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RESUMO 

A tomografia por emissão de pósitrons (PET), associada à tomografia 

computadorizada (CT), é uma técnica diagnóstica da medicina nuclear chamada de 

PET/CT. É possível estimar coeficientes de conversão para dose absorvida em PET/CT por 

meio de simulações computacionais realizadas com o método de Monte Carlo. A proposta 

principal deste trabalho foi, utilizando o código MCNPX, estudar as doses absorvidas em 

órgãos internos de pacientes em decorrência de exames de PET/CT. Para isso, foram 

empregados simuladores antropomórficos computacionais com representação dos órgãos e 

estruturas internas realistas de pacientes adultos e pediátricos incorporados em cenários de 

radiação de dois equipamentos PET/CT, modelos Discovery VCT (GE) e Biograph 

(Siemens). Foram considerados seis diferentes tipos de radionuclídeos emissores de 

pósitrons. Variações morfológicas devido ao efeito gravitacional foram também levados 

em conta para os simuladores adultos. O segundo objetivo foi construir um objeto 

simulador físico para validação dosimétrica dos cenários de irradiação com a técnica de 

luminescência opticamente estimulada. Foram determinados experimentalmente modelos 

de colimação e filtração dos feixes, implementados posteriormente no código MCNPX. 

Utilizando a grandeza índice de dose em tomografia computadorizada os cenários das 

irradiações foram validados para o feixe de CT. As doses efetivas estimadas nos 

simuladores computacionais antropomórficos adultos devido à CT são responsáveis por 

14,2% e 26,3% nos equipamentos GE e Siemens, respectivamente. Devido ao 18F-FDG, os 

coeficientes de dose para dose absorvida apresentaram um acréscimo de 30% em relação 

aos valores da ICRP 106. Em crianças, as doses efetivas devido ao CT aumentaram em até 

23,6%, comparadas a resultados da literatura. Considerando-se o 18F-FDG, os resultados 

mostraram variações de 0,1%, 8,2% e 5.2% para simuladores de 1, 5 e 10 anos, 

respectivamente, comparados aos valores da ICRP 106. Para as crianças há necessidade de 

atenção especial nos protocolos em exames de PET/CT, a fim de garantir valores mínimos 

de dose efetivas para cada idade. O objeto simulador físico construído mostrou-se eficaz na 

validação dos cenários computacionais, apesar de limitações no que refere à determinação 

das doses absorvidas na região fonte, como também na quantidade de regiões fontes 

disponíveis (apenas uma). 
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ABSTRACT 

The positron emission tomography (PET), associated with computed tomography (CT) is a 

diagnostic technique from nuclear medicine called PET/CT. It is possible to estimate 

conversion coefficient for absorbed doses in PET/CT by means of computational 

simulations by Monte Carlo method. The main purpose of this work was, using the 

MCNPX code, to study the absorbed doses in internal organs of patients due PET/CT 

exams. For this, anthropomorphic computational phantoms with more realistic 

representation of adult and pediatric patients and their internal structures were employed. 

These phantoms were incorporated in scenarios of radiation of two PET/CT equipment, a 

Discovery VCT (GE) and Biograph (Siemens). Six different types of positron-emitting 

radionuclides are simulated. Variations in morphology due to the gravitational effect were 

also considered for the adult phantoms. The second objective was to construct a physical 

phantom for the validation of dosimetric irradiation scenarios using optically stimulated 

luminescence technique. The collimation and filtration models of beams were 

experimentally determined, and later implemented in MCNPX code. Using the computed 

tomography dose index (CTDI) quantities the irradiation scenarios have been validated for 

the CT. The estimated effective doses in the adult anthropomorphic computational 

phantoms due to CT are responsible for 9.0% and 20.2% considering GE and Siemens 

PET/CT equipments, respectively. For the 18F-FDG, specifically, these dose coefficients 

for absorbed doses showed an increase of 30% compared to values from ICRP 106. In 

children, the effective dose due to CT increased by 23.6% when compared to the results of 

the literature. Considering the same 18F-FDG, the results showed variations of 0.1%, 8.2% 

and 5.2% for 1 year, 5 and 10 years, respectively, compared to the values in ICRP 106. For 

children it necessary a special attention to the parameters protocol in PET/CT scans to 

ensure minimum effective doses to each age. The physical phantom proved be effective to 

validation of computational scenarios, despite limitations in regard to absorbed doses 

determination in the source region but also in the amount of available sources (only one). 
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1 – INTRODUÇÃO  

O exame de Tomografia Computadorizada (do inglês Computer Tomography-CT) 

associada ao de Tomografia por Emissão de Pósitron (do inglês Pósitron Emission 

Tomography-PET), PET/CT, tem o objetivo de fornecer, aos profissionais da oncologia 

e/ou radiologia médica, informações sobre regiões internas do paciente afetadas com 

neoplasias e/ou alterações metabólicas. Nessa modalidade, para a obtenção das imagens, 

faz-se necessário a utilização de dois processos distintos: o primeiro faz uso do feixe de 

raios X, externo ao paciente, registrando em um conjunto de detectores as imagens 

anatômicas; o segundo produz imagens baseadas na identificação de locais de ocorrência 

das aniquilações de pósitrons, produzidos pela desintegração de isótopos radioativos 

específicos, chamados também de radiotraçadores (RUTH, 2009), considerada como um 

mapa da distribuição de um radiofármaco emissor de pósitrons em uma determinada região 

do corpo (ROBILOTTA, 2006).  

Após 45 a 60 minutos da administração intravenosa de um material radioativo 

(radiofármaco ou radiotraçador), o exame de PET/CT é realizado, e as imagens obtidas 

mostram as regiões do corpo que absorveram o composto administrado. A boa resolução 

das imagens é possível devido à sobreposição das imagens de CT, produzidas após a 

interação de feixe de raios X externo ao paciente, com as imagens de PET, produzidas 

devido à emissão de raios gama que podem ser colhidos por um conjunto de detectores 

acoplados a um computador que forma as imagens. Os raios gama surgem da aniquilação 

elétron-pósitron que resulta em dois fótons com energia de 0,511 MeV, aproximadamente 

anti-colineares. Essa colinearidade é a propriedade que é utilizada para localizar eventos 

em PET (BAILEY et al., 2005). 

O sistema combinado PET/CT, foi proposto por David W. Townsend e equipe, na 

Universidade de Pittsburgh, ano 2000, trazendo consigo um grande avanço para a 

Medicina Nuclear e Diagnóstica, maximizando os benefícios que essas modalidades 

podem oferecer aos médicos e aos pacientes (BEYER et al., 2000). 

As avaliações de doses em PET/CT são raramente realizadas em conjunto. O que é 

determinado, na prática clínica, são as doses devido ao radiofármaco utilizado (no Brasil, o 

mais comum é o 18F-FDG), a partir de coeficientes de dose por atividade administrada no 

paciente. A Comissão Internacional de Proteção Radiológica - ICRP n°106 (ICRP, 2008) 

apresenta coeficientes de dose por atividade administrada para radiofármacos utilizados em 
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PET/CT. As doses devido à tomografia computadorizada são normalmente menosprezadas, 

mas podem ter valores consideráveis em pacientes pediátricos, principalmente se 

protocolos de CT para baixas doses não forem utilizados (YANG et al., 2014).  

Modelos de processos físicos de interação da radiação com a matéria podem ser 

empregados para simular uma situação real. Ulam e Von Neumann, pioneiros no 

desenvolvimento de técnicas de Monte Carlo e suas realizações em computadores digitais, 

criaram o nome 'Monte Carlo' em 1944 no Projeto Manhattan, durante a Segunda Guerra 

Mundial, tirado do nome de uma cidade bem conhecida em Mônaco, famosa por seus jogos 

de azar (ZAIDI e SGOUROS, 2003). O Método de Monte Carlo - MMC pode ser descrito 

como um método estatístico, onde se utiliza uma sequência de números aleatórios para a 

realização de uma simulação (YORIYAZ, 2010). 

O código Monte Carlo N-Particle eXtended – MCNPX é uma extensão do código 

de Monte Carlo MCNP, para simulação de processos nucleares em simuladores 

antropomórficos computacionais. A versão 2.7.0, considera o transporte e a interação de 

radiação composta de fótons e partículas como nêutrons, elétrons e prótons, bem como 

uma diversidade de nucleons e íons (PELOWITZ, 2011). Desenvolvido nas linguagens 

Fortran 90 e C pelo Los Alamos National Laboratory – LANL, é destinado à simulação das 

interações entre partículas em amplo intervalo de energia. As áreas de aplicação incluem 

dosimetria, blindagem contra radiação, radiografia, física médica, projetos de reatores de 

fissão e fusão, entre outros (YORIYAZ, 2009).  

Neste sentido, a proposta principal deste trabalho foi, utilizando o MCNPX, estudar 

as doses absorvidas em órgãos internos de pacientes em decorrência de exames de 

PET/CT. Para isso, foram utilizados simuladores antropomórficos computacionais com 

representação dos órgãos e estruturas internas mais realistas de pacientes adultos e 

pediátricos, incorporados em cenários de radiação de dois equipamentos PET/CT. 

Variações morfológicas devido ao efeito gravitacional foram também consideradas para os 

simuladores adultos. As metodologias empregadas foram idênticas às utilizadas por Stabin 

e Siegel (2003) e Gu et al. (2009). Foram considerados seis diferentes tipos de 

radionuclídeos emissores de pósitrons. 

O cálculo das doses por atividade administrada devido ao 18F-FDG considerou o 

modelo biocinético disposto na Publicação 106 da International Commission on Radiation 

Protection (ICRP, 2008). Foram calculados ainda os coeficientes de doses absorvidas em 
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órgãos internos (valores S) dos pacientes, relativos a outros cinco radionuclídeos (11C, 13N, 

15O, 68Ga e 82Rb). 

Os valores S são determinados em função da atividade de radiofármaco injetada no 

paciente para realização de exames em PET e em função do produto corrente e tempo 

(100 mAs) devido à técnica diagnóstica CT. Considerou-se dois modelos de equipamentos 

de fabricantes distintos. Os CCs de doses equivalentes e efetivas em PET/CT com 18F-FDG 

em humanos adultos e pediátricos foram calculadas.  

Os simuladores humanos adultos estudados aqui, FASH (Feminino Adulto meSH) e 

MASH (Masculino Adulto meSH), foram desenvolvidos por Cassola et al. (2010a) e 

Kramer et al. (2010) e, posteriormente, aprimorados por Cassola et al. (2010b) para 

adequação das estruturas internas de acordo com o posicionamento do indivíduo, em pé ou 

deitado. Simuladores antropomórficos computacionais pediátricos (DE MELO LIMA et 

al., 2011; CASSOLA et al., 2013), construídos com metodologia idêntica a dos adultos, 

são também estudados. Todos eles são compostos por superfícies MESH (conjunto de 

vértices, arestas e faces que definem a forma de um objeto em computação gráfica 3D).  

Com a finalidade de inovar em dosimetria computacional em PET/CT, buscou-se 

ainda neste trabalho: 

- Desenvolver uma nova metodologia para determinação da filtração do feixe de 

raios X em equipamentos de PET/CT empregando-se o código MCNPX. Para isso, foram 

determinados experimentalmente modelos de colimação e filtração dos feixes. Os cenários 

consideraram ainda aspectos dimensionais reais dos ambientes onde os equipamentos 

estavam instalados (sala de exame, cama onde o paciente permanece após a administração 

intravenosa do radiofármaco e equipamentos de PET/CT).  

- Construir um objeto simulador físico de acrílico (Polymethylmethacrylate, 

PMMA e polylactic acid-PLA) para validação alternativa das simulações realizadas com o 

código MCNPX. 
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2 - FUNDAMENTAÇÃO TEÓRICA 

2.1 Tomografia computadorizada e tomografia por emissão de pósitrons 

Um equipamento de PET/CT une os recursos diagnósticos da Medicina Nuclear e 

da Radiologia. A tomografia computadorizada, consolidada por Goldfrey N. Hounsfield 

em 1972, possibilitou a construção de imagens tridimensionais do corpo humano a partir 

da sobreposição das fatias de imagens produzidas por um tubo de raio X que gira em torno 

do paciente (CURRY et al., 1990). A PET é uma técnica de imagem metabólica que utiliza 

radiofármacos com emissores de pósitrons em sua composição. O diagnóstico por PET/CT 

tem aplicações em oncologia, em neurologia, psiquiatria e cardiologia 

(ROBILOTTA, 2006). O 18F-FDG pode ser considerado um excelente radiofármaco para 

aquisição de imagens clínicas de qualidade, tal como demonstrado em vários estudos 

(KAPOOR et al., 2004; BAILEY et al., 2005; ROBILOTTA, 2006; SANCHEZ-

CRESPO, 2013). As imagens anatômicas produzidas pela tomografia computadorizada e 

as imagens metabólicas obtidas na PET são sobrepostas, resultando no que é denominado 

imagens de fusão (BAILEY et al., 2005). 

A partir de 1970, avanços em computação e, principalmente, o desenvolvimento e a 

implementação de métodos de reconstrução de imagens permitiram a realização de exames 

tomográficos por meio da emissão de fótons únicos (single photon emission computed 

tomography – SPECT) (KUHL, 1976) e de tomografias associadas a múltiplos pósitrons 

(BURNHAM e BROWNELL, 1972; CHO et al., 1976). 

Associada ao desenvolvimento farmacológico, o aprimoramento da instrumentação, 

com o uso de detectores mais eficientes e de eletrônica mais rápida, tem impulsionado 

tanto a SPECT como a PET em suas aplicações.  

A quantificação da imagem clínica é rotineiramente realizada usando o valor da 

absorção padrão ou SUV (standard uptake value), que caracteriza a concentração relativa 

do radiofármaco na lesão de interesse, sendo derivada matematicamente da concentração 

de radioatividade dos tecidos, injetada em um ponto por quilograma de peso corporal do 

paciente (SANCHEZ-CRESPO, 2013). 

A National Electrical Manufacturers Association (NEMA) dos Estados Unidos da 

América criou um documento padronizando testes de desempenho dos equipamentos de 

PET/CT por meio de objetos simuladores de tecido equivalente a partir do ano de 1994. No 
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mesmo período, a União Europeia começou a desenvolver testes de desempenho 

padronizados, o que resultou no padrão Internacional Electrotechnical Commission (IEC). 

Apesar de certas semelhanças na forma de realização de alguns procedimentos, essas 

orientações não apresentavam diferenças na forma de como os testes de desempenho são 

realizados, incluindo o uso de diferentes simuladores e procedimentos de aquisição de 

dados, bem como procedimentos de reconstrução de imagens (IAEA, 2009).  

Utilizando um objeto simulador de tecido equivalente e conhecendo-se a atenuação 

do feixe da CT é possível realizar uma correção das informações adquiridas em PET/CT, 

determinando com precisão a localização de estruturas como ossos e tecidos moles 

(KINAHAN et al., 1998), como também realizar a avaliação da taxa de contagem de dois 

equipamentos de PET/CT com diferentes cristais detectores 

(FREEDENBERG et al., 2014). 

Exames realizados com radiofármacos possibilitam obter informações biológicas a 

partir de concentrações dessas substâncias em níveis de nano ou picomols. Além disso, a 

marcação de diferentes moléculas com um único radionuclídeo permite avaliações de um 

mesmo órgão ou sistema em seus aspectos macroscópicos e moleculares 

(ROBILOTTA, 2006). 

Não foram necessários, portanto, muitos esforços para incorporar dados de PET/CT 

na tomada de decisão em radioterapia, inclusive nos planejamentos. Além disso, é 

observada uma ampla melhoria no diagnóstico, estadiamento dos tumores, identificação e 

mapeamento de doença disseminada, por exemplo, aprimorando o planejamento em 

radioterapia e o monitoramento dos efeitos da quimioterapia e radioterapia em pacientes 

(BEYER et al., 2000; YEOH e MIKHAEEL, 2013; HUTCHINGS, 2014). O uso da 

PET/CT no estadiamento de alguns tipos de linfomas é propenso a se tornar rotina 

(YEOH e MIKHAEEL, 2013; HUTCHINGS, 2014). 

 

2.2 Algumas aplicações da simulação da interação da radiação com a matéria 

O método de Monte Carlo tem se tornado, ao longo dos anos, uma ferramenta 

fundamental para cálculos de dose absorvida e outras grandezas de interesse relacionados 

ao tratamento do câncer por radiação, tanto com fontes externas como também com fontes 

internas. Além disso, as aplicações do método têm se estendido para a avaliação de dose 
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em procedimentos diagnósticos e estudos sobre qualidades de imagens médicas em geral 

(YORIYAZ, 2009). Pode-se validar experimentalmente os resultados da distribuição de 

dose obtidos por sistemas de SPECT e PET/CT simulados por método computacional de 

Monte Carlo utilizando-se objeto simulador de tecido equivalente, animais ou até mesmo 

imagens obtidas de pacientes (SANCHEZ-CRESPO, 2013).  

Mok et al. (2010) avaliaram as doses absorvidas após a atenuação e dispersão por 

um sistema colimador multi-pinhole (MPH) em SPECT de pequenos animais. Os 

resultados de simulação Monte Carlo foram validados por meio da comparação da função 

de resposta num ponto (PRF), da eficiência de detecção (DE) e dos perfis de imagens. 

Além disso, avaliou-se a resposta computacional utilizando diferentes colimadores MPH 

SPECT por meio de projeções em um objeto simulador esférico com pontos diferentes de 

atividade radioativa em seu interior. 

Outro estudo foi apresentado por Lin et al. (2013), propondo um método para 

avaliar e corrigir as dispersões das linhas de respostas (line of response-LOR) não 

coincidentes por aquisições 3D em um aparelho de PET. Para isso, utilizou-se de um 

simulador de tecido equivalente com um dispositivo de bloqueio de feixe coincidente 

(beam stoppers-BS) para determinar a correção dos sinogramas das imagens e validou-se a 

metodologia utilizando o simulador antropomórfico Zubal. 

Considerando o risco elevado das crianças quando expostas a radiação ionizante, 

Xie et al. (2013a) fizeram um estudo dos coeficientes de doses absorvidas por nove 

emissores de pósitrons (11C, 13N, 15O, 18F, 64Cu, 68Ga, 86Y, 124I e Rb-82) em simuladores 

antropomórficos de crianças (recém-nascido, 1 ano, 5 anos, 10 anos e 15 anos). Foram 

determinadas as frações absorvidas específicas (SAFs) de fótons e elétrons 

monoenergéticos, bem como os valores S usando o código Monte Carlo N-Particle 

eXtended (MCNPX) versão 2.5.c. Os resultados dos SAFs em órgãos fonte e valores S 

para a maioria dos órgãos apresentam-se inversamente relacionados com a idade 

representativa dos simuladores em consequência da variação do peso corporal. Os 

resultados mostram ainda que radionuclídeos com maior pico de energia na emissão 

produzem valores-S auto-absorvidos (ou seja, no próprio órgão fonte) mais elevados, 

devido à deposição local das doses durante as emissões dos pósitrons. 

Dezessete modelos anatômicos de ratos inseridos no código MCNPX foram 

utilizados por Xie et al. (2013b) para determinação dos coeficientes de deposição de doses 
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em órgãos internos. Tais valores S, para oito radionuclídeos emissores de pósitrons (11C, 

13N, 15O, 18F, 64Cu, 68Ga, 86Y e 124I), estão diretamente relacionados com as propriedades 

anatômicas dos órgãos, esquemas de decaimento nuclear e espectros de energia dos 

radionuclídeos.  

Chuang et al. (2014) desenvolveram um sistema de estimativa de dose específico 

para pacientes submetidos a exames de medicina nuclear. A metodologia se deu por uma 

rotina para determinar a dose absorvida a partir da quantificação da atividade nas imagens 

de PET incorporada no código de Monte Carlo SimSET através de uma interface para a 

leitura de imagens de PET e de tomografia computadorizada. As doses calculadas no 

objeto simulador desenvolvido pelo Oak Ridge National Laboratory (ORNL) foram usadas 

para validar a precisão deste sistema. Os resultados dos valores S calculados para 99mTc, 

18F e do 131I foram comparados aos obtidos com um programa de cálculo de doses em 

órgãos internos chamado OLINDA para vários órgãos, variando de 0,93 a 

1,18 mGy/MBq.s, sendo comparáveis aos obtidos a partir do código MCNPX 2.6 (0,88-

1,22).  

As grandezas CTDI e Índice de Dose Ponderada Normalizada em CT (nCTDIw) 

podem ser utilizadas para validar os resultados de simulações em CT utilizando o MMC, 

possibilitando a determinação das doses absorvidas em órgãos de simuladores 

computacionais (GU et al., 2009; FIGUEIRA et al., 2015).  

 

2.3 Decaimento β+, captura eletrônica, decaimento γ e aniquilação elétron-pósitron  

A desintegração radioativa está associada à alteração durante um tempo (dt) do 

número de átomos de um radionuclídeo em uma amostra (N), sendo λ a constante de 

proporcionalidade, chamada constante de decaimento (PODGORSAK, 2005; 

TURNER, 2007).  

O número de desintegrações de núcleos radioativos por unidade de tempo é 

denominado de atividade. No Sistema Internacional de Unidades (SI) a unidade de 

atividade é bequerel (Bq), que equivale a uma desintegração por segundo. A primeira 

unidade empregada para quantificar a atividade de uma amostra radiativa foi o curie (Ci), 

que corresponde à atividade de 1 g do isótopo rádio 226Ra, definida exatamente como 

3,7 x 1010 desintegrações por segundo.  
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A desintegração nuclear pode ocorrer por meio dos seguintes modos de 

decaimento: α, β-, β+, captura eletrônica, γ e conversão interna. A conversão interna é um 

processo concorrente da emissão gama, em que a energia do núcleo é cedida a um elétron 

atômico, que é então ejetado do átomo. Independentemente do processo específico de 

decaimento, todos eles atendem às leis básicas de conservação de energia, conservação da 

massa e conservação da carga elétrica. Para a técnica de PET são de particular interesse os 

processos de decaimento β+, γ, captura eletrônica, como também o processo de aniquilação 

elétron-pósitron (POWSNER e POWSNER, 2006), os quais serão descritos adiante.  

Quando o elemento radioativo possui excesso de prótons em seu núcleo poderá 

ocorrer um decaimento por meio da conversão de um próton em um nêutron. Este processo 

pode acontecer de duas maneiras: por decaimento β+ ou por captura eletrônica. No 

decaimento β+ um próton pode ser convertido em um nêutron e um pósitron (partícula beta 

positiva). 

Embora a energia total emitida a partir de um átomo no decaimento beta seja 

constante, a distribuição relativa desta energia entre o pósitron e o neutrino, ou no caso do 

decaimento β- entre o elétron e o antineutrino, é variável. É muito pouco comum, por 

exemplo, que toda a energia da desintegração seja levada pelas partículas beta. Comumente 

a partícula recebe menos da metade da quantidade total de energia emitida (POWSNER e 

POWSNER, 2006). Essa distribuição é demonstrada por meio de um gráfico do espectro 

energético. Considerando-se as partículas beta emitidas em cada energia, de zero até ao 

máximo de energia liberada, a energia média é dada pela Equação 1. 

����� ≅
�

�
�����       ( 1 ) 

em que �����  é a energia máxima possível que uma partícula beta pode receber durante o 

decaimento beta de qualquer átomo, e ����� é a energia média de todas as partículas beta 

durante a decomposição de um grupo de tais átomos (POWSNER e POWSNER, 2006).   

A captura eletrônica produz o equilíbrio atômico a partir da captura de um elétron, 

geralmente da camada mais próxima ao núcleo, que ao unir-se com o próton transforma-se 

em nêutron, emitindo um neutrino. Para equilibrar os elétrons orbitais ocorre a emissão de 

raios X característicos, gerados a partir da transição de elétron de camada mais externa 

para ocupar a vacância deixada pelo elétron capturado. De outra forma, a energia liberada 
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na transição pode ser transferida a outro elétron, chamado de elétron Auger, que é ejetado 

do átomo. 

A aniquilação, de modo geral, ocorre quando uma partícula encontra sua 

correspondente antipartícula. O pósitron percorre uma pequena distância a, representada na 

Figura 1, até o encontro de um elétron, e ambos são aniquilados, produzindo dois raios 

gama com ângulo b < 0,5º (KAPOOR et al., 2004). A distância a é provavelmente menor 

em estruturas densas, tais como o osso, e maior para os pulmões e para o ar, por exemplo, 

sendo também dependente do elemento emissor do pósitron.  

 
Figura 1.  Caminho percorrido pelo pósitron até o momento da aniquilação 

(KAPOOR et al., 2004).  
 

Os raios gama são produzidos na desintegração de isótopos radioativos. A emissão 

deles libera o excesso de energia que o isótopo instável possui, tornando-o um núcleo 

estável. 

 

2.4 Emissores de pósitrons e cenário de PET/CT no Brasil 

A atual oferta de elementos de baixo número atômico emissores de pósitrons 

permite a incorporação deles em muitos compostos biologicamente ativos, incluindo as 

formas isotópicas de oxigênio, carbono, nitrogênio e flúor. A Tabela 1 apresenta as 

principais características dos emissores que podem ser empregados em PET. 
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Tabela 1. Características físicas dos radionuclídeos para PET (Adaptada de IAEA, 2009) 

 
Radionuclídeo 

 
Fonte de 
produção 

 
Meia-vida 

(min) 

Máxima (e média) 
energia dos 

pósitrons (keV) 

Alcance médio 
dos pósitrons 

em água (mm) 
11C Cíclotron  20,40 970 (390) 1,1 
13N Cíclotron    9,96 1190 (490) 1,3 
15O Cíclotron     2,07 1720 (740) 2,5 
18F Cíclotron 110,00  635 (250) 0,5 

68Ga Gerador   68,00 1899 (836) 0,8 
82Rb Gerador     1,25 3356 (1532) 1,5 

 

O radionuclídeo 18F é o mais utilizado em PET/CT. O 18F possibilita a marcação da 

fluordeoxiglicose (FDG), um composto análogo à glicose que é consumido por células 

ativas, de tal maneira que sua presença indica a função metabólica tecidual. No Brasil, os 

exames de PET são feitos com 18F-FDG devido a suas aplicações já citadas e também à 

distância considerável entre os cíclotrons existentes no país até às clínicas portadoras dos 

equipamentos PET/CT. No mapa apresentado na Figura 2 tem-se a distribuição das 

instituições com equipamentos de PET/CT e os produtores de radiofármacos existentes no 

Brasil em 2014. 

 

 
Figura 2. Distribuição de serviços com PET/CT e de cíclotrons no Brasil em 2014 

(Adaptado de Brasil Nuclear, 2014). 
 



 
 

22 
 

2.5 Interação da radiação com a matéria 

A descrição matemática e fenomenológica apresentada neste item foi embasada em 

Turner (2007) e Powsner e Powsner (2006), principalmente. 

Quando a radiação atinge matéria, tanto a sua natureza quanto a composição da 

matéria afetam essa interação. O processo de interação começa com a transferência de 

energia da radiação para os átomos e as moléculas, podendo causar o aquecimento da 

matéria, ou mesmo alterar a sua estrutura.  

Considerando as energias dos fótons emitidos por PET/CT, os principais processos 

de interação da radiação ionizante com a matéria são o efeito fotoelétrico e o efeito 

Compton, e a ocorrência desses dependem de vários fatores, tais como a energia do feixe e 

o número atômico do material absorvedor. 

O efeito fotoelétrico ocorre quando há transferência total de energia da radiação a 

um elétron, sendo este expelido do átomo com uma energia cinética (Tc) bem definida: 

�� = ℎ� − ��      ( 2 ) 

sendo hv a energia do fóton incidente, h a constante de Planck, v a frequência do fóton 

incidente e φ0 a função trabalho ou energia mínima necessária para arrancar um elétron do 

átomo. A maior probabilidade de ocorrência se dá para energias baixas e para elementos 

químicos de número atômico Z elevado, sendo proporcional a Z4 e (hv)-3. 

No espalhamento Compton, o fóton incidente transfere parte de sua energia para 

um elétron da camada eletrônica externa do átomo, ejetando-o. Um esquema representando 

a colisão do fóton com o elétron está apresentado na Figura 3. 

