL is the correlation length, and
η = 1 (η = 2) for periodic (open) boundary conditions. The
constants θ and θ ′ are nonuniversal and model dependent.
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Läuchli and Kollath [16] proposed the estimator
�SLK(L) = SL(L/2) − SL/2(L/4) to determine the critical
point (tc) of the Bose-Hubbard model with two-body inter-
actions, which separates the Mott insulating phase and the
superfluid phase. According to (2) as L → ∞, we should have

�SLK (L) =
{

c
3η

ln(2), t � tc

0, t < tc.
(3)

They found that an appropriate scaling plot of the estimator
�SLK(L) provides good results with respect to the location of
the critical point in the model.

In order to determine the ground-state energy and the
von Neumann entropy of the Bose-Hubbard model with
two- and three-body interactions, we used the density matrix
renormalization group (DMRG) method with open boundary
conditions (η = 2) [17]. We used the finite-size algorithm for
sizes up to L = 512; we considered a truncated Hilbert space
with five states by site and fixed the density ρ = N/L = 1. We
kept up to m = 600 states per block and obtained a discarded
weight around 1010 or less.

III. RESULTS

In Fig. 1, we show the phase diagram for the first Mott
lobe (ρ = 1) of the model, for three different values of the
three-body interaction parameter (W/U = 0.0, 3.0, and 7.0).
The symbols are the particle (hole) excitation energy at the
thermodynamic limit extrapolated from μp(L) = E0(L,N +
1) − E0(L,N ) [μh(L) = E0(L,N ) − E0(L,N − 1)] for L �
128. When W/U = 0.0, we observe a Mott insulator phase
surrounded by a superfluid phase and we reproduce the
well-known phase boundaries of the Bose-Hubbard model
with only two-body interactions, which were determined
using different analytical and numerical methods [3–7]. For
finite values of W/U , we also observe a superfluid phase
surrounding an incompressible Mott insulator phase; however,
the three-body interactions increase the insulating area in the
phase diagram and move the tip of the Mott insulator for
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FIG. 1. Phase diagram of the Bose-Hubbard model with two-
and three-body interactions. We show the phase boundaries for three
different values of W/U = 0.0,3.0, and 7.0.

bigger values. This result is expected because the additional
local three-body interactions help to localize the particles,
and we need higher energy to delocalize it. These findings
don’t appear in the previous mean-field treatments of this
problem [11,12] and motivated the present study. They showed
that for ρ = 1 the Mott insulator area is independent of the
three-body interactions; therefore the critical point will be that
of the model with pure two-body interactions for all values
of W/U . We observe that only in the strong coupling regime
(t → 0) are the critical points independent of the three-body
interaction.

We see in Fig. 1 that the tip of the Mott insulator phase
moves as the three-body interaction increases; now we want to
determine the quantum critical point for each value of W/U .
For pure two-body interactions (W/U = 0), this task was done
based on a priori knowledge that the quantum phase transition
is the Kosterlitz-Thouless type [5–7]. However, in recent years
it has been shown that it is possible to determine quan-
tum critical points calculating the ground-state entanglement
[16,18,19], and we chose this method to determine the quantum
critical points of the Bose-Hubbard model with two- and three-
body interactions. Namely, we calculate the block entropy
SL(l) and the estimator �SLK(L) for several combinations of
the parameters.

The behavior of the block entropy SL(l) as a function
of the block size l is shown in Fig. 2. In this figure we
fixed W/U = 7.0 and considered three different values of the
hopping (t/U = 0.25, 0.30, and 0.5). At the strong coupling
limit t → 0 the entanglement vanishes because the ground
state is separable; i.e., this is given by a product of local
states with one particle. For t/U = 0.25 the block entropy
is not zero and we see that this increases and saturates quickly,
showing that the ground state has a finite correlation length,
i.e., the system is in a Mott insulator phase (see Fig. 1).
When the hopping increases, the description of the ground
state in terms of a product of local states is harder, and the
entanglement increases, as can be seen for t/U = 0.30 and
0.50. We observe that the block entropy diverges with l for
t/U = 0.50; this fact indicates that the system is in a critical
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FIG. 2. The block entropy SL(l) as a function of l for a system
with size L = 256 and W/U = 7.0. The hopping parameters are
t/U = 0.25,0.30, and 0.5.
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FIG. 3. Estimator �SLK as a function t/U for different values of
three-body interaction W/U = 0,3, and 7. Here we fixed L = 256.
Inset: Estimator �SLK vs t/U for three-body interaction W/U = 3,
and different system lengths L = 64,128,256, and 512.

region. We fit the DMRG data to the conformal field theory
expression for the block entropy (2), and we find that the
central charge is c = 0.983 for t/U = 0.50. We observe that
this value of the central charge is closer to 1, the value for
pure two-body interactions [16]. The curve for t/U = 0.30
shows an intermediate case inside the Mott insulator phase
in which the block entropy increases but saturates at the
end.