 
Figura 3. Representação do efeito Compton: a) antes da colisão e b) após a colisão 

(adaptado de TURNER, 2007). 
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O fóton é espalhado com um ângulo que depende da quantidade de energia 

transferida para o elétron. O ângulo de espalhamento pode variar de 0º a 180º. A energia de 

recuo do fóton espalhado em função do ângulo de espalhamento é descrita pela 

Equação 3: 

ℎ�� =
��

��
��

�� �(������)
        ( 3 ) 

em que  v´ e θ são, respectivamente, a frequência do fotoelétron espalhado e o ângulo de 

espalhamento do fóton e mc2 a energia do elétron livre. 

A maneira como o fóton e o elétron interagem ou a probabilidade do fóton espalhar 

na direção θ é descrita pela teoria da mecânica quântica, conforme a equação de Klein-

Nishina, 

���

�Ω
=

��
���

�� ���
�
��

�
�
�

�
�

��
+

��

�
− ������    ( 4 ) 

onde k0 é a constante eletrostática do meio e o termo deσ/dΩ é denominado diferencial da 

secção de choque transversal de dispersão, fornecendo a probabilidade por unidade de 

ângulo sólido, em esteroradianos, que um fóton, que passa normalmente através de uma 

camada de material, sofra interação com um elétron. A dispersão ocorre entre um ângulo 

sólido dΩ e θ.  

O integrante do diferencial da seção transversal sobre todos os ângulos sólidos, 

dΩ=2π.senθ.dθ, é chamado de secção transversal de colisão Compton. Esse integrante dá a 

probabilidade de uma interação Compton por  metro quadrado: 

�� = 2� ∫
���

�Ω
������     ( 5 ) 

Para dosimetria, a energia média de recuo (Tm) é de grande importância, uma vez 

que o elétron deposita no local da interação o excesso de energia adquirido do fóton. Para 

fótons de uma determinada energia hv, pode-se escrever a secção de transferência de 

energia (σtr) fazendo a diferencial de Klein-Nishina. 

�����

�Ω
=

�

��

���

�Ω
               ( 6 ) 

sendo a energia média de recuo para o fóton dada por: 
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�� = ℎ�
����

��
       ( 7 ) 

em que eσ é dada pela equação 5 e ���� representa a secção transversal de transferência de 

energia Compton (por elétron/m2), podendo ser determinada por integração da Equação 6 

ao longo de todos os ângulos sólidos. Para baixas energias e altos valores de Z, um caso 

particular do efeito Compton é o efeito coerente ou Rayleight, no qual o fóton mantém a 

sua energia, sofrendo apenas mudança de direção. 

Do mesmo modo, a secção transversal para a dispersão de energia (σs), ou seja, a 

energia transportada pelos fótons dispersos é definida por: 

����

�Ω
=

��

�

���

�Ω
       ( 8 ) 

A energia média dos fótons espalhados por fótons incidentes de energia hv é dada 

por: 

(ℎ��)� = ℎ�
���

��
          ( 9 ) 

A relação ��� pode ser obtida por integração de ambos os lados da Equação 8 ao 

longo de todos os ângulos sólidos, com ��  representando a fração da energia do fóton 

incidente, chamada de dispersão Compton por elétrons/m2. Considerando as 

Equações 8 e 9: 

��

��
+

�����
�

��
= 1       ( 10 ) 

Uma vez que a energia total da colisão Compton é a soma da energia transferida e 

da energia espalhada em secções transversais, obtemos a partir das Equações 7, 9 e 10 

que: 

�� = �� �
��

��
+

�����
�

��
� = �� �

����

��
+

���

��
�= � ��� + � ��     ( 11 ) 

de onde se tem o coeficiente de atenuação Compton total: 

� = ��� + ��       ( 12 ) 
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Se o material é constituído por N átomos por metro cúbico de um elemento com 

número atômico Z, então o número de elétrons por m3 é n = NZ. A probabilidade de 

interação Compton por unidade de distância para o trajeto do fóton no material é então: 

σ = n = NZeσ = neσ     ( 13 ) 

A quantidade Zeσ é secção transversal de colisão Compton por átomo, e σ é a 

secção de choque macroscópica Compton, ou coeficiente de atenuação, com dimensão 

inversa do comprimento. Se o material é um composto ou mistura de elementos, as secções 

transversais dos elementos individuais se somam, contribuindo para σ como NZeσ. 

Como resultado das interações dos fótons com a matéria, a intensidade do feixe 

(fluxo de fótons) diminui à medida que o feixe passa através da matéria. Esta "perda" de 

fótons é chamada de atenuação. A atenuação para feixes monoenergéticos, ou seja, a razão 

entre a intensidade do feixe ao passar pelo o atenuador (I) e a intensidade inicial (I0) é 

função exponencial da espessura x (cm) do atenuador, conforme a Equação 14: 

�

��
= � ���        ( 14 ) 

O coeficiente de atenuação linear ( μ ) é maior para tecido denso, como o osso, do 

que para os tecidos moles, como a gordura. Em geral, o coeficiente de atenuação linear 

depende tanto da energia dos fótons quanto do número atômico médio (Z) e da espessura 

do atenuador. Quanto menor for a energia dos fótons ou quanto maior for o número 

atômico ou a espessura média do atenuador, maior a atenuação. 

O coeficiente de atenuação mássico é definido como a razão do coeficiente de 

atenuação linear e a densidade ρ do meio. O coeficiente de atenuação mássico total para as 

energias utilizadas em medicina nuclear é a soma das contribuições para os efeitos 

fotoelétrico (µp) e Compton (µc): 

�

�
= 

��

�
+

��

�
      ( 15 ) 

Dos radionuclídeos que são empregados em medicina nuclear, os raios gama 

possuem energias entre 50 keV e 550 keV; para essa faixa de energia, o tipo dominante de 

interação em materiais com números atômicos efetivos mais baixos, tais como tecido 

humano (Zef=7,5) é o espalhamento Compton. O efeito fotoelétrico é dominante quando a 
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interação se dá em materiais com números atômicos maiores, podendo ocorrer para o osso 

(Zef=13) quando a energia dos fótons for menor que 100 keV aproximadamente. Um 

terceiro tipo de interação de fótons com a matéria é a produção de pares, a qual tem 

probabilidade de ocorrer apenas quando a energia dos fótons é muito elevada 

(superior a 1022 keV) e, portanto, não é importante na medicina nuclear.  

Na dosimetria em CT estamos interessados na energia absorvida na matéria exposta 

a fótons. Esta energia está relacionada com o coeficiente de atenuação mássico dada pela 

equação 15. 

A grandeza física kerma (acrônimo de kinetic energy released per unit of mass), 

cuja unidade é o gray (Gy=J/kg), é definida como a energia média transferida pela radiação 

indiretamente ionizante para partículas carregadas (elétrons) no meio por unidade de massa 

dm (PODGORSAK, 2005): 

� =
���������

��
          ( 16 ) 

Os valores de kerma (K) são iguais aos valores de dose absorvida na profundidade 

de equilíbrio eletrônico. O equilíbrio eletrônico acontece quando o número de elétrons 

secundários que entram e param dentro de um elemento de massa dm é igual ao número de 

elétrons secundários criados e que saem do mesmo volume. Os elétrons cedem energia ao 

meio ao longo de todo o seu percurso, não considerando perdas de energia por radiação de 

freamento dos elétrons colocados em movimento pelos fótons primários.  

A dose absorvida (D) é definida como a energia média ( � ̅) cedida pelas radiações 

ionizantes à matéria de massa ( m ) de um volume finito (PODGORSAK, 2005): 

� =
���

��
         ( 17 ) 

Considerando as energias dos feixes empregados em medicina, é necessária a 

condição de equilíbrio eletrônico para que a dose absorvida seja numericamente igual ao 

kerma.  
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2.6 Características da interação dos pósitrons com a matéria 

A distância percorrida pelo pósitron antes da aniquilação depende da sua energia 

cinética inicial e das características físicas do material (IAEA, 2009). Isto é ilustrado na 

Figura 4, que mostra diferentes alcances para os pósitrons em alguns tecidos humanos, 

emitidos a partir do 68Ga e do 18F (SANCHEZ-CRESPO, 2013). 

 
Figura 4. Alcance do pósitron em diferentes tecidos humanos 

(adaptada de SANCHEZ-CRESPO, 2013) 

 

A localização da aniquilação é determinada pelo equipamento de PET usando 

detectores de radiação apropriados e circuitos eletrônicos interligados. Os dois fótons são 

detectados em coincidência dentro de uma janela de tempo limitada, permitindo a 

identificação de uma linha de resposta, ou seja, uma linha ao longo da qual a aniquilação 

de pósitrons foi produzida. Ao adquirir um grande número de LOR (várias centenas de 

milhões), é possível reconstruir a distribuição das desintegrações dentro do volume 

estudado. Esta característica é de grande importância, uma vez que evita a necessidade de 

um colimador para determinar a direção de emissão dos fótons e produz um aumento 

significativo da sensibilidade de detecção do PET comparada com a SPECT (IAEA, 2009). 

A taxa média linear de perda de energia por uma partícula carregada ao atravessar 

um meio é chamada de poder de freamento, sendo expressa em MeV.cm-1. A grandeza 

física que define a energia absorvida pelo meio é a transferência linear de energia (linear 
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energy transfer-LET), expressa em keV.mm-1 em água. Em 1962, a Comissão Internacional 

de Unidades e Medidas de Radiação (ICRU, 2011) definiu LET como o quociente: 

��� = −
��

��
           ( 18 ) 

em que dE é a "energia média transmitida localmente" para um meio por uma partícula 

carregada ao percorrer a distância dx. Devemos considerar ainda que uma partícula pode 

não depositar totalmente sua energia no volume de interesse (TURNER, 2007).  

Os raios gama gerados no interior de um órgão do paciente devem atravessar os 

tecidos em seu entorno antes de atingir os detectores, podendo sofrer efeito fotoelétrico ou 

espalhamento Compton. No primeiro caso, os raios gama não saem do objeto e, portanto, 

não existirá coincidência. No espalhamento Compton, os fótons desviados de sua trajetória 

produzem LOR dispersas nos detectores do sistema PET, reduzindo a qualidade da 

imagem. 

Além de serem mais energéticos do que aqueles utilizados em SPECT, os fótons de 

aniquilação precisam ser detectados em coincidência no sistema PET. Isto determina a 

necessidade de algumas características específicas para os materiais utilizados nos cristais 

detectores. As características de alguns destes materiais estão listadas na Tabela 2. 

 
Tabela 2. Características de cristais cintiladores mais utilizados em PET (adaptada de IAEA, 2009) 

Material 

Rendimento  

de luz 

(Fótons/MeV) 

Comprimento de 

onda da luz 

emitida (nm) 

Tempo de 

emissão 

(ns) 

Densidade 

(g/cm3) 

Número 

atômico 

efetivo 

Índice de 

refração 

Resolução de 

energia a 

511 keV (%) 

NaI(Tl) 38000 415 230 3,7 51 1,85 10 

BGO  9000 480 300 7,1 75 2,15 20 

LSO  26000 420 40 7,4 66 1,82 15 

LYSO 32000 430 40 7,1 66 1,82 12 

GSO  13000 440 50 6,7 59 1,85 15 

 

O iodeto de sódio ativado com tálio, NaI(Tl), é um cristal de cintilação utilizado em 

SPECT, porém em PET o seu poder de freamento é baixo para fótons de 511 keV, além de 

possuir decaimento de luz relativamente lento. O germanato de bismuto (BGO), por outro 

lado, tem um poder de freamento maior para fótons de 511 keV e tem sido amplamente 

utilizado em scanners PET clínicos desde a década de 1990 (IAEA, 2009), apresentando 

maior desempenho em taxas de contagem em regiões contendo atividades muito baixas 
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(<1 MBq) comparado com um sistema com cristais de ortossilicato de lutécio (LSO) 

(FREEDENBERG et al., 2014). 

Ambos Nal(Tl) e BGO são materiais cintiladores lentos. Por esse motivo os 

fabricantes buscam materiais de resposta mais rápida, como o ortossilicato de lutécio ou 

lutécio/ítrio (LSO/LYSO), apesar da necessidade de uma adaptação no protocolo de 

aquisição para baixa atividades (<1,0 kBq) (GOERTZEN et al., 2007). A densidade do 

cristal de LSO/LYSO é semelhante à do BGO, tendo Zef próximo, com um rendimento de 

luz superior ao BGO e emissão mais rápida da luz. Outro cintilador interessante é o 

ortossilicato de gadolínio (GSO), que tem uma menor densidade e menor produção de luz 

comparado ao LSO, mas melhor resolução em energia do que o BGO e o LSO, com uma 

emissão de luz similar ao LSO e LYSO (IAEA, 2009). 

Os dois equipamentos de PET/CT investigados neste estudo são: GE Discovery 

VCT, o qual possui cristais de BGO, e Siemens Biograph True Point 16, com cristais de 

LSO. A principal implicação desta característica para o equipamento Siemens é a aquisição 

mais rápida das imagens de PET. Nos exames de corpo inteiro, o tempo de aquisição para 

o equipamento da GE varia de 30 a 40 minutos, e para o equipamento da Siemens de 15 a 

20 minutos (IAEA, 2009), proporcionando, a este último, uma maior comodidade para o 

paciente durante o exame. 

 

2.7 Tomografia computadorizada e dosimetria 

A tomografia computadorizada é um processo de imagem digital que produz 

imagens seccionais axiais separadas (fatias transversais) não sobrepostas do corpo. O 

método foi desenvolvido pela primeira vez em uma máquina de raios X comercial, por 

Godfrey Hounsfield (Alemanha) em 1973. Foi um sucesso imediato como uma técnica de 

diagnóstico por imagem, já que as diferenças de contraste são mais evidentes na imagem 

CT que nas convencionais, revelando diferenças sutis entre tecidos moles (DOWSETT et 

al., 2006). 

Os primeiros sistemas de CT utilizavam um movimento de rotação para a aquisição 

de dados e eram muito lentos na aquisição das imagens. Esses foram os aparelhos de 
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primeira e segunda geração. Máquinas de terceira geração utilizam feixe tipo leque (fan-

beam) com tempo de aquisição de dados muito rápido, cerca de 1 a 2 s para cada giro.  

A Figura 5 (a) mostra um esquema de como o sistema de CT constrói uma matriz 

de dados para uma fatia do paciente durante a rotação de 360°. Essa matriz é armazenada 

na memória do computador considerando os valores de atenuação. Uma matriz pequena de 

5 × 5 elementos na Figura 5 (b) representa uma região central desse conjunto de dados que 

contém os coeficientes de atenuação. A soma desses coeficientes é realizada durante a 

coleta de informação e a imagem transaxial é formada por meio do cálculo individual dos 

valores dentro da matriz utilizando técnicas de reconstrução de imagem. As matrizes 

geradas pelos equipamentos de CT modernos são da ordem de 256 × 256 ou 512 × 512 

pixels, com resolução de imagem de 1 mm ou 0,5 mm, respectivamente.  
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Figura 5. Esquema de construção da imagem em CT a) Projeções do fan-beam durante a rotação b) 
Parte da matriz final (adaptada de DOWSETT et al., 2006). 

 

Os tubos de raios X de tomógrafos têm um alto padrão de performance, uma vez 

que devem entregar um feixe de fótons estável e de mesma intensidade para cada projeção. 

Para isso, o feixe de raios X é filtrado por alumínio e cobre para produzir uma energia 

eficaz ao feixe, absorvendo os fótons de baixa energia. A intensidade dos raios X na saída 

do tubo não deve variar durante o ciclo de aquisição de imagem, pois qualquer variação 

seria considerada como diferença de absorção no tecido. A instabilidade do gerador do 

equipamento deve ser menor que 1%. 

A energia do feixe de raios X tem um efeito direto na dose. Quanto maior for a 

energia do feixe, mantendo-se constante o produto corrente tempo (mA.s), maior a dose. A 
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maioria dos scanners operaram entre 100 e 140 kVp (tensão de pico) 

(DOWSETT et al., 2006). 

O filtro e o colimador de um equipamento de raios X desempenham um papel 

importante na definição da energia do feixe e na sua distribuição espacial, uma vez que o 

primeiro filtra os fótons de baixa energia, mantendo um campo de raios X mais uniforme 

aos detectores, minimizando a dose e reduzindo os efeitos de dispersão dos fótons, o 

último limita o feixe de acordo com a região de interesse a ser radiografada (MAIL et al., 

2009). Filtros utilizados em tomógrafos têm o formato geométrico semelhante a uma 

gravata borboleta (bowtie filter), sendo posicionados próximo à saída do feixe.  

Pode-se determinar doses absorvidas em um simulador computacional adulto 

masculino, recomendado pela ICRP para cálculo de dose efetiva, empregando-se uma 

metodologia de validação do filtro em tomografia de cabeça usando simulações de Monte 

Carlo (FERREIRA et al., 2011a). Uma metodologia de simulação desse tipo, para 

tomógrafo considerando o filtro gravata borboleta e colimador do feixe, é mostrada na 

Figura 6. As características geométricas do filtro gravata borboleta dos tomógrafos não 

são informadas pelo fabricante, sendo possível realizar sua simulação ajustando-se as 

dimensões do filtro com auxílio de medidas da grandeza CTDI (AY et al., 2009; 

GU et al., 2009; FERREIRA et al., 2011a). Isso possibilita comparar os valores de dose 

determinados para o simulador antropomórfico computacional com as doses obtidas em 

dosímetros MOSFET, por exemplo, inseridos num simulador antropomórfico físico 

(DEMARCO et al., 2005). A grandeza CTDI será explicada mais adiante nesta sessão. 

 

 

Figura 6. Geometria de um feixe de CT irradiando um simulador de acrílico para medições de 
CTDI (adaptada de Gu et al., 2009). 
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O valor de CTDI100 é medido por meio do integral do perfil de dose (dose profile 

index-Dz), determinado ao longo de uma câmara de ionização tipo lápis com um 

comprimento ativo de 100 mm a partir do seu centro, expressa em termos de dose 

absorvida no ar (Gy). 

 Por meio do perfil de dose, Figura 7, obtém-se o CTDI, que é uma grandeza 

dosimétrica importante, determinada com o equipamento operando em modo axial (mesa 

estacionária), sendo ela utilizada para avaliação das características do feixe no controle de 

qualidade em tomografia.  

 

Figura 7. Perfil de dose para um único corte (PASCHOAL, 2012) 
 

Considerando T a largura nominal de corte e n o número de fatias simultaneamente 

adquiridas em equipamentos multicortes, podemos escrever a Equação 20: 

����(���,�/�)=
�

��
∫ ����
����

�����
      ( 20 ) 

Os valores de doses expressos pelo CTDI são comumente normalizados para 

valores de 100 mAs (nCTDI), e os índices a ou p indicam se as medições foram feitas pela 

câmara de ionização tipo lápis no ar ou em um simulador de tecido equivalente (PMMA). 

Esse simulador pode ser representativo de cabeça (16 cm de diâmetro) ou corpo (32 cm de 

diâmetro), conforme a Figura 8. No simulador de corpo e cabeça os furos periféricos são 

nomeados como as horas de um relógio. 

Com a evolução dos modelos de tomógrafos, surgiu a definição de fator de passo 

(pitch), que é dado matematicamente pela Equação 21.  
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����ℎ =
������������ �� ���� ��� ����çã�

��������� ������� �� �����
   ( 21 ) 

A dose de radiação do paciente é afetada pelo número e espaçamento de fatias 

adjacentes. Um maior número de fatias irradia um volume maior de tecido. A dose 

combinada, expressa como a dose média central devido à varredura múltipla 

(MSAD-multiple scan average dose), cresce por causa do aumento da penumbra resultante 

da radiação espalhada e da possível divergência do feixe. 

Corpo Cabeça

Câmara de ionização 
tipo lápis

12 h

3 h

6 h

9 h

 

Figura 8. Câmara tipo lápis e simuladores de tecido equivalente para corpo e cabeça utilizados em 
CT (adaptada de DOWSETT et al., 2006). 

 

A Figura 9 mostra como a dose total acumulada ao longo de uma série de cortes 

aumenta devido a contribuições das sobreposições entre as fatias.  
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Figura 9.  Perfil de dose para múltiplos cortes (adaptado de DOWSETT et al., 2006). 
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O MSAD é a dose média no corte central a partir de uma série de n cortes com 

espessura T, com uma constante I entre cortes sucessivos (incremento de mesa), podendo 

também ser escrito em termos do pitch, de acordo com a Equação 22. Por definição, o 

MSAD (Gy) é igual ao CTDI volumétrico (CTDIVOL) para as demais seções adjacentes 

acima e abaixo da seção de interesse, Figura 9. 

���� = ���� ��� =
��

�
������ =

�

�
������         ( 22 ) 

A medida do CTDI ponderado (nCTDIw) em um objeto simulador expressa a dose 

média de referência para uma única fatia de CT. 

������ =
�

�
�������� +

�

�
��������   ( 23 ) 

Os índices c e p na Equação 23 denotam a região central ou periférica do 

simulador (12, 3, 6 e 9 h), como mostrado na Figura 8. 

O produto dose comprimento (DLP) é definido pelo produto do CTDI ponderado 

(nCTDIw) e o comprimento da área varrida pelo tomógrafo (L). É possível estimar a dose 

efetiva (ICRP, 2007a) a partir dos valores de DLP medidos em tomógrafos por meio de um 

fator de conversão (EDLP), definido pelas diretrizes europeias sobre critérios de qualidade 

para tomografia computadorizada (BONGARTZ et al., 2004). Estes fatores são utilizados 

na literatura como parâmetro na determinação das doses efetivas (CHRISTNER et al. 

2010; DEAK et al., 2010; KAUSHIK et al., 2013; ATAÇ, et al, 2015). A Equação 24 

mostra a relação da dose efetiva e o DLP:  

� = ���� . ���        ( 24 ) 

Os sistemas de CT multidetectores (ou multicortes) estão associados a 4, 8, 16, 40 

ou 64 canais de aquisição de dados conectados a milhares de detectores dispostos em 

linhas ao longo do eixo longitudinal (direção z) do paciente. Os elementos detectores 

podem ser de largura desigual ou de igual largura; este aspecto está associado à qualidade 

de imagem na varredura multicorte espiral. 

O desenvolvimento de detectores multicortes reduziu significativamente a dose de 

radiação nos pacientes por duas razões: primeiro pela inserção de finos septos (cerca de 

0,06 mm de espessura) entre os detectores ao longo da direção z ao qual se dá o 
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movimento da mesa do paciente, absorvendo a radiação espalhada que não contribui para a 

imagem, e, segundo, pela adequação da relação de sombra-penumbra, que é maior em 

sistemas multicortes, porque a proporção entre a colimação do feixe e o tamanho do ponto 

focal é quatro vezes superior para sistemas de seção quádrupla comparado a sistema de 

único corte. A Figura 10 (a) compara a geometria de feixe de raios X de única fatia em 

relação a um sistema multicorte e a Figura 10 (b) apresenta um eixo geométrico de um 

detector (x,y,z).  
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Figura 10. a) Geometrias de um feixe para uma única fatia e para um feixe multicorte b) Detector 
multicorte (adaptada de DOWSETT et al., 2006). 

 

O coeficiente de atenuação do tecido é relacionado com o da água através do 

número de CT ou unidade Hounsfield (CTN), sendo relacionado apenas com o coeficiente 

de atenuação (µ) do tecido e da água, de acordo a Equação 25: 

��� =
��������� á���

�á���
.1000    ( 25 ) 

A Figura 11 mostra que os valores de números de CT variam entre -1000 (ar) e 

3000 (osso compacto). 
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Figura 11. Esquema com números de CT (adaptado de DOWSETT et al., 2006) 
 

2.8 Formalismo MIRD e dosimetria interna 

O sistema de dosimetria MIRD (Medical Internal Radiation Dose) tem relevância 

para a avaliação da dose absorvida em órgãos inteiros, subregiões de tecido, estruturas de 

tecido voxelizados e compartimentos celulares individuais para uso em medicina nuclear 

de diagnóstico e terapêutica. Foi originalmente publicado em 1968, revisado em 1976, e 

republicado com exemplos abrangentes como o primer MIRD em 1988 e 1991 

(BOLCH et al., 2009). A ICRP desenvolveu um esquema semelhante ao da dosimetria da 

Comissão MIRD, mas usou terminologia diferente e símbolos para as grandezas 

fundamentais, tais como a fração absorvida, fração absorvida específica e vários 

coeficientes de dose, conforme estão relacionados no panfleto MIRD Nº 21 

(BOLCH et al., 2009). 

O decaimento do radionuclídeo é expresso pela Equação 26: 

������� ������� 

�����
=

������çã�

�����
.
������� ������� 

������çã�
= �.

������� ������� 

������çã�
   ( 26 ), 

sendo A a atividade. A dose absorvida (Gy) é calculada considerando um volume infinito 

de material de tecido equivalente que contém uma distribuição uniforme de material 

radioativo. Se toda a energia emitida é absorvida, a taxa de dose, que é a energia absorvida 

por unidade de massa (kg) e por unidade de tempo (� )̇, pode ser determinada através da 

Equação 27 (ICRU, 2011): 

� =̇  �

������� ������� 

������çã�

�����
         ( 27 ) 
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Podemos reescrever a Equação 27 com os termos do formalismo MIRD 

(BOLCH et al., 2009): 

� =̇  �.
�

�
��             ( 28 ) 

sendo k a constante de proporcionalidade que dará a taxa de dose na unidade desejada, A/m 

a concentração de atividade por unidade de massa (kg) e ��(J) a energia média emitida por 

desintegração nuclear (BOLCH et al., 2009). Para expressarmos a taxa de dose em Gy/s, o 

valor da constante k é 1,602E-10. 

Como ao decair um radionuclídeo pode emitir diferentes tipos de radiação (fótons e 

partículas), a fração de transformação (��) para um i-ésimo tipo de decaimento é dada por 

� =̇ �� ���. Assim, a taxa de dose total considera a soma de todos os diferentes 

decaimentos: 

��̇ = �
�

�
∑ ���
�               ( 29 ) 

Cada radionuclídeo possui uma energia de decaimento constante que ao ser 

multiplicada pela constante k dá origem a uma nova constante, representada no esquema 

MIRD pela letra ∆. Assim, podemos reescrever a Equação 29: 

��̇ =
�

�
∆        ( 30 ) 

As partículas alfa, beta e elétrons são geralmente classificadas como radiação não 

penetrante, devido ao seu curto alcance no tecido mole, enquanto que os fótons (raios gama 

e raios X com energias superiores a 10 keV), pela maneira como interagem com os tecidos, 

podem depositar parte de sua energia fora do órgão de origem; são classificados como 

radiação penetrante. Raios X de energias abaixo de 10 keV são considerados não 

penetrantes. Sendo assim, é necessário adicionar um novo fator para a equação de taxa de 

dose de forma a contabilizar a energia emitida a partir do órgão fonte, que não é absorvida 

no tecido ou órgão alvo de interesse (o alvo e a fonte podem estar na mesma região). Este 

fator representa a fração de energia ( ɸ ) emitida por um órgão de origem da radiação que é 

absorvida num órgão alvo e é chamada fração absorvida, expressa pela Equação 31:  

ɸ =
������� ��������� ��   ó��ã� ����

������� ������� ���� ó��ã� �����
     ( 31 ) 
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A taxa de dose absorvida por unidade de atividade em órgãos-alvo (rT), devido aos 

órgãos fonte (rS) é definida de acordo com a Equação 32 (BOLCH et al., 2009): 

� (̇��,�)= ∑ �(��,�)�(��←� �,�)��       ( 32 ) 

�(��,�) é a atividade do radionuclídeo no órgão fonte e �(��←� �,�) é o valor S descrito 

pela Equação 33: 

�(��←� �,�)= ∑
∆�∅(��←� �,��,�)

�(��,�)
�           ( 33 ), 

sendo ∆i e ∅(�� ← � �,��, �) as energias do radionuclídeo e as frações de energia absorvidas 

pelos órgãos alvo, respectivamente, e � (��,�) a massa do órgão alvo. Considerando-se que 

a taxa de dose é expressa em Gy.s-1, a unidade do valor S é dada em Gy.(MBq.s)-1, 

dimensionando a Equação 32. 

A dose absorvida no órgão alvo é a integral da taxa de dose, mostrada na 

Equação 34, considerando-se o tempo TD infinito, uma vez que a meia-vida dos 

radionuclídeos empregados em medicina nuclear é curta (horas ou dias). 

�(��,��)= ∫ � (̇��,�)
��

�
�� = ∑ �(��←� �,�)∫ �(��,�)��

��

���       ( 34 ) 

Nos cálculos de dosimetria interna devem ser consideradas as meias-vidas física e 

biológica. Por ser a meia vida biológica uma variável difícil de ser mensurada e 

dependente da biocinética de cada indivíduo, podemos reescrever a Equação 34 como 

independente do tempo, de acordo o formalismo MIRD, considerando as desintegrações do 

radionuclídeo absorvido pelo órgão fonte:  

�(��,��)= ∑ ��(��,���� )�(��←� �)    ( 35 ) 

sendo �� a atividade acumulada, ou atividade fracionada. 

É possível mensurar o número de desintegrações em um órgão fonte com o auxílio 

de uma gama câmara ou através de imagens obtidas do paciente em diferentes intervalos de 

tempo. O número de desintegrações do radionuclídeo no órgão fonte por atividade 

administrada é descrito pela Equação 36, sendo Fs a distribuição fracionada para o órgão 

ou tecido fonte e a é a fração eliminada considerando-se a meia-vida biológica 

(ICRP, 2008):  
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� =
��(��,�)

��
= �� ∑ ��

���
����� ∑ ���

��

���� �

� ������
��� (�)

��,���
�� − ����

��� (�)

��,���
�����

���   ( 36 ) 

A atividade acumulada pode ser expressa também pela Equação 37, considerando 

o tempo compartimental em que o radionuclídeo permanece no órgão: 

��(��,�)= ∫ �(��,�)��
�

�
     ( 37 ) 

O "tempo de residência” é o tempo em que o radionuclídeo permanece no órgão 

fonte desde o momento de sua absorção até sua total desintegração. Nos cálculos de 

dosimetria interna o tempo de residência é substituído pela atividade acumulada 

normalizada 
��(��,�)

��
, que tem unidades de MBq.s por MBq administrados ou mCi.h por mCi 

administrado (STABIN, 2008). 

A atividade acumulada é expressa em um gráfico de atividade por tempo, 

mostrando o número de desintegrações ocorridas no órgão de interesse. Um exemplo desse 

tipo de gráfico considerando-se a absorção do 18F-FDG é mostrado na Figura 12. 
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Figura 12. Curvas de atividade-tempo para alguns órgãos devido ao 18F- FDG para 13 estudos de 
caso em indivíduos normais (adaptado de HAYS et al., 2002) 

 

O efeito da radiação ionizante em um tecido depende do tipo da radiação, uma vez 

que a energia pode ser depositada localmente ou em outras regiões. Portanto, é necessária a 

definição de dose equivalente ( HT ), que é a dose que um determinado tecido recebe, sendo 

o produto da dose absorvida por um fator multiplicativo ( wR ) da radiação incidente, 

Equação 38. 
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�� = � �,�.��      ( 38 ) 

Para todos os tipos de radiações utilizadas na medicina nuclear de diagnóstico, o 

fator wR é igual a 1,0. Se a radiação não for de um único tipo, a dose efetiva resultante será 

a soma das doses recebidas de cada tipo de radiação incidente. 

A dose efetiva considera um fator de risco estocástico total (wT), também 

denominado de fator de peso, para cada órgão de acordo sua sensibilidade a radiação, 

sendo descrita de acordo com a Equação 39: 

� = ∑ ��.���       ( 39 ) 

Na Tabela 3 estão os fatores de peso para os principais órgãos internos, de acordo a 

publicação 103 da ICRP (ICRP, 2007a). 

Tabela 3. Fatores de peso (��) para órgãos e tecidos (ICRP, 2007a) 

Tecido / Órgãos � �  � � �

�

 

Medula óssea, cólon, pulmão, estomago, mama e restantes* 0,12 0,72 
Gônadas 0,08 0,08 

Bexiga, esôfago, fígado e tireoide 0,04 0,16 
Superfície óssea, cérebro, glândulas salivares e pele 0,01 0,04 

 TOTAL 1,00 
* Região suprarrenais, Região extratorácica, vesícula biliar, coração, rins, gânglios, baço, timo, 
linfáticos, músculos, mucosa oral, pâncreas, próstata, intestino delgado e útero. 

Outro aspecto é que os cálculos de dose na medula vermelha foram realizados 

considerando-se o conjunto de ossos esponjosos que contém a medula ativa no 

esqueleto humano (ECKERMAN, 1985). 

A dose efetiva para um indivíduo de referência é calculada considerando-se a média 

das doses absorvidas entre os indivíduos macho e fêmea (ICRP, 2007b). 

 

2.9 Modelos biocinéticos para radionuclídeos 

A dispersão do radionuclídeo nos órgãos internos depende da biocinética de cada 

paciente, como também da existência de neoplasias, uma vez que nas regiões neoplásicas a 

captação de radiofármaco é modificada (HUANG et al., 2015; STABIN et al., 2005).  
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 A publicação 53 da ICRP (ICRP, 1988) fornece modelos biocinéticos para alguns 

radiofármacos utilizados em medicina nuclear. Vamos apresentar o modelo biocinético 

para o 18F-FDG, considerado o radiofármaco mais utilizado para diagnóstico de neoplasias 

e também em PET cardíaco.  

Segundo a ICRP 53 (ICRP, 1988), o 18F-FDG é distribuído para as células do corpo 

com uma meia-vida biológica de 1,44 minutos a partir da corrente sanguínea (plasma). A 

absorção do FDG ocorre principalmente pelo cérebro e pelo coração após a meia-vida 

efetiva de 8 minutos, a frações de 4% e 6%, respectivamente. Este modelo supõe que uma 

fração de 30% da atividade administrada no paciente é eliminada para o sistema renal, 

fracionada em dois tempos de meia-vida efetiva distintos: um de 11,5 minutos (25%) e 

outro de 51,8 minutos (75%). É considerado também que a fração de 60% restante do total 

seja distribuída entre todos os tecidos do corpo, exceto cérebro e coração.  

A Figura 13 (a) apresenta o modelo de compartimentos para o 18F-FDG, proposto 

pela ICRP 53 (ICRP, 1988). A Figura 13 (b) apresenta o modelo de compartimentos para 

18F-FDG, atualizando o modelo da ICRP 53 (ICRP, 1988) por meio da ICRP 106 

(ICRP, 2008). 

a)      b)  

Figura 13. a) Modelo de compartimentos do 18F-FDG na ICRP 53 (ICRP, 1988) b) Modelo de 
compartimentos do 18F-FDG na ICRP 106 (ICRP, 2008) 

 

Em 2008, a ICRP atualizou os dados publicados pela ICRP 53 por meio da 

ICRP 106, considerando os estudos de Hays et al. (2002), juntamente com os dados 

obtidos por DELOAR et al. (1998). No modelo da ICRP 106 (ICRP, 2008), após a 

administração intravenosa, grande parte do 18F-FDG é rapidamente distribuído no corpo 
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com meia-vida biológica de um minuto, entretanto, há regiões que apresentam meia-vida 

de até 90 minutos. 

Estes dados confirmam o modelo proposto pela ICRP 53 (ICRP, 1988), com 4% do 

radiofármaco sendo absorvido pelo coração. No entanto, a captação pelo cérebro 

demonstra ser maior que a apresentada pela ICRP 53, cerca de 8%. Além disso, o fígado e 

os pulmões apresentaram captações significativas. No fígado, captações de 

aproximadamente 5% foram obtidas por DELOAR et al. (1998) e MEIJA et al. (1991).  

No modelo de Hays e Segall (1999) ocorre maior captação no fígado com rápido 

decréscimo. Estudos de quantificação da captação nos pulmões apresentam variações de 

0,9% (MEIJA et al., 1991) a 0,03% da atividade injetada (DELOAR et al., 1998) e, 

novamente, Hays et al. (2002) indicaram uma maior captação nos pulmões seguida de um 

rápido decréscimo. 

Os dados biocinéticos e doses absorvidas estimadas por atividade administrada para 

o 18F-FDG estão listados na Tabela 4. 

Tabela 4. Dados biocinéticos para o 18F-FDG (ICRP, 2008) 

Órgão fonte (S) 

Distribuição 
fracionada no 

órgão ou 
tecido (Fs) 

Meia-
vida 

biológica 
T (h) 

Fração eliminada 
com meia-vida 
biológica (a) 

Atividade 
Acumulada 

���

��
 (h) 

Cérebro 0,08 ∞ 1,0 0,21 
Coração 0,04 ∞ 1,0 0,11 
Pulmões 0,03 ∞ 1,0 0,079 
Fígado 0,05 ∞ 1,0 0,13 
Demais órgãos e tecidos 0,80 0,20 0,075 

1,7   1,5 0,225 
  ∞ 0,70 
Conteúdo da bexiga 0,24    
Adulto, 15 e 10 anos    0,26 
5 anos    0,23 
1 ano    0,16 

 

É importante destacar que este modelo demonstrou o aumento da captação do 

radiofármaco pelo cérebro e incluiu dois outros órgãos: fígado e pulmão.  

Os órgãos alvos considerados pela ICRP 106 (ICRP, 2008) para a determinação das 

doses absorvidas estão na Tabela 5. 



 
 

43 
 

 
Tabela 5. Órgãos alvo para cálculo de dose absorvida (ICRP, 2008) 

Órgãos/ Tecidos 

Glândulas suprarrenais Intestino delgado Pâncreas 
Bexiga Intestino grosso Medula vermelha 
Superfície óssea Coração Pele 
Cérebro Rins Baço 
Mamas Fígado Testículos 
Vesícula biliar Pulmões Timo 
Trato gastrointestinal Músculos Tireoide 
Estômago Esôfago Útero 
Cólon Ovários Demais órgãos e tecidos 

 

Dados de biodistribuição de outros radiofármacos podem ser encontrados na 

literatura. Esses dados podem ser disponibilizados por meio do tempo de residência do 

radiofármaco em órgãos internos para o 11C e o 13N (YAO et al., 2015; YI et al., 2015), 

como também por meio das atividades acumuladas em regiões captantes após a 

administração intravenosa do 68Ga (SHANEHSAZZADEH et al., 2015), por exemplo.  

2.10 Simulações da interação da radiação por método de Monte Carlo 

O método de Monte Carlo faz uso de métodos estatísticos baseados em números 

aleatórios, considerando-se os problemas relacionados a processos estocásticos. Dessa 

maneira, é possível simular as interações com o modelo computacional tendo o auxílio de 

uma função densidade de probabilidade. Técnicas envolvendo Método de Monte Carlo são 

utilizadas em vários aspectos da física médica, tais como proteção radiológica de 

profissionais de saúde, projetos de cintiladores, caracterização de fontes, detectores de 

radiação e dosimetria interna em pacientes adultos e pediátricos (STABIN e FLUX, 2007; 

MOK et al., 2010; XIE e ZAIDI, 2013; XIE et al., 2013; LACERDA et al.2015). 

Muitos códigos para simulações foram desenvolvidos baseados neste método, 

alguns deles estão apresentados na Tabela 6, com algumas características para realização 

das simulações.  

As informações sobre as densidades e as composições químicas de cada órgão e 

tecido são associadas a um número identificador (id), que deve ser especificado para as 

simulações. Em seguida, as condições da radiação, bem como o modelo das fontes e do 

feixe devem estar de acordo a condição de irradiação desejada (XU e ECKERMAN, 2010). 
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Tabela 6. Listagem dos principais códigos baseados em Monte Carlo 
(adaptada de ZAIDI e SGOUROS, 2003) 

Códigos Descrição 

MCNP Desenvolvido inicialmente para a física de reatores e de transporte de 

nêutrons. Posteriormente, o transporte de elétrons foi incluído (versão 4) 

para avaliar dose em geometrias complexas, com estruturas repetidas. As 

versões mais recentes podem ser solicitadas ao Radiation Safety 

Information Computational Center (RSICC-http://www.rsicc.ornl.gov) 

EGS O código EGS é um pacote de uso geral para o transporte acoplado de 

elétrons e fótons em uma geometria arbitrária de partículas com energias 

de alguns keV até vários TeV. O sistema EGSnrc, desenvolvido e mantido 

pelo National Research Council Canada (NRC), é uma versão estendida e 

melhorada do pacote EGS4. 

GEANT4 Desenvolvido para a física de partículas de altas energias, permite 

transporte de múltiplas partículas. A simulação para o cálculo da 

dosimetria interna não está especificamente incluída e requer uma grande 

quantidade de programação do utilizador em linguagem C++. O software 

foi originalmente desenvolvido pela RD44, que é um consórcio 

internacional de mais de 100 cientistas de diferentes países. 

PENELOPE É um código de Monte Carlo para simulações de transporte fóton-elétron, 

que foi desenvolvido na Espanha. Ele apresenta um modelo detalhado para 

o tratamento das interações da radiação com intervalo de energias de 

centenas de eV até cerca de 1 GeV 

FLUKA Código com suporte para 60 diferentes partículas (os fótons e elétrons a 

partir de 1 keV a milhares de TeV). A versão mais recente deste pacote é 

FLUKA de 2008. Este software foi desenvolvido por um grupo italiano. 

Possui aplicações limitadas. 
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Números aleatórios são de grande importância para realizar simulações de sistemas 

físicos por meio de modelos estatísticos, uma vez que eles são os iniciadores do processo 

de simulação. Algoritmos matemáticos foram desenvolvidos para gerar a sequência de 

números aleatórios, os quais devem possuir as seguintes características: a geração rápida 

do número aleatório, as sequências numéricas não devem ter correlação umas com as 

outras e o período de repetição da sequência deve ser longo (SOBOL, 1994). 

Códigos que utilizam o método de Monte Carlo simulam a interação da radiação 

com a matéria considerando diferentes aspectos físicos, como decaimento radioativo, por 

exemplo, assumindo um grande número de interações (histórias) de partículas, inserindo-os 

em um subconjunto específico chamado de sub-rotina, de acordo com uma distribuição de 

probabilidade. 

Para uma dada simulação, a incerteza estimada é inversamente proporcional à raiz 

quadrada do número de histórias realizadas entre as partículas (X-5, 2008). A 

eficiência ( � ) do cálculo de Monte Carlo é determinada considerando-se o tempo de 

cálculo ( T ) necessário para obter uma estimativa da variância ( σ2 ): 

� =
�

���
       ( 40 ) 

O código MCNPX 2.7.0 (Monte Carlo N-Particle eXtended) simula interações com 

fótons considerando elétrons ou fóton/elétron acoplados, o que é de grande importância 

para a dosimetria interna em PET/CT. Existem tabelas de interação para todos os 

elementos, de Z = 1 a Z = 100. 

Na biblioteca interna do MCNPX existem dados de interações de fótons com a 

matéria, possibilitando determinar o espalhamento coerente e incoerente, a absorção 

fotoelétrica com a possibilidade de emissão fluorescente, e produção de pares. 

Distribuições de dispersão angulares são modificadas por fatores de forma atômica e 

funções de espalhamento incoerente (X-5, 2008). 

A definição da fonte de radiação pelo usuário no MCNPX permite a descrição de 

uma ampla variedade de condições de feixes sem a necessidade de modificação do código. 

Distribuições de probabilidade independentes podem ser utilizadas para distribuição de 

energia da fonte, para a posição e a direção do feixe, e de outros parâmetros, como células 

de partida ou de superfície.  
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O usuário pode pedir ao MCNPX para especificar o tipo de informação e as 

quantidades físicas normalizadas por partícula, como a dose absorvida ou a deposição de 

energia em um volume, utilizando um tally. A Tabela 7 descreve alguns tallies disponíveis 

no MCNPX. 

Tabela 7. Descrição de tallies para o MCNPX (X-5, 2008) 

Tally Descrição Unidades 

F1:P, E Corrente em uma superfície Partículas 

F2:P,E Fluxo médio em uma superfície Partículas/cm2 

F4:P, E Fluxo médio em uma célula Partículas/cm2 

F5:P Fluxo em um ponto ou detector Partículas/cm2 

F6:P Energia média absorvida por uma célula MeV/g 

F8:P, E Energia absorvida por uma célula Pulsos (MeV) 

 

A equação que descreve o tally F6 é mostrada abaixo (X-5, 2008): 

����� �6 =
��

��
∭ � (�)ɸ(�⃗ ,�,�)����    ( 41 ) 

na qual �� é a densidade atômica (átomos/bar.cm), �� é a densidade (g/cm3) e H(E) é a 

função resposta, que para fótons é definida por: 

� (�)= ��(�)��é��� (�)    ( 42 ) 

e 

��é��� (�)= ∑ ��(�).(� − �����)
�
���     ( 43 ) 

sendo pi a probabilidade de reação i, i=1 está associada ao espalhamento Compton, i=2 

corresponde à produção de pares (na qual ����� = 2� ��
� = 1,022MeV) e i=3 corresponde 

ao efeito fotoelétrico.  

Podem ser também consideradas interações para elétrons e pósitrons para os tallies 

1, 2, 4 e 8. Se acrescentarmos antes do tally um asterisco, o resultado fornecido pelo 

código MCNPX é alterado, sendo expresso em termos da energia absorvida em superfícies 

ou células. 
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2.11 Objetos simuladores de tecido equivalente e antropomórficos 

Historicamente, o termo phantom, ou objeto simulador, foi muito utilizado em 

radiologia para representar um modelo físico do corpo humano. Um objeto simulador de 

tecido equivalente precisa possuir sensibilidade à radiação o mais próximo possível da 

sensibilidade dos tecidos do corpo humano, ou tecido mole, podendo ser classificado de 

acordo com a sua função primária: dosimétrica - medir dose absorvida em uma geometria 

específica, calibração - estimar a resposta em detectores de radiação ou imagem - realizar 

controle de qualidade de imagem (WAMBERSIE e WHITE, 1992). 

Os parâmetros que definem o material como tecido equivalente aos tecidos do 

corpo são a densidade, o poder de freamento e a espessura do meio, além da absorção e do 

espalhamento da radiação, devendo ter comportamento idêntico aos obtidos com espessura 

semelhante à dos tecidos humano quando expostos à radiação (ICRU, 1989). 

Por meio da determinação do coeficiente de atenuação mássico, Equação 44, o 

nylon foi avaliado como um material adequado para simular o tecido cerebral humano. 

(FERREIRA et al., 2010). 

�

�
=

����

� ��
     ( 44 ) 

Nessa equação,  ���� é a seção de choque total para fótons,  � �  é a unidade de massa 

atômica e A é a massa atômica relativa do material. 

Na comunidade de proteção radiológica o termo phantom também tem sido 

utilizado para se referir a um modelo computacional "anatômico" definido, não 

apresentando alguns aspectos fisiológicos, tais como a respiração ou fluxo sanguíneo. 

Desde o surgimento da metodologia de utilização, na década de 1960, o uso de simuladores 

humanos computacionais adultos e pediátricos tornou-se cada vez mais popular nas áreas 

de proteção radiológica, imagem e radioterapia. Hoje, simuladores físicos são comumente 

usados em dosimetria de proteção contra as radiações como referência para os resultados 

computacionais (XU e ECKERMAN, 2010). 

O primeiro simulador antropomórfico computacional representando um homem 

adulto foi desenvolvido a pedido do grupo MIRD, por pesquisadores do ORNL (Oak Ridge 
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National Laboratory), com o objetivo de calcular a dose nos órgãos de pacientes após a 

administração de radiofármaco (XU e ECKERMAN, 2010). 

No simulador construído pelo grupo MIRD o tamanho e a forma do corpo, como 

também seus órgãos, são descritos por expressões matemáticas que representam 

combinações e interseções de planos, cilindros circulares e elípticos, esferas, cones, 

toróides, etc. Os órgãos são preenchidos por materiais que representam tecidos do corpo 

humano, de acordo com a composição química elementar e densidades tabuladas na 

ICRP 23 (ICRP, 1975), que foram posteriormente atualizadas com a ICRP 89 

(XU e ECKERMAN, 2010). As estruturas representadas neste modelo são as de um 

homem de referência, com idade entre 20 e 30 anos. Inicialmente constituído por poucas 

estruturas (cabeça, pescoço e torso), com composição única e homogênea, anos mais tarde 

recebeu implementações significativas no modelo, incluindo órgãos internos e variações 

nas dimensões do simulador, recebendo o nome de Adam (homem) e Eve (mulher) 

(STABIN e SIEGEL, 2003). 

Com o surgimento da tomografia e o avanço da computação, as técnicas de 

manipulação de imagens possibilitaram a aquisição de informações das estruturas internas 

do paciente através de um elemento de volume cúbico (voxel), contendo informações da 

composição e da densidade do material de acordo com o número de CT (equação 24), 

chamado processo de segmentação. Um conjunto consecutivo de imagens segmentadas de 

CT da cabeça aos pés representa uma matriz tridimensional de voxel, ou seja, um 

simulador humano de voxel, que pode ser introduzido em códigos de transporte da 

radiação para cálculo da dose absorvida em órgãos e tecidos. 

Os simuladores MAX (Male Adult voXel) e FAX (Female Adult voXel) foram 

desenvolvidos e adaptados a partir de imagens segmentadas de um corpo adulto masculino, 

a fim de obter uma representação o mais próximo possível das propriedades anatômicas do 

macho e fêmea adultos de referência especificados pela ICRP por KRAMER et al. (2006). 

Pode-se realizar ainda ajustes em massas de órgãos de tecidos moles, elaborar modelo de 

dosimetria para regiões específicas como a pele e esqueleto ao acoplar os simuladores com 

o código de Monte Carlo EGS4 (KRAMER et al., 2006). 

Modelos híbridos foram desenvolvidos nos últimos anos empregando superfícies 

poligonais não uniformes (NURBS), também chamadas de superfícies de malha de 
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polígono (MESH), para representar os contornos da superfície de órgãos e tecidos (XIE et 

al., 2013). Para a elaboração dos simuladores antropomórficos as superfícies MESH 

permitem um desenvolvimento independente de imagens médicas de pacientes, voluntários 

ou cadáveres. Os primeiros modelos masculinos e femininos, como também 20 modelos de 

referência pediátricos, foram construídos usando superfícies NURBS (chamados de 

UF-NCI), incluindo do recém-nascido de referência, e de crianças de 1, 5, 10 e 15 anos de 

idade, para uso em dosimetria de radiação computacional (LEE et al., 2007; LEE et 

al., 2010). A Figura 14 apresenta a geometria dos órgãos internos dos simuladores MIRD 

5 (Adam e Eve) e o de voxel (MAX).  

Os simuladores antropomórficos chamados FASH (Feminino Adulto meSH) e 

MASH (Masculino Adulto meSH), utilizando superfícies MESH por meio de métodos de 

modelagem 3D e atlas anatômico, foram desenvolvidos pelo grupo de dosimetria numérica 

- DEN/UFPE (KRAMER et al., 2010). Cassola et al. (2010a) realizaram ajustes nos 

simuladores MASH e FASH para adequar as suas estruturas de acordo com o 

posicionamento do indivíduo, em pé ou deitado, devido ao efeito da gravidade. Este 

aspecto produz variações nos cálculos dosimétricos para os órgãos e tecidos internos 

(CASSOLA et al., 2010b). 
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              b)  

Figura 14. Simuladores computacionais e suas estruturas internas a) MIRD 5 - Adam e Eve b) 
Simulador de Voxel MAX (KRAMER et al., 2003) 

 

A influência da gravidade no posicionamento de órgãos internos para o simulador 

masculino (MASH) pode ser observada na Figura 15 - os pulmões, por exemplo, quando o 
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simulador está em pé se aproximam da segunda linha de cima para baixo, e quando está  

deitado estão um pouco acima dessa linha. 

Foram desenvolvidos também simuladores de criança de cinco e dez anos (DE 

MELO LIMA et al., 2011) e de recém-nascido e de um ano de idade 

(CASSOLA et al., 2013), todos eles construídos utilizando-se superfícies MESH. Esses 

simuladores são mostrados na Figura 16 (a) e 16 (b), respectivamente. 

 
Figura 15. Variação na postura de órgãos internos em um simulador masculino.                                    

a) visão frontal b) visão lateral (CASSOLA et al., 2010b) 
 

Com o auxílio do código de Monte Carlo EGS pode-se determinar as doses efetiva 

e equivalente em um equipamento de tomografia utilizando os simuladores MASH e 

FASH (FERREIRA et al., 2011b). 

a)  b)  

Figura 16. Simuladores construídos com superfícies MESH a) cinco e dez anos, masculino e 
feminino (DE MELO LIMA et al., 2011) e b) recém-nascido e de um ano de idade hermafroditas 

(CASSOLA et al., 2013). 
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Em proteção radiológica, a exposição das crianças em exames de diagnóstico que 

envolva radiação ionizante tornou-se uma preocupação em âmbito mundial: primeiro 

devido às condições de irradiação, as crianças muitas vezes recebem maior dose absorvida 

nos órgãos e tecidos do que os adultos, e segundo as crianças têm maiores riscos de câncer 

por unidade de dose absorvida. Consequentemente, o risco de mortalidade, devido ao 

câncer atribuível à exposição a radiação ionizante, é significativamente maior em crianças 

do que em adultos (BRENNER et al., 2001). A quantificação dos riscos de câncer devido à 

radiação ionizante requer conhecimento sobre a dose absorvida para órgãos radiossensíveis 

e tecidos que não podem ser medidos in vivo. Contudo, modelos de exposição 

computacionais que consistem no uso de código computacional fundamentado em 

simulação de MC associado a simuladores antropomórficos virtuais podem ser utilizados 

para resolver problemas de cálculo de doses absorvidas em órgãos e tecidos para uma 

grandeza mensurável. Sendo assim, as crianças são mais sensíveis à radiação do que os 

adultos e têm uma expectativa de vida mais longa para manifestar os efeitos da radiação. 

Neste sentido, esforços devem ser feitos para minimizar os efeitos das radiações e, por 

isso, neste trabalho esses indivíduos também serão estudados. 

 

2.12 Objetos simuladores para PET/CT 

Vários parâmetros associados com o scanner são fundamentais para a formação da 

imagem de boa qualidade, que incluem a resolução espacial, sensibilidade, ruído, radiações 

espalhadas e contraste. Estes parâmetros são interdependentes, e, se um parâmetro é 

melhorado, um ou mais dos outros são comprometidos (SAHA, 2010).  

Testes de aceitação são uma bateria de testes de controle de qualidade realizados 

para verificar vários parâmetros especificados pelo fabricante em um equipamento de PET. 

Estes são essencialmente realizados logo após a instalação do equipamento a fim de 

estabelecer a conformidade das especificações do dispositivo. As especificações comuns e 

mais importantes são transverso radial, transverso tangencial e resoluções axiais; 

sensibilidade; fração de espalhamento; e desempenho da taxa de contagem. É essencial ter 

um padrão para a realização desses testes, de modo que uma comparação entre scanners de 

diferentes fabricantes possa ser feita.  
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Em 1991, a Society of Nuclear Medicine (SNM) estabeleceu um conjunto de 

normas para estes testes para scanners PET (KARP et al., 1991). Depois, em 1994, a 

National Electrical Manufacturers Association (NEMA) publicou um documento, 

NU 2-1994 (NEMA, 1994), recomendando normas melhoradas para a realização desses 

testes, usando um simulador de 20 × 19 cm2, mostrado na Figura 17 (a). Este simulador 

foi útil para as primeiras versões dos scanners de PET, em que o FOV axial é inferior a 17 

cm, quando os dados são adquiridos em modo 2D, com uso de septos.  

O exame de PET de corpo inteiro moderno tem campos de visão axiais acima de 

25 cm, e empregam dados 3D adquiridos com ausência de septos. As coincidências nas 

gama câmaras têm FOVs típicos de 30-40 cm. Por causa de FOVs maiores e altas taxas de 

contagem em Modo 3D, o simulador NU 2-1994 não pode ser aplicado com precisão para 

alguns testes. Com a finalidade de aprimorar a norma de 1994, uma nova norma, a 

NU 2-2001, foi publicada pela NEMA (NEMA, 2001) utilizando um novo objeto 

simulador mostrado na Figura 17 (b). 

a)   b)   

Figura 17. Modelos de objetos simuladores produzidos pela NEMA a) Utilizado pela norma 
NU 2-1994 (NEMA, 1994) e b) Utilizado pela norma NU 2-2007 (NEMA, 2001). 