For a fixed three-body interaction W/U = 3, the estimator
�SLK(L) as a function of t/U is shown in the inset of Fig. 3.
We consider different system sizes L from 32 up to 512
sites, and we observe that in the strong coupling (t → 0) the
estimator vanishes. When the hopping increases, the estimator
remains constant and equal to �SLK(L) = 0 until it reaches
a certain hopping value; then the estimator grows rapidly in
a small region up to the limiting value ln(2)/6, remaining
near to it. When the system size increases, the hopping for
which �SLK(L) �= 0 moves to the right and the growth region
decreases; thus the curve tends to a step function as a function
of t/U according to (3). When the estimator is zero, the
ground state has a finite correlation length; i.e., we have a Mott
insulator phase at the left side, whereas at the right side the
estimator remains around the value ln(2)/6, which indicates
that the ground state is superfluid. The deviation from the value
ln(2)/6 observed in Fig. 3 is the open boundaries effect, and
is not captured in the conformal field theory [16].

In Fig. 3, we observe that the behavior of the estimator
as a function of t/U for other values of the three-body
interaction is the same as mentioned above. We see that the
curve moves to the right as the three-body interaction increases
in accordance with that observed in Fig. 1. As mentioned by
Läuchli and Kollath [16], the critical point will be the first
value for which the estimator reaches (at the thermodynamic
limit) the value ln(2)/6 when the hopping increases from
zero. For instance, we clearly observe that the critical point
for W/U = 0 will be around tc(W = 0) ≈ 3.0 in accordance
with previous estimations [6,7]. From Fig. 3, we note that
the position of the quantum critical points will increase with
W/U .

0.000 0.005 0.010 0.015
1/L

0.1140

0.1155

ΔS
L

K

0 1 2 3 4 5 6 7
W/U

0.30

0.33

0.36

0.39

0.42

t c

Ln(2)/6

W/U = 7
t
c
 = 0.432

ρ = 1

FIG. 4. Quantum critical point position as a function of W/U for
the Bose-Hubbard model with two- and three-body interactions. Inset:
Estimator �SLK as a function of 1/L for W/U = 7 and t/U = 0.432.

The estimator �SLK as a function of 1/L for the three-body
interaction W/U = 7 and hopping parameter t/U = 0.432 is
shown in the inset of Fig. 4. When the system size increases,
we can see that the estimator grows and we consider that the
lattice size dependence is �SLK(L) = a + b/L + c/L2. For
this hopping value, we found that the estimator reaches the
value ln(2)/6 at the thermodynamic limit, for the first time
starting at zero; therefore, this hopping value corresponds to
the transition point, i.e., the quantum critical point for W/U =
7 is tc = 0.432 ± 0.001. Following the procedure described
above, we found the critical points for other values of the
three-body interaction. In Fig. 4, we show the position of
the quantum critical points as a function of the three-body
interactions W/U . We observe that the quantum critical points
increases with W/U , in accordance with Fig. 1. We believe
that this is due to the quantum fluctuations, which increase
the effect of the three-body interaction term. The above result
contradicts the findings of Chen et al. [11] and Zhou et al.
[12], who found that for density ρ = 1 the critical points are
independent of the three-body interaction.
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FIG. 5. Energy gap as a function of tc − t for ρ = 1 and W/U =
7. Inset: ln �μ vs 1/

√
tc − t . Here, the points are DMRG results, and

adjustments to the Kosterlitz-Thouless transition are shown by lines.
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Now, we know that the Bose-Hubbard model with two-
and three-body interactions presents two phases: a superfluid
one and a Mott insulator one. But how does the quantum
phase transition happen? To answer this question we can
use the critical point tc calculated with the estimator and try to
fit the gap to a special function [20]. One possibility is the func-
tion that describes the well-known Kosterlitz-Thouless transi-
tion, for which the gap follows �μ = A exp[−b/

√
tc − t],

where A and b are constants.
In Fig. 5 we display the energy gap as a function of tc − t

when W/U = 7. We observe that the gap grows slowly in a
spread region, then increases quickly, and finally the tendency
is almost linear. The line is the fit to the gap expression,
showing a good match between the DMRG points and the
line. In the inset of Fig. 5, we plot ln �μ as a function of
1/

√
tc − t ; we observe a linear tendency, which indicates that

the Kosterlitz-Thouless behavior is suitable for describing the
closing of the gap. The above results and the central charge
(c = 1) show us that the Bose-Hubbard model with two- and
three-body interactions is in the same universality class as the
model with pure two-body interactions.

IV. CONCLUSIONS

We used the density matrix renormalization group method
to study the Bose-Hubbard model with two- and three-body
interactions. This model presents a Mott insulator and a
superfluid phase, and we determined the phase diagram for
different values of the three-body interactions, which increases
the Mott insulator area in the phase diagram. To find the critical
points, we calculated the block von Neumann entropy and used
the previously defined estimator �SLK, which tends to a step
function at the critical point. We found that the position of
the critical points increases as a function of the three-body
interaction, in contradiction to the previous mean-field results.
With the obtained critical points, we show that the gap of the
model closes following the Kosterlitz-Thouless tendency in
the same way as the model with pure two-body interactions.
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