 

Os testes de desempenho nos equipamentos de PET com detectores baseados em 

LSO não podem ser realizados estritamente de acordo com as recomendações 

NEMA NU 2-2001 (NEMA, 2001) por causa da presença de radioatividade intrínseca 

dentro do cristal que compõe o material cintilador LSO. Esta radiação de fundo dá origem, 

principalmente, a eventos de coincidências aleatórias, e também a um pequeno número de 

coincidências verdadeiras, que não podem ser eliminadas a partir de medições dos 

scanners. Portanto, essa radiação de fundo deve ser corrigida para a análise de dados 

(WATSON et al., 2004). Realizando as modificações apropriadas para os procedimentos 
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de aquisição e processamento, a NEMA introduziu um padrão para estes testes em 

scanners PET com detectores baseados em LSO, o NEMA NU 2-2007 (NEMA, 2007). 

Muitos recursos desta norma foram mantidos conforme as do padrão NU 2-2001 

(NEMA, 2001). Mas para a avaliação da sensibilidade e da diminuição nas contagens de 

eventos aleatórios, são necessários outros simuladores, como os mostrados na 

Figura 18 (a) e 18 (b). 

a)  b)  

Figura 18. Modelos de simuladores complementares recomendados pela norma 
NEMA NE 2-2007: a) Para determinação da sensitividade; b) Para determinação da fração de 

espalhamento, tempo morto e contagem aleatória (NEMA, 2007). 
 

O benefício desses padrões NEMA é que eles permitem a comparação direta de 

scanners PET de diferentes fornecedores, bem como a padronização para testes de 

desempenho dos detectores de PET (SAHA, 2010). 

Estudos recentes utilizam as recomendações da NEMA NU 2-2007 para avaliar 

fatores que interferem na qualidade em PET/CT, por exemplo: validação por meio do 

protocolo de taxa de contagem de simulações de Monte Carlo para encontrar uma 

geometria ideal do equipamento com detectores LSO (ou seja, FOV, espessura e ângulo de 

aceitação do detector) (POON et al., 2012); caracterizar o desempenho do scanner 

Biograph mCT PET/CT TrueV com o tempo de voo (TOF) e a função de contagem de 

pontos (PSF) (MARTÍ CLIMENT et al., 2013); o tempo de aquisição, a relação sinal-ruído 

(SNR) e a atividade reconstruída (RAR) (MOLINA-DURAN et al., 2014); o desempenho 

de equipamentos de PET com detectores de diferentes cristais (LSO e BGO) para regiões 

de baixa atividade (< 1MBq) (FREEDENBERG et al., 2014); 

Testes também devem ser realizados para avaliar o desempenho dos equipamentos 

PET/CT depois de serviços de manutenção e atualizações no software, devendo ser 

repetidos após atualizações de hardware. 
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2.13 Detectores de radiação OSLD e câmara de ionização 

Dosímetros de luminescência opticamente estimulada (optically stimulated 

luminescence dosimeters-OSLD) já estão firmados na dosimetria pessoal, sendo utilizados 

em rotinas dosimétricas há mais de uma década. O princípio de funcionamento é idêntico 

ao dos dosímetros termoluminescentes (TLD) conhecidos, com exceção de que a leitura do 

sinal OSLD é realizada por iluminação controlada do dosímetro, ao invés do aquecimento 

empregado nos TLD (YUKIHARA e McKEEVER, 2008). 

O fenômeno OSLD pode ser explicado analogamente ao processo de 

termoluminescência, porém pode ocorrer adição de transições ópticas quando o material 

for exposto à luz. No material semicondutor, as bandas de condução de valência são 

separadas por um intervalo de energia, chamada banda proibida. Bandas proibidas podem 

existir apenas devido aos níveis de energia localizados, ocasionados por defeitos na 

estrutura cristalina. A radiação ionizante é capaz de mover os elétrons para a banda de 

condução, deixando vacâncias na banda de valência, Figura 19.  
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Figura 19.  Possíveis transições eletrônicas entre os níveis de energia do dosímetro durante a 
irradiação (adaptado de YUKIHARA e McKEEVER, 2008) 

 

A carga capturada (armadilhada) nestes níveis de energia proporciona um registro 

da dose total absorvida pelo cristal. Esse registro pode ser quantificado, estimulando os 

elétrons presos de volta para a banda de condução, ocorrendo recombinação de par elétron-

buraco e luminescência. A intensidade da luminescência durante a leitura do dosímetro é 

proporcional à concentração de carga e, consequentemente, à dose absorvida. No centro de 

recombinação estão os três tipos de centros de captura de elétrons (armadilhas): as 
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armadilhas rasas (nível 1), armadilhas de dosimetria (nível 2), e as armadilhas profundas 

(nível 3). 

O uso de OSLD, pelo menos na dosimetria pessoal, decorre da elevada 

sensibilidade do óxido de alumínio dopado com carbono (Al2O3:C), que é o material dos 

OSLD comerciais, possibilitando uma leitura óptica rápida e bem controlada e a 

possibilidade de se re-estimar a dose absorvida. Em 1998, o primeiro serviço comercial de 

dosimetria OSL baseado em Al2O3:C foi introduzido pela Landauer (www.landauer.com). 

Os dosímetros nanodots, mostrados na Figura 20, podem medir doses a partir de 0,1 mGy 

em um faixa de energia de 0,5 keV a 20 MeV, e também possuem uma adequada resposta 

dosimétrica quando avaliados em feixe de fótons e elétrons com altas energias 

(YUKIHARA et al., 2007). A dependência angular dos nanodots na resposta para feixes de 

fótons com 6 e 18 MeV é de 4% e 3% em radioterapia, respectivamente, os quais são 

determinados por método de Monte Carlo (KERNS et al., 2011). 

 

Figura 20. Dosímetro nanodotTM Landauer (KERNS et al., 2011) 
 

Outros detectores utilizados neste estudo foram do tipo câmara de ionização e de 

estado sólido. Em ambos os detectores, a radiação interage com uma região de gás, 

produzindo pares de íons que são coletados devido a uma diferença de potencial. A medida 

da dose absorvida é proporcional ao número de pares de íons produzidos no gás 

(PODGORSAK, 2005).  
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Os modelos da câmara tipo lápis de 100 mm, e do detector AGMS-D, ambos da 

Radcal, são mostrados nas Figura 21 (a) e (b). 

a) b)  

Figura 21. Detectores de radiação a) Câmara de ionização tipo lápis modelo 10x6-3CT-Radcal e b) 
Detector de estado sólido AGMSD (RADCAL, 2012) 

 

As características da câmara tipo lápis e do sensor AGMS-D estão na tabela 8. 

Tabela 8. Características dos detectores de radiação câmara tipo lápis e AGMS-D 
(RADCAL, 2012) 

Detector Intervalo de taxa de 

dose 

Precisão (%) HVL (mm Al) 

Tipo lápis 100 mm 20nGy/s - 350 mGy/s ± 4% R-X @ 150 kVp N/D 

Sensor AGMS-D 150 nGy/s - 350 nGy/s ± 5% R-X @ 40-160 kVp   1,3 - 11,0 (± 10%) 
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3. MATERIAIS E MÉTODOS 

Descreveremos inicialmente aqui os aspectos associados ao redimensionamento das 

matrizes dos simuladores computacionais adultos e pediátricos no código MCNPX, bem 

como o processo de adequação das suas estruturas de acordo o posicionamento do paciente 

durante o exame de PET/CT. Somente após essas etapas é possível a determinação das 

doses devido às duas técnicas, CT e PET. 

Após a adequação dos simuladores, faz-se necessária a descrição das fontes de 

irradiação no código. Como o exame de PET/CT é composto da união de duas técnicas 

diagnósticas, dividiremos este estudo em duas partes, devido às distintas características das 

fontes de CT e PET: a primeira é formada por um feixe de fótons externo ao paciente e a 

segunda é constituída a partir do decaimento radioativo de pósitrons nos órgãos internos. 

As doses absorvidas nos simuladores antropomórficos adultos, bem como a dose 

efetiva, são apresentadas para os dois equipamentos de PET/CT e para o 18F-FDG.  

Por fim, descreveremos o processo de confecção do simulador de acrílico para 

PET/CT. Os resultados experimentais obtidos por detectores OSL inseridos neste 

simulador serão utilizados para a validação alternativa dos resultados de simulação em um 

exame de PET/CT. 

 

3.1 Redimensionamento dos simuladores antropomórficos 

Construídos a partir de uma superfície de malha e polígonos, pelo grupo de 

dosimetria computacional do DEN/UFPE (CASSOLA et al., 2010a), os simuladores 

MASH e FASH, representando um indivíduo de referência para os gêneros masculino e 

feminino, respectivamente, foram utilizados neste estudo. Por existirem em duas posturas, 

em pé e deitado, conforme mostra a Figura 16, ambos foram utilizados por  

Cassola et al. (2010b) para a determinação das doses por emissores de pósitrons (exame de 

PET) objetivando verificar se existem variações significativas nas doses absorvidas com a 

mudança de postura dos simuladores. Para a determinação das doses devido ao feixe de 

CT, apenas a postura deitada, com os membros superiores excluídos, foi utilizada nas 

simulações, uma vez que o paciente permanece neste posicionamento durante o exame. 

Também foram utilizados neste trabalho os simuladores antropomórficos virtuais 
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pediátricos construídos pelo grupo de dosimetria computacional do DEN/UFPE 

(DE MELO LIMA et al.,2011; CASSOLA et al., 2013), mostrados na Figura 16, cujas 

características atendem às recomendações dos dados anatômicos do homem e da mulher de 

referência da ICRP 89 (CASSOLA et al., 2010a).  

O processo de retirada dos braços minimiza a atenuação do feixe de raios x na 

região torácica, uma vez que, durante o exame, os braços dos pacientes permanecem 

suspensos. Esse processo foi realizado utilizando o software FANTOMAS 

(VIEIRA e LIMA, 2009), no qual a matriz dos simuladores foi convertida para arquivos 

BMP e, por meio de um programa de manipulação de imagens, a região dos membros 

superiores entorno do tórax foi "excluída", em seguida realizou-se o processo de 

reconversão das fatias BMP de volta à matriz. Após este processo fez-se necessário a 

recontagem do número de voxels dos órgãos internos, uma vez que regiões como pele, 

músculo e ossos, por exemplo, são alteradas, como também a massa do simulador. 

Algumas características importantes dos simuladores antropomórficos 

computacionais pediátricos e adultos utilizados nesta pesquisa, como massa corporal, 

altura, dimensões da matriz e índice de massa corporal (IMC), estão apresentadas na 

Tabela 9. Esses dados foram obtidos após o processo de reamostragem. 

Tabela 9. Características importantes dos simuladores antropomórficos 

Simuladores pediátricos Massa (kg) Altura (cm) Matriz 
colunas × linhas × cortes 

IMC (kg/m²) 

Recém-nascido (RN) 3,55 50,50 135×99×361 14,00 

1 Ano-hermafrodita (1A) 10,25 76,00 190×135×543 17,70 

5 Anos-masculino   (M5) 19,46 109,13 284×143×780 16,34 

5 Anos-feminino     (F5) 19,43 109,13 284×143×780 16,32 

10 Anos-masculino 

(M10) 

32,86 138,11 353×157×987 17,22 

10 Anos-feminino   (F10) 32,80 138,11 353×157×987 17,20 

Adulto em pé-masculino 

(MASH_P) 
72,70 175.6 239×129×731 23,58 

Adulto em pé-feminino 

(FASH_P) 
60,04 162,5 221×128×677 22,74 

Adulto deitado-masculino 

(MASH_D) 
72,70 175,6 263×118×731 23,58 

Adulto deitado-feminino 

(FASH_D) 
60,04 162,5 260×104×677 22,74 
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Os simuladores possuem mais de 100 órgãos e tecidos segmentados com 

significância para a dosimetria. Suas matrizes foram redimensionadas, de modo que as 

características fisiológicas e anatômicas fossem preservadas, evitando problemas de 

locação de memória pelo código MCNPX. Os simuladores foram disponibilizados com 

tamanho de voxel 0,12 e 0,07 cm3, adultos e crianças, respectivamente. Com o auxílio do 

software de processamento de imagens digitais FANTOMAS (VIEIRA e LIMA, 2009) foi 

possível aumentar as dimensões dos voxels, cujas arestas passaram de 0,07 cm para 

0,14 cm nos simuladores antropomórficos pediátricos e de 0,12 para 0,24 cm nos 

simuladores de adultos, possibilitando, assim, as simulações no código MCNPX. 

 

3.2 Simulações dos CCs de doses no feixe de tomografia 

O parâmetro de filtração total de feixe é muito importante para a determinação da 

dose absorvida em órgãos internos dos simuladores antropomórficos pelo feixe de 

tomografia. A filtração total é um parâmetro do feixe que não é normalmente fornecida 

pelos fabricantes de equipamento de PET/CT. Para a modelagem do feixe do tomógrafo 

propomos uma metodologia experimental, utilizando o medidor de filtração total AGMS-D 

da Radcal, descrita a seguir. 

 

3.2.1. Determinação da filtração total do tomógrafo de PET/CT 

A filtração total foi determinada usando o kit Accu Gold Radcal, calibrado de 

fábrica em outubro de 2013, com exposição do sensor AGMS-D no feixe dos tomógrafos 

de cada PET/CT com tubos na posição 12h. 

O filtro gravata borboleta produz no interior do gantry filtrações não uniformes que 

compensam a variação entre a espessura do corpo do paciente e os detectores do 

equipamento CT. A utilização destes filtros vai resultar em uma intensidade de feixe mais 

uniforme para o detector (JARRY et al., 2003). 

A Figura 22 mostra nove pontos de posicionamento do sensor AGMS-D na 

determinação de filtração total, a uma distância radial de 40 cm do isocentro do gantry. Os 

valores da filtração total em cada posicionamento foram determinados com o equipamento 
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de PET/CT no modo serviço, com o tubo parado, efetuando um único disparo. Depois de 

processar as medições, as curvas de filtração são traçadas considerando-se a distância 

radial ao isocentro do gantry do aparelho. Com o auxílio de um programa gráfico, 

considerando-se as dimensões do equipamento, foi determinada a geometria do filtro 

gravata borboleta para o código MCPNX. 

-20 -15 -10 -5 0 5 10 15 20

Gantry

Posições do -D (cm)AGMS

Feixe do CT

Fonte

Filtro gravata borboleta 
Colimador

 

Figura 22. Esquema com pontos do gantry onde a filtração total foi determinada pelo 
sensor AGMS-D, Radcal. 

 

Os espectros de energia utilizados nas simulações dos tomógrafos foram gerados 

pelo programa Report 78 Spectrum Processor  (SRS) 78 (CRANLEY et al., 1997), sem 

adição de filtração, uma vez que a filtração total para cada equipamento de PET/CT 

estudado foi determinada experimentalmente. 

 

3.2.2 Validação das simulações do feixe de CT  

Uma câmara de ionização foi modelada no código MCNPX por meio de um 

conjunto de quatro cilindros concêntricos, com comprimentos de 10 cm, de forma a 

representar características geométricas idênticas ao modelo 10x6-3CT-Radcal. Esse 

modelo possui paredes de policarbonato, eletrodo de material equivalente ao ar C552, 
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tampa exterior de polyacetal e volume ativo de 3 cm3. É importante para a validação dos 

resultados simular uma geometria idêntica ao detector utilizado. 

O simulador para medida de CTDI de corpo que foi usado nas medições e nas 

simulações de Monte Carlo possui 15 cm de comprimento e 32 cm de diâmetro, sendo 

composto de PMMA, que tem densidade de 1,19 g/cm3. O simulador para medida de CTDI 

contém cinco furos, um no centro e outros quatro a um centímetro abaixo da superfície 

cilíndrica do simulador para a inserção de câmara de ionização. 

As simulações do tomógrafo no código de Monte Carlo MCNPX fornecem 

resultados por meio do tally F6 (MeV/g/partícula).   

Os parâmetros para a determinação das doses absorvidas nas células de interesse no 

cenário de simulação consideram as características do feixe de raios X de cada 

equipamento de tomografia. São elas: o espectro de energia, a filtração total, a forma do 

feixe, o ângulo anódico e a colimação. A Figura 23 mostra o posicionamento do simulador 

MASH no interior do gantry construído para o código MCNPX, contendo os pontos de 

determinação da filtração do feixe. 

-20 -15 -10 -5 0 5 10 15 20

Gantry

 

Figura 23. Posicionamento do simulador MASH no interior do gantry construído para o código 
MCNPX 

 

Objetivando determinar a dose absorvida em cada procedimento de CT, os valores 

de contagem em unidades de MeV/g/partícula foram convertidos para dose absorvida em 

unidades de mGy/100 mAs por um fator de conversão (CF), proposto por GU et al. (2009), 

conforme a Equação 45: 
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(��)�,�� =
����(���,���,������ ��� ��� ���)�,��

����(���,���,����������� ����������)�,��
    ( 45 ) 

A dose absorvida no tecido ou no órgão, em unidades de mGy/100 mAs, é 

determinada usando a Equação 46, considerando ∑ �  a soma da energia depositada em 

MeV/g/partícula por todas as rotações durante o exame de PET/CT simulado: 

��������� = � �������� .��.∑ �     ( 46 ) 

3.2.3 Características da fonte de CT para os dois equipamentos estudados 

Para realizar a simulação computacional das doses absorvidas é necessário 

descrever adequadamente as características físicas do feixe de radiação. Por isso, associado 

ao feixe de raios X do tomógrafo, o espectro fornecido pelo Software Report 78 Spectrum 

Processor-IPEM 1997 (CRANLEY et al., 1997) foi utilizado. 

A fonte do feixe de tomografia foi construída com características idênticas à 

confeccionada por Gu et al. (2009). Considerou-se ainda uma abertura da gantry de 70 cm, 

distância do ponto focal ao isocentro de 54 cm, distância do ponto focal aos detectores de 

95 cm, abertura de feixe de 56º para ambos os equipamentos e espessura de 40 mm (GE) e 

20 mm (Siemens). Estes dados foram obtidos nos consoles dos equipamentos da GE e 

Siemens, e também por Akbarzadeh et al. (2010) e por Ay et al. (2009). Os equipamentos 

de PET/CT investigados neste estudo, cujas fotografias dos gantries são mostradas na 

Figura 24, estão instalados em duas instituições: CLIMED, em Aracaju, SE, e Hospital 

São Rafael, em Salvador, BA, nos quais foram realizadas as medidas experimentais. 

a)     b)   

Figura 24. Detalhe dos equipamentos de PET/CT a) GE Discovery VCT b) Siemens 
Biograph True Point 16. 
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Quanto aos alvos desses equipamentos, tem-se: ângulo anódico de 7º e filtração de 

3,25 mmAl + 0,1 mm Cu para GE Discovery VCT (GE HELTCARE, 2005),  e ângulo 

anódico de 7º e a filtração de 6,3 mmAl para o Siemens Biograph True Point 16 

(SIEMENS, 2007). 

As tensões de pico para o feixe de raios X dos equipamentos de PET/CT são 

padronizadas de acordo com aquelas mais utilizadas em rotinas de diagnóstico. Estão 

disponíveis as tensões de pico de 80, 100, 120 e 140 kVp para o equipamento GE e 80, 110 

e 130 kVp para o equipamento da Siemens. 

Após a validação dos cenários construídos no código MCNPX através dos 

resultados de nCTDIw, os simuladores computacionais MASH2 e FASH2 

(CASSOLA et al., 2010b), chamados neste estudo de MASH e FASH, foram utilizados 

para estimar as doses absorvidas em órgãos internos, de acordo com o posicionamento do 

paciente em um exame de PET/CT, considerando a espessura do feixe de CT (equivalente 

à espessura de corte) de 40 mm, utilizada em rotinas de exames para o equipamento da GE, 

com um fator de passo para a mesa de 0,984, e 20 mm com passo para a mesa de 0,960 

para o equipamento da Siemens. 

 

3.2.4 Cenários computacionais para o tomógrafo  

Cada cenário computacional construído contém um equipamento de PET/CT no 

interior de uma sala com dimensões 3,25 m × 4,20 m × 2,75 m. A Figura 25 (a) mostra um 

detalhe do deslocamento dos 36 conjuntos de filtros e colimadores no cenário para a 

simulação do modo helicoidal do tomógrafo. A Figura 25 (b) representa o cenário com o 

simulador computacional MASH, e a Figura 25 (c) o cenário com o simulador CTDI de 

corpo. 

No interior do equipamento de PET/CT estão modelados 36 colimadores 

juntamente com filtros gravata borboleta. 
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Figura 25. Cenários contendo aparelho de PET/CT para o código MCNPX. a) Deslocamento das 
fontes na direção Z (círculos) para simulação do modo helicoidal, filtros e colimadores; b) Cenário 

com simulador MASH c) Cenário com simulador para medida de CTDI de corpo 
(BELINATO et al., 2015) 

 

A Figura 26 mostra a região do simulador MASH exposta ao feixe quando 

submetido à rotina de CT de corpo inteiro no código MCNPX para um dos equipamentos 

de PET/CT. 

 

isocentro

fatia 3,936 cm

Largura total do exame 106,27 cm

 

Figura 26. Região irradiada do simulador MASH submetido à tomografia de corpo inteiro no 
MCNPX. 

 

Foram escolhidas 36 fontes de raios X, a fim de obter uma distribuição angular 

mais homogênea do feixe (10° entre as fontes), embora Gu et al. (2009) tenham obtido 

resultados satisfatórios em relação à homogeneidade do feixe quando empregaram 
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16 fontes. Outro aspecto considerado foi que na simulação helicoidal as fontes foram 

deslocadas no eixo z para ajustar uma fatia de 40 milímetros/rotação (0,984 pitch) no 

aparelho GE e uma fatia de 20 milímetros/rotação (0,960 pitch) no Siemens. Esta condição 

duplica as rotações nas simulações de dose no exame de PET/CT de corpo inteiro para o 

equipamento Siemens. 

Para os simuladores antropomórficos pediátricos a região examinada foi de 94,5 cm 

para os M10 e F10, 67,0 cm para os M05 e F05, 47,2 cm para 1 ano e 31,5 cm no 

recén-nascido. Utilizamos o pitch igual a 2 (1,920) no equipamento da Siemens com o 

objetivo de avaliar a interferência do filtro de gravata borboleta nas doses absorvidas, ou 

seja, uma fatia de 40 mm por rotação. 

 

3.3 Simulações das doses para os emissores de pósitrons 

A metodologia utilizada na simulação das doses absorvidas pelos emissores de 

pósitrons foi idêntica à utilizada por Stabin e Siegel (2003) com os simuladores MIRD-5 

(Adam e Eve). Os radionuclídeos foram distribuídos em 22 órgãos de cada simulador e 

também no corpo inteiro. O tally *F8 foi utilizado para determinação da energia depositada 

nos órgãos internos, uma vez que este tally considera que a deposição de energia possa 

ocorrer fora do volume do voxel quando fótons e elétrons de energia maiores que 200 keV 

interagirem com nos tecidos. Em seguida, os resultados são computados de acordo o 

método MIRD, conforme equações descritas na seção 2.8. 

Para determinação dos valores S e das frações específicas absorvidas (SAF) dos 

emissores de pósitrons para principais órgãos alvo devido a energias contidas no espectro 

de emissão foram utilizadas as Equações  47 e 48, respectivamente: 

�(��←� �)
�
���

���.�
�=

�����∗��[���]���,�������

�(��)[��]
           ( 47 ), 

∅(��←� �,��)
=

��

���(��)
=

�����∗��

(������� �� �����).�(��)
         ( 48 ). 

onde 1,6x10-4 é o fator de conversão de MeV/desintegração para mGy/desintegração,  Ei e 

Ed são as energias emitidas pela fonte e absorvida pelos órgãos alvo, respectivamente, e 
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M(rT) é a massa do tecido alvo (kg). A Equação 48 é idêntica à razão da Equação 31 pela 

massa M(rT). 

Considerando-se a fonte distribuída uniformemente em todos os voxels do corpo, é 

possível determinar a fração absorvida de radiação na região alvo com a Equação 49: 

∅(��←����� �������,��) =
�

��
∑ �(��)��(��)��       ( 49 ) 

Nessa equação, w(rs) é a probabilidade de amostragem no órgão de origem, que é igual à 

proporção de volume do órgão de origem no corpo total (XIE et al., 2013). 

Uma das variáveis que deve ser descrita adequadamente no código MCNPX é o 

espectro de emissão dos radionuclídeo. Nesse estudo serão avaliados seis radionuclídeos: 

11C, 13N, 15O, 18F, 68Ga e 82Rb, cujos dados dos espectros foram calculados pelo grupo 

MIRD, mostrados na Figura 27 (ECKERMAN e ENDO, 2008).  
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Figura 27. Espectros beta para 11C,  13N, 15O, 18F, 68Ga e 82Rb                                                     
(adaptado de ECKERMAN e ENDO, 2008). 

 

3.4. Construção de simulador de acrílico e PLA para PET/CT 

3.4.1 Objeto simulador de acrílico com PLA para PET e detectores 

Para a quantificação experimental das doses absorvidas pelo 18F-FDG, foi 

construído um objeto simulador de PMMA, na forma de um cubo, com um compartimento 
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em seu interior para inserção de radionuclídeo. A Figura 28 apresenta um desenho 

esquemático do objeto simulador, composto por placas de acrílico de 10 mm de espessura 

(vermelho) e de 8 e 12 mm de espessura (amarelo). O compartimento para FDG (verde) foi 

produzido em uma impressora 3D-Touch com PLA, tendo dimensões de 

2,4 × 3,9 × 3,9 cm3.  

 
Figura 28. Esquema do simulador de PET/CT com o compartimento para 18F na cor verde. 

 

A composição química do PLA foi avaliada para a determinação das curvas de 

atenuação da radiação pelo material. Amostras de PLA foram enviadas para a central 

analítica do Instituto de Química da Universidade de São Paulo (IQ/USP). Determinou-se 

o percentual de carbono, hidrogênio e nitrogênio com o equipamento Elemental Analyser 

CHN - Perkin-Elmer, modelo 2400, através da técnica de combustão e também se verificou 

a presença de metais por espectrometria de emissão atômica (AES) por plasma 

indutivamente acoplado (ICP), detectando-se os percentuais de S/Si, B, Ca, Fe, P, Sn na 

amostra. 

A curvas de atenuação para o PLA foram traçadas com o auxílio do programa 

WinXcom, a partir da composição química do material, uma vez que a atenuação é 

diretamente proporcional ao número atômico efetivo, conforme Equação 13. Também foi 

construído um cenário de simulação idêntico ao simulador de PET/CT para o método de 

Monte Carlo conforme Figura 28. 

Sob os centros das faces do simulador cúbico (a 1 cm de profundidade da superfície 

externa) foram produzidas cavidades de 1,3 cm de lado e 0,4 cm de profundidade para 

acomodar os dosímetros OSL nanoDots da Landaer. Realizou-se as leituras dos dosímetros 

OSL (medições do sinal OSL) em um sistema OSL MICROSTAR-Landauer. 
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3.4.2 Cenários para simulador de acrílico para PET/CT  

Para a determinação das doses absorvidas no simulador de acrílico para PET/CT 

pelos feixes de CT foram realizadas simulações com o código MCNPX considerando sete 

cortes (fatias) para o equipamento da GE e quatorze fatias para o equipamento da Siemens. 

Nas simulações, foi considerado um cenário com o simulador de PET/CT contendo 

18F-FDG. A Figura 29 (a) apresenta o cenário com o simulador sendo examinado em um 

equipamento de PET/CT, em modo de varredura helicoidal, e a Figura 29 (b) o cenário 

com ele sobre uma mesa para estimativa das doses devido ao 18F-FDG ao longo do tempo 

em que o paciente permanece deitado, conforme condições experimentais. 

 

a)   b)   

Figura 29. Cenários de PET/CT a) Simulador submetido à tomografia em modo de varredura 
helicoidal b) Simulador sobre uma mesa com radionuclídeo 18F-FDG em seu interior. 
 

Para a simulação dos dosímetros OSL no método de Monte Carlo, foi utilizada uma 

geometria idêntica à apresentada por Kerns et al. (2011) para representação de dosímetros 

nanodots. 

Dois valores de atividades de 18F-FDG foram utilizados para realização das 

medições experimentais no simulador de PET/CT. 
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4. RESULTADOS E DISCUSSÕES 

Esta seção está dividida em quatro partes contendo os resultados de simulações das 

doses devido à CT e à PET. A primeira parte (item 4.1) discute sobre as simulações no 

feixe de tomografia computadorizada; a segunda parte apresenta resultados de simulações 

das frações absorvidas e valores S para seis radionuclídeos (item 4.2); a terceira parte traz 

detalhes da confecção e estudo das doses no simulador para PET/CT (item 4.3); por fim, na 

quarta parte (item 4.4) tem-se a apresentação das doses absorvidas em PET/CT para um 

exame típico em indivíduo adulto.  

 

4.1 Simulações das doses de tomografia computadorizada 

4.1.1 Determinação experimental do filtro de gravata borboleta 

Dada a importância da influência do formato do filtro gravata borboleta nas 

simulações de dosimetria em CT, foi calculada a filtração total com o detector AGMS-D 

acoplado ao kit Accu-Gold Radcal para os dois equipamentos de PET/CT de interesse.  As 

Figuras 30 (a) e 30 (b) apresentam os resultados das curvas de filtração total para os 

equipamentos GE e Siemens, respectivamente. 

a)     b)   

Figura 30. Curvas de filtração total do feixe obtida com o sensor AGMS-D para: a) GE Discovery 
VCT b) Siemens  Biograph true point 16 (BELINATO et al., 2015). 

 

A partir das curvas de ajuste, traçadas para as energias disponíveis no modo de 

serviço do scanner, com o tubo na posição 12 h, foram construídas geometrias para os dois 

filtros gravata borboleta dos sistemas de PET/CT, mostrados na Figura 31 na cor amarela 

e os colimadores na cor cinza. 
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a)  b)  

Figura 31. Geometria dos filtros gravata borboleta (amarelo) e colimadores (cinza) construídas 
para o código MCNPX baseadas nos dados da figura 29:  a) GE Discovery VCT b) Siemens 

Biograph true point 16 (BELINATO et al., 2015). 
 

A Figura 32 apresenta os espectros gerados para os tomógrafos no MCNPX, 

considerando-se o formato do filtro gravata borboleta para cada um dos equipamentos de 

PET/CT. Inicialmente utilizamos duas energias, 130 e 140 kVp, uma vez que estas 

energias são as utilizadas em protocolos de PET/CT de corpo inteiro. Observa-se que a 

geometria construída para o filtro gravata borboleta do equipamento da Siemens aumenta a 

energia efetiva do feixe.  
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Figura 32. Espectros simulados em MCNPX para o isocentro dos equipamentos de PET/CT da GE 
(140 kVp) e Siemens (130 kVp) considerando-se o formato do filtro gravata borboleta. 

 

O aumento da energia efetiva do feixe contribui para a aumentar a dose absorvida 

pelo paciente, embora no equipamento da Siemens a energia de pico do feixe seja reduzida 

em 10 keV (BELINATO et al., 2015). Este resultado está de acordo com estudos 
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disponibilizados na literatura (AY et al., 2009; GU et al., 2009; FERREIRA et al., 2011a; 

FIGUEIRA et al., 2015).  

 

4.1.2 Valores de CTDI e nCTDIw 

A Tabela 10 resume os fatores de conversão (CFs) obtidos em código MCNPX, 

considerando-se um número de 108 partículas nas simulações para as tensões de pico dos 

equipamentos GE e Siemens. 

Tabela 10. Fatores de conversão (CFs) obtidos para os equipamentos da GE e Siemens  

Tensão de pico 
(kVp) 

Colimação 
do feixe 
(mm) 

Experimental 
 CTDI100 no ar  
(mGy/100mAs) 

Simulado  
CTDI100 no ar 

(MeV/g/partícula) 

Fator de conversão 
(mGy.g.partícula/ 

100 mAs/MeV) 

GE-80  1 × 5,0 4,55 ± 0,23 5,31E-06 ± 1,06E-07 8,57E+05 ± 4,62E-07 
  GE-100 1 × 5,0 7,83 ± 0,40 7,98E-06 ± 1,60E-07 9,81E+05 ± 5,26E-07 

  GE-120 1 × 5,0 12,20 ± 0,62 1,01E-05 ± 2,02E-07 1,21E+06 ± 6,49E-07 

  GE-140 1 × 5,0 16,89 ± 0,86 1,17E-05 ± 2,34E-07 1,45E+06 ± 7,75E-07 

Siemens - 80 1 × 2,4 5,73 ± 0,27 4,65E-06 ± 0,93E-07 1,23E+06 ± 6,69E-07 

  Siemens -110 1 × 2,4 12,44 ± 0,63 8,01E-06 ± 1,60E-07 1,55E+06 ± 8,36E-07 

  Siemens -130 1 × 2,4 16,48 ± 0,84 9,56E-06 ± 1,91E-07 1,72E+06 ± 9,27E-07 
 

De acordo com a Tabela 10, a proximidade nos resultados de CTDI para as tensões 

de pico 140 kVp e 130 kVp, ocorre devido à geometria dos filtros gravata borboleta, que 

produzem fluxos de partículas distintos para os tomógrafos, conforme curvas apresentadas 

na Figura 32, como também CFs maiores para o equipamento de PET/CT da Siemens. 

Os resultados experimentais obtidos para valores CTDI e também simulados no 

código MCNPX são mostrados nas Tabelas 11 e 12 para os dois PET/CT estudados.  

São observadas diferenças inferiores a 5% nos resultados de CTDI simulados em 

relação aos valores experimentais; tal aspecto é parâmetro de validação do cenário 

construído no código MCNPX.  

Observa-se, para ambos os equipamentos, que um aumento na tensão de pico do 

feixe produz maior valor de nCTDIw, sendo o espectro de energia responsável por produzir 

maior deposição de energia na câmara de ionização do cenário computacional, conforme 

relatado também por Gu et al. (2009) e Figueira et al. (2015). Os resultados de nCTDIw 
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simulados variaram em até 25% quando comparados com estudos usando diferentes filtros 

gravata borboleta em um mesmo equipamento (KOST et al., 2015) 

Tabela 11. CTDI experimentais e simulados no PET/CT GE Discovery VCT  

Tensão de  
pico (kVp) Posição 

 CTDI100 medido 
(mGy/100mAs) 

 CTDI100 simulado 
 (mGy/100mAs) Diferença %  

80 

Centro 0,71 0,75 4,72 

Periferia 2,52 2,45 -2,68 

nCTDIw 1,92 1,88 -1,77 

100 

Centro 1,61 1,58 -1,85 

Periferia 4,40 4,47 1,70 

nCTDIw 3,47 3,51 1,15 

120 

Centro 2,89 2,82 -2,55 

Periferia 7,29 7,18 -1,39 

nCTDIw 5,82 5,73 -1,58 

140 

Centro 4,26 4,11 -3,38 

Periferia 10,08 10,17 0,86 

nCTDIw 8,14 8,15 0,12 

 

Tabela 12. CTDI experimentais e simuladas no PET/CT Siemens Biograph 16 true point 

Tensão de  
pico (kVp) Posição 

CTDI100 medido 
(mGy/100mAs) 

CTDI100 simulado 
(mGy/100mAs) Diferença %  

 Centro 0,79 0,82 3,62 
80 Periferia 1,93 2,01 4,10 
 nCTDIw 1,55 1,61 4,02 

 Centro 2,27 2,36 3,82 
110 Periferia 4,91 4,93 0,51 
 nCTDIw 4,03 4,08 1,13 

 Centro 3,29 3,41 3,66 
130 Periferia 6,77 6,90 1,96 
 nCTDIw 5,61 5,74 2,29 

 

4.1.3 Coeficientes de conversão de doses de CT nos simuladores adultos e pediátricos  

Os CCs de doses equivalentes (mSv/mAs) nos órgãos internos dos simuladores 

MASH e FASH, sem braços, para os equipamentos PET/CT GE e Siemens são mostrados 

nas Figuras 33 e 34, respectivamente. Os órgãos foram escolhidos de acordo com as 

recomendações da publicação ICRP 103 (ICRP, 2007a). 
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Por considerar parâmetros estatísticos nas simulações, os resultados obtidos no 

código MCNPX com erros abaixo de 10 % são geralmente (mas nem sempre) confiáveis 

(PELOWITZ, 2011). Por este motivo foram associados erros relativos abaixo de 5% aos 

resultados de tally F6 para as doses dos tomógrafos. Este aspecto é muito   importante em 

simulações de Monte Carlo, uma vez que garante a convergência dos resultados para 

valores confiáveis em detectores e/ou células de interesse no cenário computacional 

construído.   
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Figura 33. CCs de doses equivalentes nos órgãos (mSv/100 mAs) para o simulador MASH, 

obtidas para os equipamentos de PET/CT GE Discovery VCT e Siemens Biograph 16 true point. 
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Figura 34. CCs de doses equivalentes nos órgãos (mSv/100 mAs) para o simulador FASH obtidas 

para  os equipamentos de PET/CT GE Discovery VCT e Siemens Biograph 16 true point. 
 

As doses para o tomógrafo de PET/CT da Siemens são duas vezes maiores que as 

calculadas para os exames realizados com o da GE. Este resultado está relacionado 

principalmente ao dobro de número de cortes necessários para o exame de PET/CT de 

corpo inteiro (40 mm/rotação para a GE e 20 mm/rotação para a Siemens), pitch=1 
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(0,983 e 0,96). Outro parâmetro que contribui para o aumento das doses no equipamento 

da Siemens é o filtro gravata borboleta, conforme discutido na seção 4.1.2. 

Para alguns órgãos, como gônadas, tireoide e mamas, há diferenças nos coeficientes 

devido a variações na estrutura física dos simuladores MASH e FASH. A tireoide e o 

cérebro do simulador FASH, por exemplo, possuem menor número de voxels se 

comparados ao MASH; além disso, têm-se na região das gônadas e mamas estruturas 

físicas distintas nos dois simuladores. 

O produto corrente-tempo utilizado nos protocolos de PET/CT de corpo inteiro em 

adultos é de 140 mAs e 120 mAs para a GE e Siemens, respectivamente. Este aspecto 

produz menores doses absorvidas pelos órgãos para o equipamento da GE. O fabricante 

desse equipamento afirma que o ajuste do mAs de acordo com a região do corpo a ser 

irradiada durante a tomografia, chamado de sistema CARE Dose 4D, reduz até 66% da 

dose (SIEMENS, 2007). Nossos resultados apontam para a necessidade de ativação do 

sistema CARE Dose 4D no equipamento da Siemens com intuito de minimizar a exposição 

do paciente à radiação produzida pelo tomógrafo. 

Os CCs de doses efetivas nos simuladores MASH e FASH estão na Figura 35. 

Observa-se que o tomógrafo Siemens entrega maior dose efetiva por mAs que o da GE, 

como discutido para as Figuras 33 e 34.  

Semelhante ao publicado por Ferreira et al. (2011b), neste estudo também os 

resultados de doses equivalentes e efetivas para o simulador FASH apresentaram-se 

superiores a tais doses para o MASH. A principal razão é que no simulador feminino as 

massas dos órgãos e tecidos são menores se comparadas com o simulador masculino. 
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Figura 35. CC de dose efetiva em função  da tensão de pico para os simuladores MASH e FASH 
nos tomógrafos GE Discovery VCT e Siemens Biograph 16 true point. 

 

Os CCs de dose equivalente (mSv/mAs) nos órgãos dos simuladores pediátricos de 

recém-nascido, um ano, cinco e dez anos masculino e cinco e dez anos feminino, para os 

equipamentos PET/CT GE e Siemens, são mostradas nas Figuras 36 a 41, 

respectivamente. 
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Figura 36. CCs de doses equivalentes  (mSv/100 mAs) - simulador recém-nascido (RN) devido ao 
PET/CT GE Discovery VCT e Siemens Biograph 16 true point 
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Figura 37. CCs de doses equivalentes  (mSv/100 mAs) - simulador 1 ano devido ao PET/CT GE 
Discovery VCT e Siemens Biograph 16 true point 
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Figura 38. CCs de doses equivalentes  (mSv/100 mAs) - simulador 5 anos masculino (M05) 
devido ao PET/CT GE Discovery VCT e Siemens Biograph 16 true point 
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Figura 39. CCs de doses equivalentes  (mSv/100 mAs) - simulador 10 anos masculino (M10) 
devido ao PET/CT GE Discovery VCT e Siemens Biograph 16 true point 



 
 

77 
 

Medula vermelha
Cólon

Pulmão

Estômago
Mamas

Demais ó
rgãos*

Gônadas
Bexiga

Esôfago
Fígado

Tireóide

Sup.  ósse
a

Cérebro

G. sa
livares

Pele
Olhos0.

0
2.

5
5.

0
7.

5
10

.0
12

.5
15

.0
17

.5
20

.0
22

.5
25

.0
27

.5
30

.0
32

.5

* Adrenais, Região Extratorácica(ET), Vesícula biliar,Coração, Rins, Nódulos linfáticos, Músculos,  Mucosa oral, Pâncreas, Ovários, Intestino delgado, Baço, Timus, Útero.

C
C

 d
e 

D
os

e 
E

qu
iv

al
en

te
 (

m
S

v/
10

0m
A

s)

Órgão alvo

  GE        Siemens
   80 kVp_F05    80 kVp_F05
 100 kVp_F05  110 kVp_F05
 120 kVp_F05  130 kVp_F05
 140 kVp_F05

 

Figura 40. CCs de doses equivalentes  (mSv/100 mAs) - simulador 5 anos feminino (F05) devido 
ao PET/CT GE Discovery VCT e Siemens Biograph 16 true point 
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Figura 41. CCs de doses equivalentes  (mSv/100 mAs) - simulador 10 anos feminino (F10) devido 
ao PET/CT GE Discovery VCT e Siemens Biograph 16 true point 

 

Na Tabela 13 listamos o número de cortes realizados nos simuladores pediátricos e 

adultos para determinação das doses em cada equipamento de PET/CT. 

Tabela 13. Número de fatias (cortes) para as simulações dos feixes de tomografia 

Simulador PET/CT GE PET/CT Siemens 

Recém-nascido  8 8 

1Ano 12 12 

5 Anos 17 17 

10 Anos 24 24 

Adultos 27 54 
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A partir dos dados da Tabela 13, considerando-se a espessura de corte 40 mm e 

20 mm para os equipamentos da GE e Siemens, as simulações foram realizadas com 

parâmetros de pitch=1 e pitch=2, respectivamente, para os simuladores pediátricos. Já para 

os simuladores adultos, o parâmetro de pitch=1 foi utilizado em ambos os equipamentos, 

necessitando do dobro de número de cortes necessários para o exame de PET/CT de corpo 

inteiro conforme já citado. Portanto, as variações das doses mostradas nas Figuras 36 a 41 

se dão devido às variações nos filtros gravata borboleta, conforme discutido na seção 4.1.2 

e observadas também por Kost et al. (2015).  

Outra característica a ser observada nos simuladores pediátricos é o tamanho dos 

órgãos. As dimensões das estruturas internas dos simuladores pediátricos são inversamente 

proporcionais às idades das crianças que eles representam. Esse aspecto faz com que os 

resultados das doses determinadas com o código MCNPX apresentem maiores desvios nos 

resultados dos tallies, indicando a necessidade de um aumento do número de partículas 

para as simulações.   

Para a superfície óssea, observa-se nos simuladores adultos e nos infantis (M10, 

F10, M05, F05, recém-nascido (RN) e de 1 ano (1A) um decréscimo nos resultados dos 

CCs de doses equivalentes. Pode-se destacar que quanto maior a idade dos simuladores, 

maior a atenuação da radiação, fazendo com que os valores de dose equivalente sejam 

reduzidos nessa região devido a um maior espaçamento entre os órgãos como também 

devido a uma maior espessura do tecido muscular e adiposo. 

 A Figura 42 apresenta uma tendência inversa entre os CCs de dose efetiva e a 

idade dos simuladores pediátricos. Comparando-se os resultados dos simuladores 

pediátricos com os resultados de dose efetiva de adultos, Figuras 35 e 42, observa-se um 

aumento de até 8 vezes nas doses em crianças. Feixes de tomografia têm o potencial de 

fornecer doses significativamente maiores de radiação para crianças do que para adultos 

(KHURSHEED, 2002; FIGUEIRA et. al., 2015). Portanto, devido a maior susceptibilidade 

aos efeitos da radiação, esforços devem ser implementados na prática clínica para reduzir 

as doses em crianças através da utilização de protocolos radiológicos específicos, uma vez 

que os efeitos estocásticos das radiações são mais perigosos para os pacientes mais jovens 

(ICRP, 2007a; ICRP, 2007b). 
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Figura 42. CC de dose efetiva em função da tensão de pico para os simuladores pediátricos 
recém-nascido, 1 ano, 5 anos e 10 anos de idade nos tomógrafos GE Discovery VCT e Siemens 

Biograph 16 true point. 
 

Protocolos de radiologia em CT pediátrica apresentaram diferentes padrões de dose 

em comparação com os protocolos para adultos. Não é surpreendente encontrar aplicações 

CT de altas doses em pacientes pediátricos, mesmo em países desenvolvidos 

(ATAÇ et al., 2015). Por isso deve-se recomendar a utilização de protocolos com baixa 

tensão de pico para imagem corporal de pacientes pediátricos, considerando-se que este 

parâmetro reduz consideravelmente a dose efetiva, conforme relatado também por 

Brady et al. (2012) e Yang et al. (2014). 

Os resultados das doses efetivas para as crianças de 1, 5 e 10 anos foram 

comparados com outros obtidos por Yang et al. (2014) em um equipamento de PET/CT da 

GE - Discovery ST-16 cortes, para 80, 100 e 120 kVp, empregando 4 valores de corrente. 

Os resultados de Yang et al (2014) foram determinados após a tomografia de  um 

simulador de acrílico cilíndrico de 18 cm de diâmetro, a partir dos valores de CTDIVOL 

exibidos no console do equipamento de CT. Multiplicando esses valores pelo comprimento 

L de varredura, os Yang et al (2014) obtiveram valores de DLP, que por sua vez foram 

convertidos em dose efetiva utilizando os fatores obtidos em simulações de MC para a 

crianças de 1, 5 e 10 anos de idade, publicados pelo National Radiological Protection 

Board (NRPB) do Reino Unido. Os parâmetros de irradiação para os tomógrafos foram 

idênticos a este estudo, com exceção do tempo de rotação t=0,5s. Ajustando nossos 
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resultados para o tempo de rotação de 0,5 s, observamos que as doses efetivas se 

apresentam até 23,6 % maiores, conforme Tabela 14. Essas diferenças foram observadas 

para o simulador 10 anos. 

Encontramos resultados de CCs de doses equivalentes e efetivas diretamente 

proporcionais às energias dos feixes, como relatado na literatura (DOWSETT et al. 2006;  

DEAK et al., 2010; YANG et al., 2014; FIGUEIRA et. al., 2015) para todos os simuladores 

computacionais. 

Tabela 14. Comparação dos resultados obtidos para doses efetivas para 1, 5 e 10 anos em exames 
no PET/CT da GE com os resultados de Yang et al. (2014) 

Tensão 
de pico 
(kVp) 

Corrente 
no tubo 

(mA) 

1 Ano 5 Anos 10 Anos 

A B % A B % A B % 

 

 

120 

10 0,36 0,34 5,0 0,39 0,34 15,5 0,35 0,29 20,9 

40 1,43 1,36 5,0 1,57 1,35 16,4 1,40 1,18 18,9 

80 2,86 2,72 5,0 3,14 2,7 16,4 2,81 2,35 19,4 

120 4,28 4,08 5,0 4,71 4,05 16,4 4,21 3,53 19,2 

 

 

100 

 

10 0,21 0,21 0,0 0,24 0,2 17,7 0,22 0,18 19,9 

40 0,84 0,82 2,0 0,94 0,81 16,2 0,86 0,71 21,6 

80 1,67 1,64 2,0 1,88 1,63 15,5 1,73 1,42 21,6 

120 2,51 2,46 2,0 2,82 2,44 15,7 2,59 2,13 21,6 

 

 

80 

10 0,11 0,11 0,0 0,12 0,11 11,4 0,11 0,09 23,6 

40 0,46 0,43 6,4 0,49 0,43 14,0 0,44 0,37 20,2 

80 0,91 0,87 5,2 0,98 0,86 14,0 0,89 0,75 18,6 

120 1,37 1,30 5,6 1,47 1,29 14,0 1,33 1,12 19,2 

A= Este estudo usando t = 0,5 s      B = YANG et al. (2014)  % = Diferença percentual  

Na Figura 43 estão os resultados das doses efetivas em função das idades dos 

simuladores antropomórficos computacionais. É possível notar que a geometria do filtro 

gravata borboleta produz maiores valores de dose no equipamento da Siemens observando 

as curvas de 80 kVp, com valores inversamente proporcionais às idades dos indivíduos 

representados pelos simuladores. 
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Figura 43. CCs de doses efetivas em função das idades dos simuladores para os tomógrafos GE 
Discovery VCT e Siemens Biograph 16 true point. 

 

4.2 Simulações das frações absorvidas específicas e valores S para seis radionuclídeos 

As simulações realizadas com 106 partículas de fótons forneceram incertezas 

estatísticas nos SAFs inferiores a 1% para o órgão de origem. No entanto, como elétrons e 

fótons de baixa energia têm curto alcance, resultados de simulações em órgãos distantes da 

fonte muitas vezes não recebem interações suficientes de partículas, o que pode conduzir a 

grandes incertezas estatísticas. Partículas emitidas com maior energia necessitam de mais 

tempo computacional para obtenção de resultados com incertezas estatísticas adequadas ou 

o emprego de alguma técnica de redução de variância. Quando considerada a fonte no 

corpo inteiro o tempo computacional também foi elevado devido à interação dos fótons nos 

tecidos distribuídos por todo o corpo, como ossos, músculos, pele, entre outros.  

Os valores de SAFs para pósitrons consideraram 106 partículas transportadas pela 

fonte. A metodologia para calcular SAFs de pósitrons foi a mesma empregada  para os 

fótons, mas o tempo computacional para cada simulação envolvendo 106 partículas de 

pósitrons foi consideravelmente maior. Esse aumento da duração do intervalo de tempo 

dessas simulações justifica-se devido à necessidade para gerar o processo de aniquilação 

dos pósitrons pelo código MCNPX no órgão fonte, pois, após simular cada aniquilação, 

ocorre a simulação dos dois fótons de 0,511 MeV.  
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As simulações dos valores S foram realizadas com 5x106 partículas. A elevação do 

número de partículas foi necessária para a determinação de resultados com incertezas 

inferiores a 5,0 % em órgãos alvo distantes do órgão fonte, uma vez que não foram 

consideradas técnicas de redução de variância nos cenários computacionais deste estudo. 

4.2.1 Frações absorvidas nos simuladores adultos e pediátricos 

As frações absorvidas específicas (SAFs) para feixes de fótons e pósitrons foram 

obtidas para os simuladores MASH e FASH em duas posturas distintas, em pé e deitados, 

aqui chamados de MASH_P, MASH_D, FASH_P e FASH_D, respectivamente. Estas duas 

posturas são estudadas para verificar a variação dos resultados com relação às mudanças 

morfológicas dos órgãos internos dos pacientes devido ao efeito gravitacional, relatadas 

por Cassola et al. 2010b. Dez órgãos alvo foram escolhidos para esta seção, considerando-

se regiões do paciente que mais captam os radionuclídeos durante o exame de PET, como 

cérebro, coração, sangue e conteúdo da bexiga, e ainda outros de menor absorção, como 

adrenais, pulmões, rins, pâncreas e baço, não excluindo o corpo inteiro do paciente.  

Os resultados dos SAFs de fótons para o intervalo de energia de 0,01 a 4 MeV, 

disponibilizados por Stabin e Siegel (2003) para simuladores masculino, feminino e 

infantil foram utilizados para comparação dos resultados deste estudo, apesar da 

aniquilação do pósitron resultar em fótons de energia constante de 0,511 MeV. Os 

resultados de SAFs devido a fótons monoenergéticos de 0,01 a 4 MeV são comparados 

para 4 regiões: a) sangue irradiando a parede do coração, b) conteúdo da bexiga irradiando 

parede da bexiga, c) cérebro e d) corpo inteiro. A Figura 44 apresenta os resultados para 

MASH e FASH nas posturas em pé e deitado e a Figura 45 para os pediátricos. 

Para o sangue como fonte, irradiando a parede do coração, Figuras 44 (a) e 45 (a) e 

a urina como fonte, irradiando a parede da bexiga, Figura 44 (b) e 45 (b), os valores de 

SAFs obtidos aqui mostram pequenas elevações, que ocorrem devido à proximidade 

geométrica das regiões nos simuladores MASH, FASH e pediátricos, mais realistas que os 

simuladores matemáticos empregados por Stabin e Siegel (2003). Nesses simuladores 

compostos por geometrias matemáticas os órgãos apresentam-se mais distantes uns dos 

outros comparado aos simuladores de superfícies mesh, utilizados neste estudo. Variações 

semelhantes nos SAFs devido a órgãos próximos são encontrados por Stabin et al. (2012) e 

Xie et al. (2013) quando comparados a simuladores de superfície NURBS. 
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Figura 44. SAFs de fótons nos simuladores MASH_P, MASH_D, FASH_P e FASH_D 
comparados a dados fornecidos por Stabin e Siegel (2003). a) Sangue irradiando a parede do 
coração b) Conteúdo da bexiga irradiando a parede da bexiga c) Cérebro e d) Corpo inteiro. 
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Figura 45. SAFs de fótons para os simuladores pediátricos comparados a dados publicados por  
Stabin e Siegel (2003) a) Sangue irradiando a parede do coração b) Conteúdo da bexiga irradiando 

a parede da bexiga c) Cérebro e d) Corpo inteiro.  
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Observamos que os resultados das frações específicas de fótons absorvidos 

no cérebro, Figuras 44 (c) e 45 (c), e corpo inteiro, Figura 44 (d) e 45 (d) são análogos 

aos apresentados por Stabin e Siegel. (2003), uma vez que as massas destes órgãos são 

semelhantes e as diferenças nos formatos deles não afetam significativamente esses 

resultados. Verifica-se um comportamento idêntico para os demais órgãos sólidos 

(coração, pâncreas, rins, pulmões, baço e suprarrenais). 

É possível notar ainda que fótons de energia moderada e alta, acima de 1 MeV em 

simuladores MASH e FASH, e acima de 0,511 em simuladores pediátricos,  atravessam as 

estruturas dos órgãos depositando menor energia. Para as doses devido aos emissores de 

pósitrons, fótons de energia bem definida (0,511 MeV) são produzidos e, por sua vez, as 

variações observadas nos SAFs podem ser desprezadas. 

Os resultados das frações absorvidas específicas dos simuladores computacionais 

adultos em pé e deitados não apresentaram diferenças, uma vez que a proximidade dos 

órgãos é idêntica para ambos os posicionamentos, em pé ou deitado. A variação nas 

estruturas internas devido ao efeito gravitacional ajustada nos simuladores produz 

variações imperceptíveis nos SAFs dos órgãos fonte. 

Na literatura encontramos apenas valores de SAFs para fótons e elétrons. Aqui, 

determinamos resultados de SAFs para feixes de pósitrons nos simuladores MASH e 

FASH, em pé e deitado, e para os simuladores pediátricos, que estão apresentados nas 

Figuras 46 e 47, respectivamente. 



 
 

85 
 

0.01 0.1 1 10
1E-4

1E-3

0.01

0.1

0.01 0.1 1 10
1E-3

0.01

0.1

0.01 0.1 1 10
1E-4

1E-3

0.01

0.1

0.01 0.1 1 10
1E-5

1E-4

1E-3

d)c)

b)

S
A

F
s 

d
ev

id
o

 a
 p

ó
si

tr
o

n
s 

(g
-1

)
 FASH_D
 FASH_P
 MASH_D
 MASH_P

a)

Conteúdo da bexiga > Parede da bexigaSangue > Parede do Coração

Cérebro Corpo Inteiro

 FASH_D
 FASH_P
 MASH_D
 MASH_P

Energia (MeV)

S
A

F
s 

d
ev

id
o

 a
 p

ó
si

tr
o

n
s 

(g
-1

)

Energia (MeV)

 FASH_D
 FASH_P
 MASH_D
 MASH_P

 FASH_D
 FASH_P
 MASH_D
 MASH_P

 

Figura 46. SAFs de pósitrons para os simuladores MASH_P, MASH_D, FASH_P e FASH_D. 
a) Sangue irradiando a parede do coração b) Conteúdo da bexiga irradiando a parede da bexiga 

c) Cérebro e d) Corpo inteiro. 
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Figura 47. SAFs de pósitrons para os simuladores pediátricos. a) Sangue irradiando a parede do 
coração b) Conteúdo da bexiga irradiando a parede da bexiga c) Cérebro e d) Corpo inteiro. 
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Os valores de SAFs para pósitrons são maiores que os de fótons em uma ordem de 

grandeza aproximadamente, visto que a energia dos pósitrons é depositada localmente, de 

forma idêntica ao que ocorre para interação de elétrons, até atingirem a energia necessária 

para aniquilação (1,022 MeV), conforme apresentado na seção 2.4. Isso ocorre devido ao 

fato de que pósitrons com maior energia podem percorrer um caminho maior até atingirem 

a energia de aniquilação, conforme relatado por Sanchez-Crespo (2013). Observa-se 

também uma variação mais acentuada dos valores dos SAFs entre os simuladores 

masculinos e femininos, sendo maior para este último quando o órgão alvo não é sólido ou 

quando se considera o corpo inteiro, Figuras 46 (a), 46 (b) e 46 (d).  

Na maioria dos casos, a dose absorvida devido a pósitrons no órgão fonte é também 

associada à radiação de freamento, que é muito baixa em relação às doses depositadas por 

fótons e elétrons que interagem com o órgão fonte. Quando os órgãos estão se tocando, 

também ocorre a deposição de dose por pósitrons que saem do órgão fonte e atingem o 

órgão vizinho, mas esta dose não é depositada uniformemente por todas as partes do órgão, 

como as estimativas tradicionais de doses consideram (STABIN et al., 2012). Neste caso, a 

dose é depositada na superfície do órgão vizinho, de forma idêntica ao que ocorre na 

interação de elétrons, devido ao pequeno alcance dos pósitrons, como mostrado na 

Figura 4, fazendo com que esta contribuição seja irrelevante. 

As frações absorvidas específicas apresentam uma correlação inversa com a massa 

corporal e correlação direta com a energia da fonte. Isso ocorre porque o aumento da 

energia facilita o escape de partículas da região de origem, e o aumento de volume é 

acompanhado de maior massa, causando assim menor deposição de energia no órgão de 

origem. Variações idênticas foram observadas por Stabin et al. (2012) e Xie et al. (2013). 

 

4.2.2 Valores S e coeficientes de dose por atividade administrada para os simuladores 

adultos e pediátricos 

Nesta seção apresentamos valores S auto absorvidos, ou seja, absorvidos pelos 

próprios órgãos fonte. As Figuras 48 e 49 apresentam resultados obtidos para simuladores 

MASH e FASH nas duas posturas. Nas Figuras 50, 51 e 52 pode-se observar os valores S 

determinados para o simulador pediátrico recém-nascido e um ano, cinco e dez anos 

masculino e cinco e dez anos feminino, respectivamente.  
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Figura 48. Valores S auto absorvidos para os simuladores MASH em pé (_P) e deitado (_D)  
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Figura 49. Valores S auto absorvidos para os simuladores FASH em pé (_P) e deitado (_D) 
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Figura 50. Valores S auto absorvidos para os simuladores recém-nascido (RN) e 1 ano (1A). 
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Figura 51. Valores S auto absorvidos para os simuladores  de 5 (M05) e 10 anos 
masculinos (M10). 
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Figura 52. Valores S auto absorvidos para os simuladores de 5 (F05) e 10 anos femininos (F10). 
 

Os resultados dos valores S apresentam-se tanto maiores quanto mais altas são as 

energias  dos radionuclídeos, para todos os simuladores estudados. Para o 18F e o 82Rb, por 

exemplo, as energias médias dos pósitrons são de 0,206 MeV e 1,09 MeV, 

respectivamente. 

Considerando-se os exames de PET/CT empregando 18F, a Figura 53 compara os 

resultados dos valores S nos órgãos fonte dos simuladores adultos e pediátricos com os 

obtidos por Stabin e Siegel (2003). Nas Figuras 53 (a) e 53 (b) tem-se valores S para 

órgãos dos simuladores MASH e FASH, respectivamente, em pé (_D) e deitados (_P); nas 

Figuras 53 (c) e 53 (d) são comparados os obtidos para os simuladores pediátricos. 
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Observa-se valores S em órgãos como rins, timo e tireoide com variações acima de 200% e 

também para as mamas do simulador masculino. 

Como observado para os resultados de SAFs, a representação anatômica dos 

simuladores antropomórficos utilizados por Stabin e Siegel (2003) é o aspecto responsável 

pelas diferenças nos resultados da interação da radiação em alguns órgãos 

(STABIN e FLUX, 2007). Essas variações também foram observadas neste trabalho para 

os simuladores antropomórficos de adultos e pediátricos.  

Outro objetivo deste trabalho foi avaliar a influência do posicionamento (deitado e 

em pé) do paciente simulado em exames de PET/CT. Comparando os valores S entre 

MASH_D e MASH_P, e FASH_D e FASH_P, observamos diferenças menores que 5%. 

Esse resultado é previsto considerando-se as variações morfológicas nas estruturas internas 

dos simuladores devido ao efeito gravitacional em feixes externos de fótons, conforme 

descrito por CASSOLA et al.  (2010b).  

Os valores S para as mamas (MASH, 1A, F05 e F10), vesícula biliar, próstata 

(MASH, M05 e M10) apresentam variações acima de 200% em relação aos determinados 

por Stabin e Siegel (2003). Tais resultados são justificados pelas variações na massa, 

posicionamento e proximidade dos órgãos fonte. Variações idênticas nos resultados de 

valores S são encontradas para os demais radionuclídeos estudados em simuladores adultos 

e pediátricos. 

A Figura 54 apresenta as razões entre os valores S para a) 18F, b) 11C, c) 13N e d) 

15O para o simulador recém-nascido (RN) deste estudo e os obtidos por 

Wayson et al. (2012) e Stabin e Siegel (2003). Para órgãos sólidos, existe boa 

concordância entre os valores-S em órgãos fonte calculados neste trabalho quando 

comparados com os resultados de Wayson et al. (2012). Para órgãos ocos, os valores S 

auto absorvidos nas paredes desses órgãos são de 4% a 8% maiores que os apresentados 

por Wayson et al. (2012).  
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Figura 53. Razão entre os valores S auto absorvidos determinados neste trabalho e os obtidos por Stabin e Siegel (2003) para o 18F nos 

simuladores a)MASH_P, MASH_D e b) FASH_P, FASH_D c) recém-nascido e 1 ano e d) M5, F5, M10 e F10
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Figura 54. Razão entre valores S absorvidos nos órgãos fonte do simulador de recém-nascido (RN) deste estudo e os resultados de Wayson et 
al. (2012) e entre os resultados de Stabin e Siegel (2003) e Wayson et al. (2012) para a) 18F b) 11C c) 13N e d) 15O 
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Para todos os radionuclídeos, os valores S nos órgãos fonte diminuem quando a 

massa corporal aumenta. Esta característica pode ser observada na Figura 55. 
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Figura 55. Variação dos valores S em órgãos fonte conforme a massa corporal (kg) para:  a) Rins 
b) Pulmões c) Fígado, d) Pâncreas e) Corpo inteiro e f) Parede da bexiga  

 

A correlação entre valores S nos órgãos fonte e a massa corporal é mais complicada 

porque a energia depositada por partículas na região alvo (auto-irradiação) é afetada 

consideravelmente pela distância da fonte ao alvo. O 82Rb produz os maiores valores S 

para órgãos fonte devido à maior energia da radiação beta. 
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Os valores S obtidos mostram-se dependentes da resolução e tamanho do voxel 

correspondente a (6,63 × 6,63 × 6,63) cm3, utilizado por Wayson et al., (2012) e 

(1,4 × 1,4 × 1.4) cm3 para o voxel do simulador de recém-nascido deste estudo.  

Conclusões semelhantes foram observadas por Xie et al. (2013) utilizando um simulador 

com resolução de voxel de (1,8 × 1,8 × 3,0) cm3. As razões de valores S entre os dados de 

Stabin e Siegel (2003) e Wayson et al. (2012) variam entre 0,21 e 2,32, o que pode ser 

atribuído às diferenças entre a geometria do modelo que utiliza equações de sólidos 

matemáticos, empregada por Stabin e Siegel (2003), e a baseada em voxel utilizada por 

Wayson et al. (2012). Resultados semelhantes foram obtidos por Xie et al. (2013) e 

Belinato et al. (2014). 

No MIRD Pamphlet Nº 11 (SNYDER et al., 1975), o valor S de fótons com 

energias acima de 100 keV em órgãos fonte é proporcional a massa dos órgãos elevada a 

dois terços (m2/3). Em simuladores híbridos UF-NCI, para os radionuclídeos (11C, 18F, 

68Ga, 82Rb, 13N), mais de 70% dos valores S são resultantes das interações de pósitrons. 

Para órgãos afastados da fonte, considerando-se 11C, 18F ou 68Ga, mais de 80% nos 

resultados de valores S são devidos aos fótons de aniquilação (511 keV).  Portanto, quanto 

maior o simulador humano, maior a contribuição de fótons nos valores S e menor a de 

pósitrons (XIE et al., 2013). Este aspecto merece ser discutido com maior cuidado, a fim 

de se estimar as contribuições de cada tipo de radiação nos resultados de valor S, tanto em 

simuladores antropomórficos computacionais adultos, no caso aqui MASH e FASH, como 

também em simuladores pediátricos. 

Os CDs absorvidas por atividade administrada, considerando-se os tempos de 

residência informados na ICRP 106 (ICRP, 2008) estão apresentados nas Figuras 56 e 57.  

Os resultados da Figura 56 variam sutilmente quando as posturas dos simuladores 

são ajustadas devido ao efeito gravitacional, considerando-se as posições em pé e deitada, 

tanto no MASH quanto na FASH. As doses efetivas não são afetadas devido a essas 

variações. 
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Figura 56. Dose equivalente por atividade administrada de 18F-FDG nos simuladores 
antropomórficos adultos em diferentes posturas. 
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Figura 57. Dose equivalente por atividade administrada de 18F-FDG nos simuladores 
antropomórficos pediátricos.  

 

A incerteza associada com o cálculo de dose absorvida no órgão depende das 

incertezas da atividade acumulada e as dos valores S, conforme discutido na seção 2.8. As 

variações na descrição quantitativa da captação do traçador, distribuição e retenção do 

radiofármaco em órgãos/tecidos podem introduzir incertezas consideráveis na dosimetria.  
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A utilização de diferentes simuladores para a determinação dos valores-S e frações 

absorvidas pode produzir variações pequenas nos resultados de dose e estas variações são 

atribuídas principalmente às características dos aspectos anatômicos, tais como a massa do 

órgão alvo e a distância fonte-alvo (STABIN et al., 2012). Já os parâmetros biocinéticos 

como a variação de absorção do marcador, a distribuição e a retenção do radiofármaco em 

tecidos de diferentes indivíduos, principalmente quando há estados patológicos podem 

produzir até 100% de variações nos resultados desses valores (XIE et al., 2013). 

Considerando a média das doses efetivas por atividade administrada nos 

simuladores MASH e FASH, os resultados deste estudo apresentaram valores 30% maiores 

comparados aos valores da ICRP 106 (ICRP, 2008). Comparações semelhantes para os 

simuladores antropomórficos pediátricos mostraram variações de 0,1%, 8,2% e 5.2% para 

as idades de 1, 5 e 10 anos, respectivamente. 

 

4.3 Simulador de acrílico para PET/CT 

4.3.1 Características do simulador físico confeccionado 

O objeto simulador físico confeccionado de PMMA possui formato 

aproximadamente cúbico, com dimensão total de (12 × 13 × 14) cm3, Figura 58 (a), tendo 

um compartimento para preenchimento com radionuclídeo. O cenário de simulação 

construído para o método de Monte Carlo está apresentado na Figura 58 (b). 

 

Figura 58. Objeto simulador de PET/CT com dosímetros OSL (setas) nas faces  a) PMMA e PLA 
e b) Cenário computacional.  
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Com este simulador pode-se determinar as doses absorvidas pelos fótons emitidos 

devido à fonte de 18F-FDG nos OSLDs sob as faces (a 1 cm da superfície externa), como 

também as doses devido ao feixe da tomografia. Com isso, pode-se avaliar as doses na 

superfície do compartimento contendo 18F e as doses a certa distância do órgão. Esse 

compartimento pode representar um órgão como bexiga, por exemplo. A determinação das 

doses absorvidas nos dosímetros possibilita validar os resultados das simulações no código 

MCNPX com resultados experimentais, como será verificado mais adiante. 

 

4.3.2 Caracterização do PLA  

A composição química do PLA, determinada pela central analítica do Instituto de 

Química da Universidade de São Paulo (IQ/USP), utilizada nos cenários computacionais 

MCNPX para o simulador de PET/CT, está disposta na Tabela 15. A composição do 

PMMA foi obtida de Mcconn et al. (2011).  

Tabela 15. Composição química do material PLA (IQ/USP) 

Elemento C H N 
(%) 50,91 6,09 0,00 

Normalizado 0,75 0,09 0,00 

Elemento S e Si B Ca Fe P Sn 
(%) > 1% 0,1-1% 0,01-0,001% 0,01-0,001% 0,01-0,001% 0,01-0,001% 

Normalizado 0,07 0,07 0,00 0,00 0,00 0,00 

 

As curvas de atenuação, obtidas por meio da representação gráfica da seção de 

choque transversal em função da energia de interação, para os efeitos de espalhamento 

coerente, espalhamento incoerente e fotoelétrico do PLA, PMMA e tecido mole estão 

mostradas na Figura 59. Observa-se que o comportamento do PLA em termos de absorção 

da radiação é semelhante ao do PMMA.  

Apesar de ser utilizado para simular a cabeça e o abdômen do paciente em 

procedimentos dosimétricos de controle de qualidade em tomografia computadorizada, 

como descrito na literatura, o PMMA  não é um substituto adequado para o tecido cerebral 

humano (FERREIRA et al., 2011b). Outro aspecto importante é que o PMMA apresenta 

uma diferença de 20% no coeficiente de atenuação linear experimental em feixes de fótons 

abaixo de 20 keV (GERALDELLI et al. 2013). Mesmo assim, considerou-se aqui que tais 

aspectos não impossibilitam o uso desse material na constituição do objeto simulador uma 
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vez que as energias dos fótons em CT e PET estão entre 80-140 keV e 511 keV, 

respectivamente. Assim, neste trabalho, com o uso desse objeto, buscou-se uma maneira de 

validar experimentalmente os resultados de simulação em código MCNPX  com a fonte de 

CT (raios X) e de emissores de pósitrons (18F-FDG). Este estudo fez uso do PMMA devido 

à facilidade de aquisição desse material, ao baixo custo para aquisição e simplicidade na 

modelagem com sobreposição de placas.  
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Figura 59. Coeficiente de atenuação do PLA e do PMMA calculado com XCom 
(BERGER e HUBBELL, 1987). 

 

 

4.3.3 Coeficientes de conversão de dose da CT e valores S do 18F no simulador 

construído para PET/CT 

Para avaliação das doses absorvidas no objeto simulador físico, após o 

posicionamento dos detectores nas faces do simulador de acrílico, o compartimento de 

PLA, construído na impressora 3-D Touch, foi preenchido com 18F-FGD diluído em 20 ml 

de soro fisiológico 5% na sala de exame de PET/CT. As atividades iniciais foram de 111 e 

370 MBq. Um tempo de espera para ocorrer decaimento físico de 22 horas (79200 s) foi 

considerado para maximizar a deposição de dose nos detectores. 
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Na Tabela 16 estão os resultados dos valores S nos detectores OSLD devido ao 

18F-FDG inserido no compartimento de PLA, determinados com tally *F8 e metodologia 

MIRD, descrita na seção 2.8. 

Tabela 16. Resultados dos valores S devido ao 18F-FDG nas faces do simulador de PET/CT 
(mGy/MBq.s) 

Face 
Distância dos detectores  

até a fonte de 18F-FDG (cm) 

 Valores S 
(mGy/MBq.s) 

 MCNPX 

1 4,0  1,00E-06(4,0%) 

2 4,2  9,56E-07 (4,1%) 

3 4,8  7,71E-07 (4,5%) 

4 3,0  1,31E-06 (3,6%) 

5 1,2   1,47E-06 (3,4%) 

6 3,5  1,18E-06(3,8%) 
 

Na Figura 60 observa-se que as doses absorvidas medidas experimentalmente com 

dosímetros OSLD inseridos no simulador cúbico proposto têm valores  próximos ao que 

foi encontrado nos resultados simulados por MCNPX. 
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Figura 60. Doses absorvidas medidas pelos OSLD e simuladas pelo MCNPX (111 e 370 MBq). 
 

Os CCs de doses absorvidas apresentadas na Tabela 17 foram determinadas 

usando-se a Equação 46. As doses nas faces do simulador cúbico construído no código 

MCNPX necessitaram de uma estimativa para os CFs, considerando-se o emprego dos 
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OSLD. Assim, foram calculados a partir da média dos resultados experimentais e 

simulados nos OSLD os CFs como (1,75E+06) para PET/CT GE (140 kVp) e (1,31E+06) 

para PET/CT Siemens (130 kVp).  

Tabela 17. CCs de doses absorvidas nos dosímetros posicionados nas faces do simulador cúbico 
(mGy/100 mAs) com incertezas tipo A 

Face 
OSLD no PET/CT GE 

(140 kVp ) 
 

 
OSLD no PET/CT Siemens

(130 kVp ) 

1 29,51 (4,4%)  
 

77,36 (6,4%) 

2 29,12 (4,3%)  
 

81,40 (6,5%) 

3 27,56 (5,1%)  
 

73,78 (5,4%) 

4 30,61 (4,1%)  
 

79,76 (5,3%) 

5 24,94 (5,6%)  
 

62,81 (7,8%) 

6 25,32 (6,3%)  
 

60,09 (8,5%) 

 

Considerando-se ainda os detectores OSLD, a Figura 61 compara as doses 

absorvidas simuladas com as experimentais, considerando-se a tensão e o produto mAs 

efetivo fornecidos pelos consoles dos equipamentos de PET/CT. 
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Figura 61. Doses absorvidas (mGy/100mAs) pelos OSLD posicionados nas faces do simulador de 
PET/CT GE (140 kVp - 85 mAs) e Siemens (130 kVp - 30 mAs). 

 

Os valores das doses absorvidas mostradas na Figura 61 apontam que os resultados 

experimentais e os calculados são semelhantes, apresentando uma diferença maior nas 

faces 5 e 6 para o equipamento GE. Esses resultados validam, portanto, os cenários 

computacionais construídos neste trabalho para a determinação das doses em PET/CT. 
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A metodologia utilizada para o cálculo de dose com o simulador cúbico é, porém, 

limitada à dosimetria dos fótons após a aniquilação e não considera os valores S absorvidos 

na própria região fonte, como ocorre nos resultados de dosimetria interna. Nesse sentido, é 

necessário aprimorar o simulador, uma vez que a maior contribuição da dose absorvida em 

órgãos internos é devido ao próprio órgão fonte como alvo.  

4.4 Dose total em procedimentos de PET/CT em simuladores adultos 

As doses efetivas para o exame de PET/CT variam com a atividade injetada no 

paciente e os parâmetros utilizados na tomografia. Em adultos, recomenda-se atividades 

entre 185 MBq e 370 MBq (5 mCi e 10 mCi) para PET Cardíaco 

(DORBALA et al., 2013). Considerando uma atividade de 370 MBq de 18F-FDG 

(comumente utilizada nos dois serviços de medicina nuclear) e os parâmetros 

140 kVp-140 mAs para o tomógrafo GE e 130 kVp-120 mAs para o Siemens, foram 

determinadas doses equivalentes mostradas nas Figuras 62 e 63, para o MASH e o FASH 

na postura deitada. 
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Figura 62. Doses equivalentes em um exame de PET/CT para o tomógrafo GE (140 mAs) e 
atividade injetada de 370 MBq (10 mCi) 
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Figura 63. Doses equivalentes em um exame de PET/CT para o tomógrafo Siemens (120 mAs) e 
atividade injetada de 370 MBq (10 mCi) 

 

Resultados devido ao feixe de tomografia (fótons externos < 200 keV) da GE são 

responsáveis por 16,2% e 12,2% - média de 14,2% - dos valores de dose efetiva para os 

simuladores masculino e feminino, respectivamente, comparados a 29,4% e 23,1% - média 

de 26,3% - com o da Siemens em um exame de corpo inteiro de PET/CT adulto.  

A dose efetiva total de PET/CT foi de 8,73 mSv e 11,69 mSv considerando-se o 

exame realizado em equipamento da GE e 10,37 e 13,34 mSv no equipamento Siemens 

para os simuladores masculino e feminino, respectivamente. A atuação do recurso 

Care dose 4D, reduzindo 66% do mAs da Siemens, faria com que as doses da tomografia 

fossem idênticas às avaliadas considerando-se o exame no equipamento da GE.  

Outro aspecto importante que diferencia os dois equipamentos de PET/CT é o 

material do conjunto de detectores em PET. A Siemens utiliza o LSO e a GE o BGO. Essa 

característica do equipamento Siemens faz com que o exame seja realizado com tempo de 

aquisição 50% menor (IAEA, 2009), embora Freedenberg et al. (2014) relatem que a 

aquisição de imagens em regiões de baixa atividade por LSO tenha menor qualidade. 

  



 
 

102 
 

5. CONCLUSÕES  

Neste trabalho, confirmamos que a utilização de simuladores computacionais com a 

adequada representação de órgãos internos de pacientes, utilizando MMC, auxilia na 

correta determinação das doses decorrentes de exames em PET/CT. 

É de suma importância a correta simulação da filtração do feixe de raios X para 

determinação das doses em CT, como foi feito aqui empregando-se o código MCNPX. 

Uma metodologia para determinar os parâmetros de filtro gravata borboleta de tomógrafos 

foi proposta neste estudo e mostrou-se adequada a partir da avaliação da filtração total, 

validada com valores de CTDI. 

As doses efetivas estimadas em adultos devido ao feixe de raios X são responsáveis 

por 14,2% e 26,3% da dose efetiva total em um exame realizados no equipamento PET/CT 

GE e Siemens, respectivamente. Considerando as doses efetivas devido ao 18F-FDG, os 

coeficientes por atividade administrada apresentaram um acréscimo de 30% em relação aos 

valores da ICRP 106 (ICRP, 2008).  

As variações morfológicas nas estruturas internas devido ao efeito gravitacional, 

consideradas nos simuladores MASH e FASH, produzem alterações pouco significativas 

nos SAFs de fótons, como também nos valores de dose efetiva, uma vez que a distância 

entre órgãos internos é idêntica para os posicionamentos em pé e deitado dos simuladores.  

Em crianças, as doses efetivas devido ao CT foram até 23,6% mais elevadas que as 

apresentadas em resultados da literatura quando estimadas por meio do DLP. As doses por 

atividade administrada mostraram um aumento de 0,1%, 8,2% e 5.2% para as idades de 1, 

5 e 10 anos, respectivamente, comparadas aos valores da ICRP 106 (ICRP, 2008). 

 O simulador de acrílico construído para dosimetria em PET/CT mostrou-se eficaz 

na validação dos cenários computacionais construídos no código MCNPX, apesar de suas 

limitações no que se refere à determinação das doses na região fonte, como também na 

quantidade de regiões fontes disponíveis (apenas uma). 

Considerando que pacientes podem ter massas corporais muito distintas das dos 

simuladores empregados aqui, estudos semelhantes podem ser realizados para casos 

particulares em simuladores com variações nessas massas.   
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7.2 CCs de doses para os simuladores adultos e pediátricos nos tomógrafos  
 

Tabela 18. CCs de doses em CT para o simulador antropomórfico MASH (mGy/100 mAs) 

 GE Discovery VCT SIEMENS Biograph 16 

 
Órgãos 

80 kVp 100 kVp 120 kVp 140 kVp 80 kVp 110 kVp 130 kVp 

Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. 

Medula vermelha 0,010 0,001 0,022 0,002 0,044 0,004 0,046 0,001 0,035 0,003 0,105 0,012 0,139 0,016 
Cólon 0,242 0,017 0,523 0,039 0,856 0,062 1,237 0,031 0,728 0,069 2,082 0,217 3,049 0,328 
Pulmão 0,264 0,020 0,540 0,038 0,923 0,070 1,575 0,045 0,735 0,086 2,253 0,258 3,248 0,370 
Estômago 0,242 0,017 0,512 0,043 0,871 0,071 1,058 0,039 0,744 0,085 2,177 0,252 3,210 0,379 
Mamas 0,288 0,019 0,553 0,037 0,926 0,063 1,464 0,022 0,558 0,047 1,946 0,199 2,678 0,285 
Demais órgãos* 0,016 0,001 0,032 0,001 0,054 0,002 0,078 0,001 0,044 0,002 0,123 0,004 0,178 0,004 
Gônadas 0,356 0,015 0,669 0,033 1,090 0,068 1,523 0,035 1,301 0,080 3,149 0,245 4,360 0,353 
Bexiga 0,184 0,014 0,381 0,027 0,706 0,039 1,029 0,033 0,648 0,066 1,921 0,177 2,841 0,255 
Esôfago 0,217 0,017 0,469 0,041 0,815 0,059 1,322 0,043 0,715 0,073 2,201 0,239 3,209 0,326 
Fígado 0,249 0,021 0,519 0,045 0,880 0,075 0,933 0,032 0,732 0,081 2,189 0,273 3,262 0,401 
Tireóide 0,416 0,030 0,811 0,064 1,345 0,102 1,769 0,041 1,581 0,170 4,005 0,522 5,577 0,622 
Superfície óssea 0,036 0,001 0,068 0,001 0,108 0,001 0,155 0,002 0,115 0,003 0,277 0,005 0,374 0,006 
Cérebro 0,248 0,017 0,519 0,033 0,897 0,062 1,327 0,034 1,029 0,088 2,535 0,207 3,697 0,339 
Glândulas salivares 0,311 0,020 0,607 0,038 1,021 0,068 1,049 0,015 1,036 0,088 2,846 0,304 4,067 0,410 
Pele 0,191 0,003 0,355 0,004 0,576 0,005 0,807 0,007 0,493 0,009 1,276 0,016 1,811 0,020 
Olhos 0,283 0,012 0,560 0,040 0,941 0,054 1,330 0,031 1,180 0,093 2,499 0,207 3,609 0,299 
Dose efetiva 0,206 0,005 0,418 0,010 0,704 0,018 1,012 0,009 0,619 0,021 1,774 0,065 2,544 0,093 

* Adrenais, região extratorácica, vesícula biliar, coração, rins, nódulos linfáticos, músculos, mucosa oral, pâncreas, ovários,  
intestino delgado, baço, timo, útero. 

 
 
 
  



 
 

114 

Tabela 19. CCs de doses em CT para o simulador antropomórfico FASH (mGy/100 mAs) 

 GE Discovery VCT SIEMENS Biograph 16 

 
Órgãos 

80 kVp 100 kVp 120 kVp 140 kVp 80 kVp 110 kVp 130 kVp 

Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. 

Medula vermelha 0,014 0,001 0,031 0,003 0,042 0,004 0,060 0,006 0,047 0,006 0,134 0,022 0,188 0,023 
Cólon 0,254 0,019 0,519 0,047 0,889 0,077 1,292 0,214 0,742 0,080 2,119 0,340 3,089 0,369 
Pulmão 0,306 0,025 0,608 0,051 1,023 0,067 1,439 0,212 0,947 0,107 2,576 0,397 3,708 0,423 
Estômago 0,264 0,020 0,548 0,043 0,939 0,075 1,147 0,234 0,804 0,090 2,309 0,367 3,363 0,374 
Mamas 0,466 0,035 0,685 0,060 0,959 0,091 1,248 0,180 0,711 0,085 1,919 0,322 2,783 0,314 
Demais órgãos* 0,019 0,001 0,038 0,001 0,064 0,002 0,091 0,003 0,056 0,002 0,152 0,004 0,218 0,006 
Gônadas 0,163 0,011 0,385 0,029 0,689 0,052 1,067 0,186 0,538 0,047 1,787 0,276 2,619 0,290 
Bexiga 0,205 0,016 0,441 0,036 0,771 0,061 1,149 0,128 0,723 0,081 2,096 0,292 3,075 0,323 
Esôfago 0,241 0,021 0,505 0,030 0,879 0,073 1,374 0,181 0,859 0,083 2,459 0,386 3,587 0,418 
Fígado 0,278 0,018 0,570 0,040 0,969 0,084 1,072 0,172 0,852 0,089 2,398 0,410 3,488 0,446 
Tireóide 0,488 0,030 0,934 0,065 1,530 0,111 3,129 0,422 1,824 0,188 4,526 0,733 6,241 0,716 
Superfície óssea 0,039 0,001 0,073 0,001 0,116 0,002 0,139 0,002 0,122 0,003 0,300 0,006 0,405 0,007 
Cérebro 0,297 0,017 0,478 0,030 0,951 0,031 0,805 0,100 0,939 0,076 2,602 0,354 3,771 0,377 
Glândulas salivares 0,300 0,021 0,584 0,040 1,018 0,076 1,521 0,256 0,924 0,073 2,761 0,445 3,874 0,389 
Pele 0,282 0,005 0,465 0,010 0,724 0,018 1,013 0,030 0,663 0,012 1,665 0,020 2,356 0,027 
Olhos 0,306 0,014 0,604 0,043 0,998 0,058 0,779 0,149 0,912 0,057 2,466 0,303 3,525 0,300 
Dose efetiva 0,229 0,007 0,436 0,013 0,719 0,020 1,022 0,057 0,637 0,024 1,780 0,097 2,571 0,101 

* Adrenais, região extratorácica, vesícula biliar, coração, rins, nódulos linfáticos, músculos, mucosa oral, pâncreas, ovários,  
intestino delgado, baço, timo, útero. 
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Tabela 20. CCs de dose em CT para o simulador antropomórfico M10 (mGy/100 mAs) 

 GE Discovery VCT SIEMENS Biograph 16 

 
Órgãos 

80 kVp 100 kVp 120 kVp 140 kVp 80 kVp 110 kVp 130 kVp 

Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. 

Medula vermelha 0,140 0,001 0,281 0,001 0,469 0,002 0,670 0,003 0,218 0,001 0,584 0,002 0,819 0,003 
Cólon 2,587 0,193 5,273 0,429 9,237 0,574 12,758 0,896 3,916 0,270 10,548 0,669 15,205 1,011 
Pulmão 2,939 0,229 5,679 0,331 6,251 0,354 13,568 0,824 4,602 0,348 11,959 0,739 15,989 0,890 
Estômago 2,554 0,180 5,106 0,394 8,626 0,635 12,490 1,067 3,753 0,264 10,275 0,787 16,296 1,273 
Mamas 1,844 0,097 3,815 0,252 6,564 0,464 9,758 0,580 2,924 0,211 8,203 0,459 12,026 0,797 
Demais órgãos* 2,152 1,098 4,775 2,435 8,137 4,394 11,875 6,175 3,517 1,723 9,735 4,673 13,755 5,777 
Gônadas 5,038 0,358 6,611 0,455 10,390 0,815 15,132 1,160 5,591 0,470 13,469 0,983 18,686 1,231 
Bexiga 1,597 0,099 4,559 0,332 6,794 0,394 11,340 0,745 3,711 0,279 10,227 0,583 14,728 0,868 
Esôfago 2,633 0,178 5,263 0,302 5,861 0,370 12,926 0,711 4,691 0,274 12,424 0,747 17,047 0,861 
Fígado 2,657 0,245 5,282 0,454 8,874 0,592 12,837 0,985 3,960 0,308 10,739 0,740 17,641 1,545 
Tireóide 4,642 0,329 8,571 0,682 13,782 0,878 19,442 1,425 8,065 0,677 19,415 1,233 26,542 1,821 
Superfície óssea 0,146 0,020 0,808 0,147 1,623 0,267 2,970 0,516 0,241 0,031 2,185 0,381 2,890 0,412 
Cérebro 2,107 0,142 4,309 0,261 7,364 0,487 10,860 0,601 3,578 0,242 9,861 0,508 14,258 0,859 
Glândulas salivares 0,916 0,061 1,748 0,112 2,893 0,145 4,191 0,262 1,402 0,096 3,639 0,202 5,172 0,343 
Pele 2,408 0,010 4,393 0,014 7,091 0,020 10,142 0,030 3,441 0,013 8,476 0,023 11,859 0,032 
Olhos 2,046 0,128 4,057 0,240 6,866 0,320 10,178 0,689 2,761 0,110 7,627 0,510 11,202 0,610 
Dose efetiva 2,386 0,143 4,580 0,309 7,147 0,548 11,088 0,779 3,623 0,223 9,588 0,593 13,766 0,749 

* Adrenais, região extratorácica, vesícula biliar, coração, rins, nódulos linfáticos, músculos, mucosa oral, pâncreas, ovários,  
intestino delgado, baço, timo, útero. 
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Tabela 21. CCs de dose em CT para o simulador antropomórfico F10 (mGy/100 mAs) 

 GE Discovery VCT SIEMENS Biograph 16 

 
Órgãos 

80 kVp 100 kVp 120 kVp 140 kVp 80 kVp 110 kVp 130 kVp 

Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. 

Medula vermelha 0,148 0,001 0,293 0,001 0,488 0,002 0,699 0,003 0,228 0,001 0,609 0,003 0,873 0,003 
Cólon 2,679 0,199 5,158 0,420 8,798 0,562 12,741 0,894 3,909 0,269 10,533 0,670 15,069 1,012 
Pulmão 2,945 0,251 5,685 0,283 9,413 0,574 13,583 0,795 4,610 0,349 11,976 0,746 16,563 0,933 
Estômago 2,558 0,193 5,102 0,375 8,584 0,653 12,480 1,055 3,750 0,264 10,267 0,786 14,371 1,128 
Mamas 1,843 0,097 3,812 0,253 6,561 0,465 9,753 0,580 2,922 0,210 8,198 0,461 12,048 0,732 
Demais órgãos* 1,127 0,575 2,071 1,119 3,952 1,660 6,042 2,840 2,681 1,368 7,672 3,759 8,924 3,927 
Gônadas 2,056 0,151 4,281 0,349 7,405 0,609 10,925 0,954 3,553 0,309 10,038 0,821 14,623 1,002 
Bexiga 2,215 0,137 4,524 0,245 7,693 0,445 11,259 0,744 3,681 0,276 10,151 0,582 14,609 1,012 
Esôfago 2,632 0,178 5,261 0,302 8,872 0,562 12,930 0,713 4,692 0,275 12,431 0,748 17,935 0,907 
Fígado 2,659 0,223 5,279 0,446 8,846 0,747 12,831 0,978 3,958 0,310 10,735 0,742 14,751 1,296 
Tireóide 4,634 0,331 8,558 0,683 13,765 0,878 19,418 1,428 8,050 0,671 19,392 1,235 27,021 1,820 
Superfície óssea 0,295 0,027 0,652 0,050 1,222 0,093 1,976 0,160 0,436 0,039 1,567 0,122 2,632 0,215 
Cérebro 2,108 0,150 4,318 0,277 7,381 0,521 10,886 0,641 3,592 0,260 9,909 0,542 14,343 0,896 
Glândulas salivares 0,915 0,061 1,746 0,112 2,890 0,146 4,188 0,262 1,400 0,096 3,635 0,204 5,209 0,343 
Pele 2,392 0,009 4,383 0,014 7,091 0,020 10,119 0,029 3,437 0,013 8,461 0,023 11,803 0,032 
Olhos 2,043 0,128 4,052 0,240 6,884 0,427 10,171 0,691 2,759 0,110 7,621 0,511 11,212 0,732 
Dose efetiva 2,063 0,086 4,053 0,164 6,881 0,252 10,039 0,412 3,360 0,182 9,058 0,489 12,624 0,541 

* Adrenais, região extratorácica, vesícula biliar, coração, rins, nódulos linfáticos, músculos, mucosa oral, pâncreas, ovários,  
intestino delgado, baço, timo, útero. 
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Tabela 22. CCs de dose em CT para o simulador antropomórfico M5 (mGy/100 mAs) 

 GE Discovery VCT SIEMENS Biograph 16 

 
Órgãos 

80 kVp 100 kVp 120 kVp 140 kVp 80 kVp 110 kVp 130 kVp 

Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. 

Medula vermelha 0,148 0,001 0,290 0,001 0,488 0,002 0,698 0,002 0,240 0,001 0,639 0,002 0,898 0,003 
Cólon 3,077 0,178 6,785 0,340 9,714 0,543 13,937 0,664 4,861 0,329 12,811 0,688 18,020 1,164 
Pulmão 2,803 0,180 4,738 0,303 9,822 0,476 14,118 0,577 4,885 0,263 12,533 0,646 17,685 0,735 
Estômago 2,971 0,234 6,415 0,409 9,633 0,623 13,866 0,774 5,068 0,335 13,085 0,852 18,447 0,979 
Mamas 1,965 0,121 3,929 0,216 6,718 0,348 9,945 0,625 3,394 0,225 9,292 0,514 13,464 0,863 
Demais órgãos* 2,389 1,314 4,720 2,502 7,616 4,265 10,914 5,348 3,803 1,825 9,692 5,137 13,641 6,957 
Gônadas 3,629 0,137 6,586 0,306 10,552 0,398 14,949 0,815 5,297 0,297 16,073 0,892 21,856 1,065 
Bexiga 2,615 0,118 5,287 0,231 8,743 0,482 12,708 0,871 3,209 0,202 11,989 0,640 17,072 1,129 
Esôfago 2,811 0,203 4,740 0,317 9,296 0,667 13,477 1,088 4,606 0,299 12,230 0,831 17,417 1,004 
Fígado 3,054 0,224 5,632 0,365 9,882 0,497 14,201 0,623 5,303 0,418 13,598 0,674 19,081 0,795 
Tireóide 6,200 0,430 8,632 0,686 13,999 0,985 19,777 1,218 8,471 0,559 20,248 1,361 27,671 1,600 
Superfície óssea 0,459 0,072 1,111 0,143 2,640 0,403 3,586 0,474 0,738 0,112 3,420 0,538 4,557 0,596 
Cérebro 2,231 0,105 4,400 0,315 7,385 0,380 10,763 0,692 3,480 0,237 9,319 0,519 13,352 0,876 
Glândulas salivares 1,073 0,056 1,929 0,109 3,171 0,205 4,559 0,249 1,751 0,091 4,352 0,198 6,109 0,348 
Pele 2,266 0,008 4,043 0,010 6,695 0,015 9,537 0,020 3,365 0,011 8,213 0,019 11,480 0,024 
Olhos 2,393 0,140 4,545 0,227 7,551 0,433 11,043 0,730 4,487 0,213 11,264 0,687 15,998 1,094 
Dose efetiva 2,540 0,165 4,839 0,313 7,999 0,530 11,504 0,669 4,051 0,233 10,828 0,646 15,212 0,875 

* Adrenais, região extratorácica, vesícula biliar, coração, rins, nódulos linfáticos, músculos, mucosa oral, pâncreas, ovários,  
intestino delgado, baço, timo, útero. 
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Tabela 23. CCs de dose em CT para o simulador antropomórfico F5 (mGy/100 mAs) 

 GE Discovery VCT SIEMENS Biograph 16 

 
Órgãos 

80 kVp 100 kVp 120 kVp 140 kVp 80 kVp 110 kVp 130 kVp 

Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. 

Medula vermelha 0,145 0,001 0,285 0,001 0,471 0,002 0,673 0,002 0,234 0,001 0,616 0,002 0,866 0,003 
Cólon 3,079 0,167 5,899 0,297 9,706 0,542 13,925 0,664 5,014 0,337 12,799 0,687 18,004 1,160 
Pulmão 3,135 0,200 5,989 0,384 9,847 0,478 14,153 0,578 4,905 0,296 12,572 0,651 17,735 0,739 
Estômago 3,002 0,235 5,816 0,372 9,627 0,624 13,857 0,774 5,077 0,351 13,075 0,853 18,433 0,976 
Mamas 1,949 0,110 3,937 0,252 6,717 0,348 9,944 0,625 3,394 0,225 9,292 0,514 13,462 0,865 
Demais órgãos* 1,780 1,638 3,386 2,316 6,648 3,457 9,755 5,268 2,955 1,359 7,649 3,518 12,298 5,534 
Gônadas 2,493 0,137 5,032 0,277 8,468 0,383 12,325 0,728 3,997 0,204 10,976 0,711 15,618 0,861 
Bexiga 2,606 0,118 5,192 0,254 8,702 0,483 12,644 0,874 4,494 0,281 11,934 0,639 16,997 1,120 
Esôfago 2,827 0,203 5,573 0,370 9,310 0,668 13,497 1,088 4,614 0,299 12,248 0,832 17,441 1,006 
Fígado 3,099 0,228 5,983 0,388 9,875 0,497 14,191 0,624 5,307 0,364 13,587 0,675 19,066 0,797 
Tireóide 4,734 0,331 8,730 0,588 14,000 0,985 19,776 1,221 8,471 0,560 20,247 1,362 27,668 1,603 
Superfície óssea 0,346 0,024 1,043 0,078 2,279 0,178 3,672 0,303 0,517 0,212 2,878 0,221 4,634 0,376 
Cérebro 2,240 0,111 4,435 0,206 6,842 1,125 9,334 1,301 3,514 0,172 9,414 0,541 13,488 0,923 
Glândulas salivares 1,031 0,054 1,940 0,102 3,171 0,205 4,558 0,249 1,751 0,092 4,352 0,198 6,109 0,348 
Pele 2,276 0,008 4,151 0,011 6,695 0,015 9,537 0,020 3,358 0,011 8,200 0,019 11,463 0,024 
Olhos 2,384 0,108 4,545 0,227 7,551 0,433 11,043 0,731 4,487 0,213 11,263 0,689 15,998 1,096 
Dose efetiva 2,360 0,203 4,575 0,292 7,711 0,437 11,153 0,659 3,916 0,182 10,168 0,463 14,549 0,712 

* Adrenais, região extratorácica, vesícula biliar, coração, rins, nódulos linfáticos, músculos, mucosa oral, pâncreas, ovários,  
intestino delgado, baço, timo, útero. 
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Tabela 24. CCs de dose em CT para o simulador antropomórfico 1 ano (mGy/100 mAs) 

 GE Discovery VCT SIEMENS Biograph 16 

 
Órgãos 

80 kVp 100 kVp 120 kVp 140 kVp 80 kVp 110 kVp 130 kVp 

Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. 

Medula vermelha 0,452 0,015 0,871 0,035 1,428 0,079 2,022 0,100 0,240 0,017 1,757 0,088 2,455 0,105 
Cólon 3,313 0,162 6,231 0,248 10,139 0,423 14,459 0,816 3,526 0,198 13,833 0,865 19,260 0,983 
Pulmão 2,339 0,102 4,426 0,289 7,238 0,173 10,339 0,219 4,173 0,089 9,372 0,235 13,097 0,277 
Estômago 3,147 0,208 6,005 0,353 9,856 0,548 14,084 0,682 4,859 0,318 13,296 0,693 18,590 0,816 
Mamas 2,140 0,108 3,641 0,118 6,793 0,399 9,810 0,525 3,369 0,279 8,380 0,492 11,909 0,804 
Demais órgãos* 0,325 0,286 0,535 0,280 1,027 0,545 1,478 1,141 0,422 0,279 1,393 0,705 1,946 0,869 
Gônadas 3,112 0,175 5,272 0,212 9,937 0,510 14,250 0,657 2,726 0,115 13,558 0,670 19,093 0,801 
Bexiga 3,493 0,117 6,472 0,302 10,650 0,451 15,135 0,899 3,163 0,085 15,381 0,613 21,254 1,159 
Esôfago 2,356 0,145 4,386 0,228 7,572 0,483 10,895 0,606 4,875 0,354 10,043 0,649 14,185 0,796 
Fígado 3,051 0,176 5,826 0,386 9,557 0,301 13,671 0,382 5,207 0,266 13,486 0,403 18,784 0,473 
Tireóide 3,941 0,255 6,826 0,208 12,100 0,610 17,202 1,077 11,697 0,744 17,218 0,867 23,819 1,527 
Superfície óssea 1,208 0,094 1,570 0,217 3,941 0,235 6,025 0,436 1,679 0,187 7,217 1,027 9,475 1,117 
Cérebro 5,028 0,023 9,367 0,102 15,187 0,046 21,641 0,059 5,965 0,026 19,751 0,056 27,557 0,068 
Glândulas salivares 3,068 0,195 5,735 0,343 9,442 0,524 13,561 0,650 10,492 0,433 13,523 0,813 18,894 0,940 
Pele 2,343 0,007 4,261 0,030 6,857 0,013 9,753 0,018 3,360 0,009 8,613 0,016 11,993 0,021 
Olhos 2,675 0,073 4,916 0,180 8,237 0,455 11,875 0,579 9,773 0,299 12,379 0,735 17,328 0,843 
Dose efetiva 2,287 0,054 4,182 0,078 7,140 0,131 10,206 0,216 3,421 0,075 9,585 0,187 13,487 0,245 

* Adrenais, região extratorácica, vesícula biliar, coração, rins, nódulos linfáticos, músculos, mucosa oral, pâncreas, ovários,  
intestino delgado, baço, timo, útero. 
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Tabela 25. CCs de dose em CT para o simulador antropomórfico recém-nascido (mGy/100 mAs) 

 GE Discovery VCT SIEMENS Biograph 16 

 
Órgãos 

80 kVp 100 kVp 120 kVp 140 kVp 80 kVp 110 kVp 130 kVp 

Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. Dose Incert. 

Medula vermelha 0,576 0,017 1,072 0,002 1,712 0,098 2,389 0,081 0,940 0,050 2,315 0,135 3,164 0,170 
Cólon 3,235 0,169 6,025 0,177 9,777 0,240 13,947 0,369 4,802 0,205 11,994 0,314 16,800 0,382 
Pulmão 3,633 0,059 6,731 0,039 10,881 0,053 15,484 0,143 5,278 0,087 13,091 0,141 18,287 0,173 
Estômago 3,268 0,141 6,147 0,148 10,018 0,200 14,305 0,325 4,286 0,158 11,058 0,259 15,626 0,320 
Mamas 2,841 0,153 5,371 0,009 9,063 0,798 13,222 0,898 4,270 0,241 11,001 0,616 15,868 1,081 
Demais órgãos* 0,316 0,206 0,668 0,543 1,085 0,637 1,550 0,555 0,470 0,271 1,321 0,792 1,852 0,960 
Gônadas 3,142 0,180 5,930 0,011 9,656 2,586 13,844 0,813 4,987 0,263 12,502 0,740 17,496 0,920 
Bexiga 3,214 0,127 5,962 0,016 9,645 0,879 13,703 0,861 5,554 0,324 13,493 0,851 18,716 1,020 
Esôfago 3,314 0,219 6,276 0,153 10,222 0,211 14,677 0,546 4,726 0,203 12,090 0,534 17,092 0,659 
Fígado 3,432 0,085 6,416 0,089 10,410 0,121 14,829 0,205 5,069 0,110 12,739 0,182 17,835 0,222 
Tireóide 4,331 0,216 8,056 0,138 12,950 0,257 18,358 0,840 6,640 0,351 16,372 0,920 22,739 1,123 
Superfícies ósseas 1,896 0,153 3,257 0,011 4,894 0,691 8,141 0,529 2,128 0,123 7,332 0,491 9,478 0,557 
Cérebro 5,904 0,019 10,862 0,015 17,520 0,021 24,891 0,050 8,734 0,027 21,491 0,046 29,978 0,058 
Glândulas salivares 3,415 0,199 6,316 0,041 10,241 0,079 14,646 0,781 5,356 0,311 13,163 0,487 18,377 1,018 
Pele 2,444 0,007 4,438 0,004 7,137 0,005 10,144 0,017 3,660 0,010 8,824 0,016 12,285 0,020 
Olhos 2,944 0,111 5,492 0,030 8,990 0,128 12,924 0,726 5,390 0,220 13,080 0,558 18,268 1,089 
Dose efetiva 2,629 0,046 4,938 0,072 8,041 0,247 11,488 0,165 3,895 0,063 9,821 0,155 13,831 0,212 

* Adrenais, região extratorácica, vesícula biliar, coração, rins, nódulos linfáticos, músculos, mucosa oral, pâncreas, ovários,  
intestino delgado, baço, timo, útero. 
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7.3 Valores S para os simuladores adultos e pediátricos para seis radionuclídeos  
 
 

Tabela 26. Valores S nos órgãos fonte nos simuladores adultos e pediátricos para o 18F (mGy/MBq.s) 

Órgãos  RN 1A F5 M5 F10 M10 Fash_D Fash_P Mash_D Mash_P 

Supra-Renais 6,81E-03 9,91E-03 7,91E-03 7,91E-03 5,77E-03 5,77E-03 3,25E-03 3,25E-03 2,96E-03 2,99E-03 
Cérebro 1,50E-04 6,65E-05 5,52E-05 5,04E-05 5,36E-05 4,75E-05 5,04E-05 5,05E-05 4,57E-05 4,58E-05 
Mamas 3,13E-01 1,15E-01 6,26E-02 2,94E-02 3,91E-02 2,54E-02 1,53E-04 1,54E-04 2,69E-03 2,63E-03 
Intestino grosso 1,83E-03 7,19E-04 3,31E-04 3,31E-04 1,98E-04 1,98E-04 1,21E-04 1,21E-04 1,18E-04 1,18E-04 
Vesícula biliar 2,76E-03 1,04E-03 5,62E-04 5,62E-04 3,65E-04 3,65E-04 8,28E-04 8,32E-04 6,70E-04 6,72E-04 
Intestino delgado 1,09E-03 4,36E-04 2,01E-04 2,01E-04 1,23E-04 1,23E-04 8,15E-05 8,22E-05 7,45E-05 7,51E-05 
Estômago 2,46E-04 1,27E-04 8,07E-05 8,07E-05 5,71E-05 5,71E-05 3,65E-05 3,60E-05 3,40E-05 3,38E-05 
Coração 2,04E-03 8,61E-04 4,98E-04 4,98E-04 3,12E-04 3,12E-04 1,93E-04 1,92E-04 1,64E-04 1,64E-04 
Rins 1,75E-03 6,64E-04 4,46E-04 4,46E-04 2,83E-04 2,83E-04 1,86E-04 1,86E-04 1,68E-04 1,67E-04 
Fígado 3,92E-04 1,68E-04 1,03E-04 1,03E-04 7,38E-05 7,38E-05 4,62E-05 4,59E-05 3,73E-05 3,71E-05 
Pulmões 6,67E-04 2,79E-04 1,50E-04 1,50E-04 9,23E-05 9,23E-05 4,90E-05 4,90E-05 3,96E-05 3,95E-05 
Músculos 5,92E-05 2,62E-05 1,03E-05 1,03E-05 5,64E-06 5,64E-06 3,67E-06 3,71E-06 2,40E-06 2,39E-06 
Ovários/Testítulos 1,18E-01 4,63E-02 1,96E-02 2,30E-02 1,15E-02 1,96E-02 3,84E-03 3,84E-03 1,30E-03 1,30E-03 
Pâncreas 6,95E-03 2,23E-03 1,32E-03 1,32E-03 7,95E-04 7,95E-04 4,12E-04 4,13E-04 3,58E-04 3,59E-04 
Medula* 1,57E-05 5,14E-06 2,23E-06 2,23E-06 1,44E-06 1,43E-06 1,40E-05 1,40E-05 8,78E-06 8,75E-06 
Sup. ósseas 1,96E-04 6,20E-05 2,69E-05 2,69E-05 1,58E-05 1,58E-05 1,37E-05 1,37E-05 1,04E-05 1,04E-05 
Pele 1,81E-04 9,00E-05 5,49E-05 5,49E-05 3,78E-05 3,78E-05 1,59E-05 1,59E-05 1,14E-05 1,14E-05 
Baço 4,50E-03 1,58E-03 9,61E-04 9,61E-04 6,19E-04 6,19E-04 3,93E-04 3,92E-04 3,46E-04 3,44E-04 
Timo 3,31E-03 1,50E-03 1,40E-03 1,40E-03 1,22E-03 1,08E-03 2,11E-03 2,10E-03 1,70E-03 1,70E-03 
Tireóide 2,86E-02 2,12E-02 1,17E-02 1,17E-02 5,23E-03 5,23E-03 2,50E-03 2,49E-03 2,14E-03 2,14E-03 
Bexiga** 9,17E-04 3,44E-04 1,58E-04 1,58E-04 9,85E-05 9,86E-05 1,49E-04 1,48E-04 7,37E-05 7,44E-05 
Útero/Próstata 4,79E-02 3,88E-02 1,36E-02 3,15E-02 1,04E-02 2,39E-02 6,08E-04 6,07E-04 2,63E-03 2,62E-03 
Corpo inteiro 1,89E-05 7,47E-06 4,01E-06 4,17E-06 2,48E-06 2,53E-06 1,64E-06 1,51E-06 1,44E-06 1,45E-06 

* Valores determinados em frações dos ossos esponjosos do esqueleto-RBM 
** Conteúdo da bexiga como órgão fonte 
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Tabela 2718. Valores S nos órgãos fonte nos simuladores adultos e pediátricos para o 11C (mGy/MBq.s) 

Órgãos RN 1A F5 M5 F10 M10 Fash_D Fash_P Mash_D Mash_P 

Supra-Renais 9,73E-03 1,41E-02 1,12E-02 1,15E-02 8,23E-03 8,23E-03 4,65E-03 4,67E-03 4,22E-03 4,27E-03 
Cérebro 2,05E-04 8,88E-05 7,33E-05 6,62E-05 7,11E-05 6,28E-05 6,66E-05 6,68E-05 6,03E-05 6,04E-05 
Mamas 3,93E-01 1,43E-01 7,97E-02 2,54E-02 5,03E-02 2,12E-02 2,12E-04 2,14E-04 3,80E-03 3,68E-03 
Intestino grosso 2,26E-03 9,56E-04 4,54E-04 4,83E-04 2,75E-04 2,75E-04 1,68E-04 1,69E-04 1,64E-04 1,65E-04 
Vesícula biliar 5,47E-03 1,99E-03 1,02E-03 1,08E-03 6,39E-04 6,39E-04 1,05E-03 1,06E-03 8,56E-04 8,60E-04 
Intestino delgado 1,34E-03 5,61E-04 2,73E-04 2,83E-04 1,68E-04 1,68E-04 1,10E-04 1,11E-04 1,01E-04 1,02E-04 
Estômago 4,15E-04 1,95E-04 1,11E-04 1,25E-04 7,34E-05 7,34E-05 4,40E-05 4,36E-05 4,11E-05 4,06E-05 
Coração 2,85E-03 1,21E-03 6,92E-04 7,14E-04 4,34E-04 4,34E-04 2,68E-04 2,67E-04 2,28E-04 2,27E-04 
Rins 2,52E-03 9,49E-04 6,33E-04 6,52E-04 3,99E-04 3,99E-04 2,61E-04 2,61E-04 2,34E-04 2,33E-04 
Fígado 5,50E-04 2,31E-04 1,40E-04 1,45E-04 9,95E-05 9,95E-05 6,12E-05 6,09E-05 4,90E-05 4,89E-05 
Pulmões 9,49E-04 4,00E-04 2,15E-04 2,20E-04 1,32E-04 1,32E-04 6,96E-05 6,96E-05 5,61E-05 5,60E-05 
Músculos 8,19E-05 3,60E-05 1,38E-05 1,47E-05 7,46E-06 7,46E-06 4,83E-06 4,87E-06 3,11E-06 3,10E-06 
Ovários/Testítulos 1,59E-01 6,49E-02 2,79E-02 3,42E-02 1,64E-02 2,79E-02 5,52E-03 5,52E-03 1,86E-03 1,86E-03 
Pâncreas 9,99E-03 3,20E-03 1,89E-03 1,94E-03 1,13E-03 1,13E-03 5,80E-04 5,81E-04 5,02E-04 5,03E-04 
Medula* 2,30E-05 7,41E-06 3,19E-06 3,33E-06 2,04E-06 2,03E-06 1,97E-05 1,97E-05 1,23E-05 1,22E-05 
Superfícies. ósseas 2,58E-04 8,26E-05 3,59E-05 3,72E-05 2,12E-05 2,12E-05 1,87E-05 1,87E-05 1,42E-05 1,43E-05 
Pele 2,24E-04 1,10E-04 6,74E-05 6,70E-05 4,64E-05 4,63E-05 2,11E-05 2,11E-05 1,53E-05 1,53E-05 
Baço 6,47E-03 2,26E-03 1,37E-03 1,40E-03 8,76E-04 8,76E-04 5,51E-04 5,49E-04 4,82E-04 4,81E-04 
Timo 4,74E-03 2,14E-03 1,99E-03 2,03E-03 1,74E-03 1,53E-03 3,00E-03 2,98E-03 2,41E-03 2,41E-03 
Tireóide 3,96E-02 2,97E-02 1,66E-02 1,74E-02 7,48E-03 7,48E-03 3,56E-03 3,55E-03 3,06E-03 3,05E-03 
Bexiga** 1,70E-03 5,76E-04 2,52E-04 2,30E-04 1,48E-04 1,48E-04 2,04E-04 2,01E-04 9,64E-05 9,89E-05 
Útero/Próstata 6,73E-02 5,49E-02 1,95E-02 4,94E-02 1,49E-02 3,35E-02 8,57E-04 8,56E-04 3,77E-03 3,77E-03 
Corpo inteiro 2,49E-05 9,56E-06 5,06E-06 5,23E-06 3,10E-06 3,16E-06 1,85E-06 1,84E-06 1,75E-06 1,76E-06 

* Valores determinados em frações dos ossos esponjosos do esqueleto-RBM 
** Conteúdo da bexiga como órgão fonte 
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Tabela 28. Valores S nos órgãos fonte nos simuladores adultos e pediátricos para o 13N (mGy/MBq.s) 

Órgãos RN 1A F5 M5 F10 M10 Fash_D Fash_P Mash_D Mash_P 

Supra-Renais 1,18E-02 1,71E-02 1,36E-02 1,36E-02 9,99E-03 9,99E-03 5,67E-03 5,71E-03 5,12E-03 5,21E-03 
Cérebro 2,48E-04 1,06E-04 8,73E-05 7,94E-05 8,47E-05 7,47E-05 7,92E-05 7,94E-05 7,16E-05 7,17E-05 
Mamas 4,30E-01 1,57E-01 8,86E-02 2,23E-02 5,64E-02 1,93E-02 2,55E-04 2,58E-04 4,58E-03 4,41E-03 
Intestino grosso 2,48E-03 1,10E-03 5,37E-04 5,37E-04 3,29E-04 3,29E-04 2,01E-04 2,03E-04 1,97E-04 1,98E-04 
Vesícula biliar 7,76E-03 2,82E-03 1,42E-03 1,42E-03 8,84E-04 8,84E-04 1,16E-03 1,17E-03 9,50E-04 9,57E-04 
Intestino delgado 1,49E-03 6,36E-04 3,22E-04 3,22E-04 1,99E-04 1,99E-04 1,31E-04 1,32E-04 1,19E-04 1,21E-04 
Estômago 5,67E-04 2,63E-04 1,44E-04 1,44E-04 9,07E-05 9,07E-05 5,19E-05 5,17E-05 4,85E-05 4,81E-05 
Coração 3,42E-03 1,45E-03 8,28E-04 8,28E-04 5,21E-04 5,21E-04 3,23E-04 3,22E-04 2,75E-04 2,75E-04 
Rins 3,09E-03 1,16E-03 7,76E-04 7,76E-04 4,87E-04 4,87E-04 3,18E-04 3,18E-04 2,85E-04 2,84E-04 
Fígado 6,70E-04 2,79E-04 1,69E-04 1,69E-04 1,19E-04 1,19E-04 7,29E-05 7,26E-05 5,81E-05 5,80E-05 
Pulmões 1,15E-03 4,87E-04 2,63E-04 2,63E-04 1,61E-04 1,61E-04 8,51E-05 8,51E-05 6,85E-05 6,84E-05 
Músculos 9,86E-05 4,33E-05 1,65E-05 1,65E-05 8,86E-06 8,85E-06 5,72E-06 5,75E-06 3,65E-06 3,64E-06 
Ovários/Testítulos 1,84E-01 7,71E-02 3,37E-02 3,92E-02 2,00E-02 3,36E-02 6,75E-03 6,75E-03 2,27E-03 2,27E-03 
Pâncreas 1,22E-02 3,93E-03 2,31E-03 2,31E-03 1,39E-03 1,39E-03 7,08E-04 7,09E-04 6,13E-04 6,14E-04 
Medula* 2,87E-05 9,19E-06 3,94E-06 3,94E-06 2,50E-06 2,49E-06 2,41E-05 2,41E-05 1,50E-05 1,49E-05 
Sup. ósseas 2,94E-04 9,56E-05 4,16E-05 4,16E-05 2,48E-05 2,48E-05 2,21E-05 2,21E-05 1,68E-05 1,69E-05 
Pele 2,46E-04 1,20E-04 7,33E-05 7,33E-05 5,04E-05 5,03E-05 2,41E-05 2,41E-05 1,76E-05 1,77E-05 
Baço 7,94E-03 2,77E-03 1,68E-03 1,68E-03 1,07E-03 1,07E-03 6,71E-04 6,69E-04 5,87E-04 5,85E-04 
Timo 5,80E-03 2,63E-03 2,42E-03 2,42E-03 2,12E-03 1,88E-03 3,64E-03 3,61E-03 2,92E-03 2,93E-03 
Tireóide 4,66E-02 3,54E-02 2,01E-02 2,01E-02 9,11E-03 9,11E-03 4,34E-03 4,32E-03 3,72E-03 3,72E-03 
Bexiga** 2,48E-03 8,13E-04 3,41E-04 3,41E-04 1,96E-04 1,97E-04 2,61E-04 2,58E-04 1,21E-04 1,25E-04 
Útero/Próstata 8,04E-02 6,59E-02 2,38E-02 5,27E-02 1,83E-02 4,01E-02 1,05E-03 1,04E-03 4,62E-03 4,62E-03 
Corpo inteiro 2,96E-05 1,12E-05 5,88E-06 6,15E-06 3,59E-06 3,66E-06 2,11E-06 2,10E-06 1,98E-06 2,00E-06 

* Valores determinados em frações dos ossos esponjosos do esqueleto-RBM 
** Conteúdo da bexiga como órgão fonte 
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Tabela 29. Valores S nos órgãos fonte nos simuladores adultos e pediátricos para o 15O (mGy/MBq.s) 

Órgãos RN 1A F5 M5 F10 M10 Fash_D Fash_P Mash_D Mash_P 

Supra-Renais 1,60E-02 2,28E-02 1,81E-02 1,81E-02 1,34E-02 1,34E-02 7,79E-03 7,87E-03 6,96E-03 7,13E-03 
Cérebro 3,43E-04 1,45E-04 1,19E-04 1,08E-04 1,15E-04 1,02E-04 1,08E-04 1,08E-04 9,71E-05 9,73E-05 
Mamas 4,63E-01 1,74E-01 1,01E-01 1,89E-02 6,51E-02 1,64E-02 3,44E-04 3,49E-04 6,10E-03 5,80E-03 
Intestino grosso 2,82E-03 1,33E-03 6,89E-04 6,89E-04 4,31E-04 4,31E-04 2,67E-04 2,69E-04 2,62E-04 2,64E-04 
Vesícula biliar 1,28E-02 4,75E-03 2,37E-03 2,37E-03 1,47E-03 1,47E-03 1,31E-03 1,33E-03 1,08E-03 1,10E-03 
Intestino delgado 1,74E-03 7,68E-04 4,15E-04 4,15E-04 2,59E-04 2,59E-04 1,72E-04 1,75E-04 1,56E-04 1,59E-04 
Estômago 9,36E-04 4,45E-04 2,44E-04 2,44E-04 1,46E-04 1,45E-04 7,63E-05 7,66E-05 7,15E-05 7,10E-05 
Coração 4,51E-03 1,95E-03 1,10E-03 1,10E-03 6,95E-04 6,95E-04 4,40E-04 4,38E-04 3,76E-04 3,75E-04 
Rins 4,30E-03 1,63E-03 1,09E-03 1,09E-03 6,83E-04 6,83E-04 4,44E-04 4,44E-04 3,97E-04 3,96E-04 
Fígado 9,37E-04 3,88E-04 2,34E-04 2,34E-04 1,64E-04 1,64E-04 9,91E-05 9,88E-05 7,87E-05 7,85E-05 
Pulmões 1,53E-03 6,64E-04 3,62E-04 3,62E-04 2,24E-04 2,24E-04 1,18E-04 1,19E-04 9,55E-05 9,53E-05 
Músculos 1,33E-04 5,87E-05 2,23E-05 2,23E-05 1,19E-05 1,19E-05 7,68E-06 7,71E-06 4,86E-06 4,85E-06 
Ovários/Testítulos 2,18E-01 9,78E-02 4,46E-02 5,13E-02 2,70E-02 4,42E-02 9,32E-03 9,32E-03 3,17E-03 3,17E-03 
Pâncreas 1,68E-02 5,50E-03 3,23E-03 3,23E-03 1,94E-03 1,94E-03 9,89E-04 9,91E-04 8,56E-04 8,58E-04 
Medula* 4,14E-05 1,32E-05 5,56E-06 5,56E-06 3,53E-06 3,51E-06 3,41E-05 3,41E-05 2,11E-05 2,10E-05 
Sup. ósseas 3,49E-04 1,18E-04 5,17E-05 5,17E-05 3,12E-05 3,12E-05 2,83E-05 2,84E-05 2,18E-05 2,19E-05 
Pele 2,75E-04 1,33E-04 8,11E-05 8,10E-05 5,54E-05 5,54E-05 2,86E-05 2,88E-05 2,13E-05 2,15E-05 
Baço 1,10E-02 3,88E-03 2,35E-03 2,35E-03 1,50E-03 1,50E-03 9,38E-04 9,35E-04 8,20E-04 8,18E-04 
Timo 8,00E-03 3,65E-03 3,33E-03 3,33E-03 2,93E-03 2,60E-03 4,95E-03 4,90E-03 3,98E-03 3,98E-03 
Tireóide 5,86E-02 4,55E-02 2,67E-02 2,67E-02 1,24E-02 1,24E-02 5,93E-03 5,89E-03 5,10E-03 5,09E-03 
Bexiga** 4,58E-03 1,47E-03 5,73E-04 5,73E-04 3,26E-04 3,26E-04 4,38E-04 4,33E-04 1,95E-04 2,03E-04 
Útero/Próstata 1,04E-01 8,60E-02 3,25E-02 6,82E-02 2,50E-02 5,19E-02 1,46E-03 1,46E-03 6,46E-03 6,45E-03 
Corpo inteiro 4,02E-05 1,49E-05 7,75E-06 8,13E-06 4,70E-06 4,79E-06 2,70E-06 2,69E-06 2,53E-06 2,55E-06 

* Valores determinados em frações dos ossos esponjosos do esqueleto-RBM 
** Conteúdo da bexiga como órgão fonte 
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Tabela 30. Valores S nos órgãos fonte nos simuladores adultos e pediátricos para o 68Ga (mGy/MBq.s) 

Órgãos RN 1A F5 M5 F10 M10 Fash_D Fash_P Mash_D Mash_P 

Supra-Renais 1,75E-02 2,48E-02 1,97E-02 1,97E-02 1,46E-02 1,46E-02 8,56E-03 8,66E-03 7,61E-03 7,82E-03 
Cérebro 3,80E-04 1,60E-04 1,31E-04 1,19E-04 1,27E-04 1,12E-04 1,19E-04 1,19E-04 1,07E-04 1,07E-04 
Mamas 4,70E-01 1,79E-01 1,04E-01 1,77E-02 6,77E-02 1,54E-02 3,76E-04 3,82E-04 6,63E-03 6,28E-03 
Intestino grosso 2,93E-03 1,41E-03 7,41E-04 7,41E-04 4,66E-04 4,66E-04 2,90E-04 2,93E-04 2,85E-04 2,87E-04 
Vesícula biliar 1,47E-02 5,47E-03 2,72E-03 2,72E-03 1,69E-03 1,69E-03 1,35E-03 1,55E-03 1,13E-03 1,14E-03 
Intestino delgado 1,83E-03 8,15E-04 4,47E-04 4,47E-04 2,80E-04 2,80E-04 1,86E-04 1,90E-04 1,70E-04 1,72E-04 
Estômago 1,08E-03 5,19E-04 2,87E-04 2,87E-04 1,70E-04 1,70E-04 8,73E-05 8,78E-05 8,18E-05 8,13E-05 
Coração 4,90E-03 2,13E-03 1,19E-03 1,19E-03 7,56E-04 7,56E-04 4,83E-04 4,81E-04 4,13E-04 4,12E-04 
Rins 4,75E-03 1,80E-03 1,21E-03 1,21E-03 7,57E-04 7,57E-04 4,92E-04 4,92E-04 4,40E-04 4,39E-04 
Fígado 1,04E-03 4,29E-04 2,58E-04 2,58E-04 1,81E-04 1,81E-04 1,09E-04 1,09E-04 8,66E-05 8,64E-05 
Pulmões 1,66E-03 7,27E-04 3,98E-04 3,98E-04 2,47E-04 2,47E-04 1,31E-04 1,31E-04 1,06E-04 1,05E-04 
Músculos 1,46E-04 6,44E-05 2,45E-05 2,44E-05 1,31E-05 1,31E-05 8,42E-06 8,46E-06 5,32E-06 5,31E-06 
Ovários/Testítulos 2,27E-01 1,04E-01 4,82E-02 5,52E-02 2,94E-02 4,77E-02 1,03E-02 1,03E-02 3,50E-03 3,50E-03 
Pâncreas 1,84E-02 6,07E-03 3,58E-03 3,58E-03 2,15E-03 2,15E-03 1,10E-03 1,10E-03 9,48E-04 9,50E-04 
Medula* 4,60E-05 1,47E-05 6,16E-06 6,16E-06 3,91E-06 3,90E-06 3,78E-05 3,79E-05 2,35E-05 2,34E-05 
Sup. ósseas 3,68E-04 1,26E-04 5,52E-05 5,52E-05 3,34E-05 3,34E-05 3,05E-05 3,06E-05 2,36E-05 2,37E-05 
Pele 2,85E-04 1,37E-04 8,35E-05 8,35E-05 5,71E-05 5,70E-05 3,01E-05 3,03E-05 2,25E-05 2,27E-05 
Baço 1,21E-02 4,30E-03 2,60E-03 2,60E-03 1,66E-03 1,66E-03 1,04E-03 1,04E-03 9,09E-04 9,06E-04 
Timo 8,81E-03 4,03E-03 3,66E-03 3,66E-03 3,23E-03 2,87E-03 5,42E-03 5,36E-03 4,35E-03 4,36E-03 
Tireóide 6,25E-02 4,88E-02 2,90E-02 2,90E-02 1,35E-02 1,35E-02 6,50E-03 6,46E-03 5,60E-03 5,59E-03 
Bexiga** 5,41E-03 1,73E-03 6,66E-04 6,66E-04 3,78E-04 3,79E-04 5,17E-04 5,12E-04 2,28E-04 2,37E-04 
Útero/Próstata 1,12E-01 9,26E-02 3,55E-02 7,33E-02 2,75E-02 5,59E-02 1,61E-03 1,61E-03 7,14E-03 7,13E-03 
Corpo inteiro 4,43E-05 1,63E-05 8,48E-06 8,90E-06 5,13E-06 5,23E-06 2,92E-06 2,92E-06 2,74E-06 2,76E-06 

* Valores determinados em frações dos ossos esponjosos do esqueleto-RBM 
** Conteúdo da bexiga como órgão fonte 
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Tabela 31. Valores S nos órgãos fonte nos simuladores adultos e pediátricos para o 82Rb (mGy/MBq.s) 

Órgãos RN 1A F5 M5 F10 M10 Fash_D Fash_P Mash_D Mash_P 

Supra-Renais 2,44E-02 3,29E-02 2,63E-02 2,63E-02 2,01E-02 2,01E-02 1,26E-02 1,28E-02 1,09E-02 1,13E-02 
Cérebro 6,17E-04 2,58E-04 2,11E-04 1,91E-04 2,04E-04 1,80E-04 1,91E-04 1,91E-04 1,72E-04 1,72E-04 
Mamas 4,53E-01 1,84E-01 1,12E-01 1,54E-02 7,46E-02 1,33E-02 5,55E-04 5,66E-04 9,12E-03 8,36E-03 
Intestino grosso 3,38E-03 1,72E-03 9,90E-04 9,90E-04 6,39E-04 6,39E-04 3,99E-04 4,04E-04 3,95E-04 3,98E-04 
Vesícula biliar 2,45E-02 9,79E-03 4,91E-03 4,91E-03 3,13E-03 3,13E-03 1,50E-03 1,55E-03 1,27E-03 1,30E-03 
Intestino delgado 2,37E-03 1,08E-03 6,16E-04 6,16E-04 3,85E-04 3,85E-04 2,65E-04 2,73E-04 2,39E-04 2,44E-04 
Estômago 2,03E-03 1,06E-03 6,50E-04 6,50E-04 3,96E-04 3,96E-04 1,92E-04 1,94E-04 1,80E-04 1,80E-04 
Coração 6,81E-03 3,04E-03 1,67E-03 1,67E-03 1,07E-03 1,07E-03 7,23E-04 7,20E-04 6,24E-04 6,22E-04 
Rins 7,16E-03 2,83E-03 1,92E-03 1,92E-03 1,22E-03 1,22E-03 7,91E-04 7,92E-04 7,10E-04 7,08E-04 
Fígado 1,67E-03 6,93E-04 4,16E-04 4,16E-04 2,92E-04 2,92E-04 1,75E-04 1,75E-04 1,38E-04 1,38E-04 
Pulmões 2,25E-03 1,04E-03 5,93E-04 5,93E-04 3,75E-04 3,75E-04 2,04E-04 2,04E-04 1,66E-04 1,65E-04 
Músculos 2,14E-04 9,67E-05 3,78E-05 3,78E-05 2,02E-05 2,02E-05 1,31E-05 1,31E-05 8,25E-06 8,25E-06 
Ovários/Testítulos 2,37E-01 1,21E-01 6,14E-02 6,87E-02 3,96E-02 6,03E-02 1,51E-02 1,51E-02 5,43E-03 5,42E-03 
Pâncreas 2,65E-02 9,35E-03 5,55E-03 5,55E-03 3,39E-03 3,39E-03 1,74E-03 1,75E-03 1,52E-03 1,52E-03 
Medula* 6,86E-05 2,34E-05 9,50E-06 9,50E-06 6,22E-06 6,20E-06 6,15E-05 6,17E-05 3,83E-05 3,81E-05 
Sup. ósseas 4,38E-04 1,61E-04 7,12E-05 7,12E-05 4,38E-05 4,38E-05 4,05E-05 4,07E-05 3,20E-05 3,23E-05 
Pele 3,15E-04 1,49E-04 9,12E-05 9,11E-05 6,20E-05 6,19E-05 3,52E-05 3,56E-05 2,70E-05 2,73E-05 
Baço 1,80E-02 6,72E-03 4,10E-03 4,10E-03 2,65E-03 2,65E-03 1,67E-03 1,67E-03 1,47E-03 1,46E-03 
Timo 1,30E-02 6,15E-03 5,39E-03 5,39E-03 4,84E-03 4,35E-03 7,74E-03 7,60E-03 6,23E-03 6,25E-03 
Tireóide 7,52E-02 6,01E-02 3,83E-02 3,83E-02 1,91E-02 1,91E-02 9,46E-03 9,32E-03 8,21E-03 8,17E-03 
Bexiga** 1,10E-02 3,66E-03 1,33E-03 1,32E-03 7,61E-04 7,62E-04 1,27E-03 1,26E-03 5,09E-04 5,26E-04 
Útero/Próstata 1,37E-01 1,16E-01 4,97E-02 9,30E-02 3,93E-02 7,13E-02 2,55E-03 2,55E-03 1,10E-02 1,10E-02 
Corpo inteiro 7,17E-05 2,60E-05 1,34E-05 1,41E-05 8,04E-06 8,21E-06 4,47E-06 4,47E-06 4,15E-06 4,20E-06 

* Valores determinados em frações dos ossos esponjosos do esqueleto-RBM 
** Conteúdo da bexiga como órgão fonte 
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7.4 Dose por atividade administrada nos simuladores adultos e pediátricos para 18F-FDG 
 

Tabela 32. Dose por atividade administrada nos simuladores adultos e pediátricos para 18F-FDG (mGy/MBq) 

Órgãos RN 1A F5 M5 Média F10 M10 Média Mash_D Fash_D Média 

Medula 7,13E-02 2,32E-02 1,03E-02 1,04E-02 1,04E-02 6,28E-03 6,34E-03 6,31E-03 1,25E-02 1,87E-02 1,56E-02 
Cólon 1,28E-01 5,19E-02 2,75E-02 2,74E-02 2,74E-02 1,71E-02 1,70E-02 1,70E-02 1,16E-02 1,13E-02 1,15E-02 
Pulmão 2,59E-01 1,10E-01 6,02E-02 6,02E-02 6,02E-02 3,70E-02 3,70E-02 3,70E-02 1,79E-02 2,20E-02 2,00E-02 
Estômago 7,84E-02 3,47E-02 2,18E-02 2,17E-02 2,17E-02 1,44E-02 1,43E-02 1,44E-02 8,48E-03 1,03E-02 9,38E-03 
Mamas 1,23E-01 5,35E-02 4,34E-02 3,98E-02 4,16E-02 4,14E-02 3,71E-02 3,93E-02 3,54E-02 3,92E-02 3,73E-02 
Demais órgãos* 2,33E-01 1,04E-01 4,35E-02 4,33E-02 4,34E-02 2,44E-02 2,44E-02 2,44E-02 1,14E-02 1,64E-02 1,39E-02 
Gônadas 7,01E-01 2,45E-01 1,30E-01 1,10E-01 1,20E-01 8,58E-02 8,92E-02 8,75E-02 1,11E-02 3,46E-02 2,28E-02 
Bexiga 1,20E+00 4,99E-01 2,93E-01 2,92E-01 2,92E-01 1,99E-01 1,99E-01 1,99E-01 1,31E-01 2,22E-01 1,76E-01 
Esôfago 7,84E-02 3,28E-02 2,42E-02 2,39E-02 2,40E-02 1,45E-02 1,45E-02 1,45E-02 1,03E-02 1,32E-02 1,17E-02 
Fígado 2,36E-01 1,03E-01 4,90E-02 4,90E-02 4,90E-02 3,52E-02 3,51E-02 3,52E-02 2,23E-02 2,75E-02 2,49E-02 
Tireóide 1,46E-01 8,72E-02 4,79E-02 4,79E-02 4,79E-02 2,27E-02 2,27E-02 2,27E-02 1,15E-02 1,37E-02 1,26E-02 
Superfície óssea 9,34E-02 3,44E-02 1,56E-02 1,71E-02 1,64E-02 7,83E-03 7,83E-03 7,83E-03 8,19E-03 1,01E-02 9,12E-03 
Cérebro 1,23E-01 5,35E-02 4,34E-02 3,98E-02 4,16E-02 4,14E-02 3,71E-02 3,93E-02 3,54E-02 3,92E-02 3,73E-02 
Glândulas salivares 4,00E-02 1,43E-02 8,46E-03 8,44E-03 8,45E-03 5,26E-03 5,52E-03 5,39E-03 3,53E-03 4,25E-03 3,89E-03 
Pele 3,39E-02 1,44E-02 8,88E-03 8,85E-03 8,86E-03 5,53E-03 1,45E-02 1,00E-02 3,07E-03 3,55E-03 3,31E-03 
Olhos 2,57E-02 8,54E-03 6,03E-03 6,03E-03 6,03E-03 4,92E-03 5,83E-03 5,38E-03 5,22E-03 5,61E-03 5,41E-03 
Dose efetiva 2,32E-01 9,49E-02 5,25E-02 5,04E-02 5,14E-02 3,52E-02 3,50E-02 3,51E-02 1,98E-02 2,77E-02 2,37E-02 

* Adrenais, região extratorácica, vesícula biliar, coração, rins, nódulos linfáticos, músculos, mucosa oral, pâncreas, ovários,  
intestino delgado, baço, timo, útero. 
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7.5 Dose em adultos no PET/CT da GE-Discovery VCT 
 

Tabela 33. Dose para um exame em adulto no PET/CT da GE-Discovery VCT   
(140 mAs e 370 MBq - 18F-FDG) 

 
Órgãos 

MASH 
18F-FDG 

MASH 
CT 

MASH 
PET/CT 

FASH 
18F-FDG 

FASH 
CT 

FASH 
PET/CT 

Medula 3,03 0,06 3,10 3,72 0,08 3,80 
Cólon 4,30 1,73 6,03 4,19 1,81 5,99 
Pulmão 6,64 2,20 8,84 8,16 2,01 10,17 
Estômago 3,14 1,48 4,62 3,81 1,61 5,41 
Mamas 13,11 2,05 15,15 14,51 1,75 16,26 
Demais órgãos* 4,21 0,11 4,32 6,07 0,13 6,20 
Gônadas 4,09 2,13 6,22 12,80 1,49 14,29 
Bexiga 48,56 1,44 50,00 82,02 1,61 83,63 
Esôfago 3,80 1,85 5,65 4,87 1,92 6,79 
Fígado 8,26 1,31 9,56 10,18 1,50 11,69 
Tireóide 4,26 2,48 6,73 5,06 4,38 9,44 
Superfície óssea 3,03 0,22 3,25 3,72 0,19 3,91 
Cérebro 13,11 1,86 14,96 14,51 1,13 15,64 
Glândulas salivares 1,31 1,47 2,78 1,57 2,13 3,70 
Pele 1,14 1,13 2,27 1,31 1,42 2,73 
Olhos 1,93 1,86 3,79 2,07 1,09 3,17 
Dose efetiva 7,32 1,42 8,73 10,26 1,43 11,69 

* Adrenais, região extratorácica, vesícula biliar, coração, rins, nódulos linfáticos, músculos, 
mucosa oral, pâncreas, ovários, intestino delgado, baço, timo, útero. 
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7.6 Dose em adultos no PET/CT da SIEMENS Biograph 16 true point 
 

Tabela 34. Dose para um exame em adulto no PET/CT da SIEMENS Biograph 16 
(120mAs e 370 MBq - 18F-FDG) 

 
Órgãos 

MASH 
18F-FDG 

MASH 
CT 

MASH 
PET/CT 

FASH 
18F-FDG 

FASH 
CT 

FASH 
PET/CT 

Medula 3,03 0,17 3,20 3,72 0,23 3,94 
Cólon 4,30 3,66 7,96 4,19 3,71 7,89 
Pulmão 6,64 3,90 10,54 8,16 4,45 12,61 
Estômago 3,14 3,85 6,99 3,81 4,04 7,84 
Mamas 13,11 3,21 16,32 14,51 3,34 17,85 
Demais órgãos* 4,21 0,21 4,43 6,07 0,26 6,34 
Gônadas 4,09 5,23 9,32 12,80 3,14 15,94 
Bexiga 48,56 3,41 51,97 82,02 3,69 85,71 
Esôfago 3,80 3,85 7,65 4,87 4,30 9,17 
Fígado 8,26 3,91 12,17 10,18 4,19 14,37 
Tireóide 4,26 6,69 10,95 5,06 7,49 12,55 
Superfície óssea 3,03 0,45 3,48 3,72 0,49 4,20 
Cérebro 13,11 4,44 17,54 14,51 4,53 19,04 
Glândulas salivares 1,31 4,88 6,19 1,57 4,65 6,22 
Pele 1,14 2,17 3,31 1,31 2,83 4,14 
Olhos 1,93 4,33 6,26 2,07 4,23 6,30 
Dose efetiva 7,32 3,05 10,37 10,26 3,09 13,34 

* Adrenais, região extratorácica, vesícula biliar, coração, rins, nódulos linfáticos, músculos, 
mucosa oral, pâncreas, ovários, intestino delgado, baço, timo, útero. 

 
 
 


