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RESUMO 

 

 

Amebas de vida livre (AVL), pertencentes ao gênero Acanthamoeba, estão 
amplamente distribuídas na natureza, sendo encontradas em diversos tipos de solo e 
água, no ar, em ar-condicionado e esgotos, entre outros ambientes. Essas amebas 
são capazes de ocasionar graves doenças nos seres humanos, destacando a 
encefalite granulomatosa e a ceratite amebiana. A ceratite amebiana é uma doença 
infecciosa que acomete a córnea e que pode levar a cegueira, apresentando sintomas 
como visão borrada, dor intensa, fotofobia e aumento da pressão ocular. Os usuários 
de lentes de contato são os mais propícios a este tipo de infecção, pois podem 
apresentar microtraumatismos na córnea, o que torna o ambiente favorável a ação 
dessas amebas. Ainda não existe um tratamento eficaz para esta doença e a maioria 
dos medicamentos utilizados sofre resistência por parte do parasito e outros, como os 
corticosteróides, podem apresentar uma melhora inicial, mas em seguida o 
agravamento da doença. As soluções para limpeza das lentes de contato também não 
são tão eficientes em eliminar este parasita, uma vez que a ISO 14729 e a FDA (Food 
and Drug Administration, Estados Unidos), que regulamentam os requisitos 
microbiológicos e os métodos de ensaio para a produção de produtos de higiene para 
lentes de contato, não obrigam que essas soluções sejam testadas contra 
Acanthamoeba, o que torna os usuários de lentes mais propícios a este tipo de 
infecção. Diante disto, o objetivo deste trabalho foi desenvolver e caracterizar 
sistemas microemulsonados, contendo o óleo essencial de Lippia gracilis como fase 
oleosa e analisar sua potencial ação amebicida frente a trofozoítos de Acanthamoeba 
castellanii. As formulações foram preparadas através do uso do diagrama de fase, 
utilizando o Tween 80 e o propilenoglicol como tensoativo e cotensoativo, 
respectivamente, do sistema. A caracterização físico-química das formulações foi 
realizada por meio de análises de microscopia de luz polarizada, reologia, 
espalhamento de luz a baixo ângulo (SAXS), condutividade elétrica, tamanho de 
partícula e índice de polidispersão. Foram realizados ensaios de atividade amebicida 
frente à trofozoítos de A. castellanii da formulação em questão e de todos os seus 
excipientes separados. As amostras obtidas apresentaram-se transparentes e 
termodinamicamente estáveis com tamanho de gotícula e índice de polidispersão 
característicos de microemulsão. As formulações apresentaram-se isotrópicas na 
microscopia de luz polarizada e, através das curvas de SAXS, foi possível observar 
que as formulações apresentaram características de microemulsão bicontínua. Estas 
formulações mostraram baixa condutividade elétrica a qual pode estar associada a 
alta quantidade de tensoativo não iônico. As propriedades reológicas do sistema 
demonstraram que estes possuem comportamento newtoniano característico de 
microemulsão e que a viscosidade aumenta quando diminui a quantidade de óleo e, 
consequentemente, o tamanho da gotícula. Nos ensaios biológicos, os tensoativos 
não apresentaram atividade significativa frente aos trofozoítos e o óleo essencial de L. 
gracilis apresentou uma IC50 de 9,52µg/ml. Quando o teste foi realizado com a 
microemulsão contendo o mesmo óleo, essa IC50 caiu para 2,55 µg/ml e, ao utilizar 
uma formulação com tamanho de gotícula menor, esse valor caiu para 0,65 µg/ml, 
comprovando, assim, a eficácia do nanossistema. 

 
Palavras-chave: Acanthamoeba. Ceratite amebiana. Microemulsão. L. gracilis.   
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ABSTRACT 

 

 

Free-living amoebae (AVL), belonging to the genus Acanthamoeba are widely 
distributed in nature, being found in various types of soil and water, in the air, in air 
conditioning and sewage, and other environments. These amoebae are able to cause 
severe disease in human beings, highlighting the granulomatous amoebic encephalitis 
and keratitis. The amoebic keratitis is an infectious disease that affects the cornea and 
it can lead to blindness, with symptoms such as blurred vision, intense pain, 
photophobia and increased eye pressure. Users of contact lenses are more amenable 
to this type of infection because they may present microtraumatisms in the cornea, 
which makes the environment favorable action of these amoebae. There is no 
effective treatment for this disease and most used drugs suffers resistance from the 
parasite and others such as corticosteroids, they may give an initial improvement, but 
then the worsening of the disease. The solutions for cleaning contact lenses are also 
not efficient in eliminating this parasite, since the ISO 14729 and FDA (Food and Drug 
Administration, USA), which regulate the microbiological requirements and test 
methods for the production of hygiene products for contact lenses do not require that 
such solutions are tested against Acanthamoeba, which makes users more amenable 
to this type of lenses infection. In view of this, the objective of this study was to 
develop a microemulsion with the essential oil of L. gracilis and check its amoebicide 
potential front of trophozoites of Acanthamoeba castellanii. The formulations were 
prepared by using the phase diagram, using Tween 80 and propylene glycol as 
surfactant and co-surfactant of the system. The physico-chemical characterization of 
the formulations was performed by analysis of polarized light microscopy, rheology, 
light low angle scattering (SAXS), electrical conductivity, particle size and 
polydispersity. Amoebicide front activity assays for trophozoite A. castellanii 
formulation in question and all its separate excipients were performed. The obtained 
samples had transparent and thermodynamically stable to droplet size and 
characteristic polydispersity index microemulsion. The formulations presented are 
isotropic in polarized light microscopy and, through SAXS curves, it was observed that 
the formulations showed characteristics bicontinuous microemulsion. These 
formulations showed low electrical conductivity which can be associated with high 
amount of nonionic surfactant. The rheological properties of the system have shown 
that they possess newtonian behavior characteristic of microemulsion and that the 
viscosity increases when the amount of oil decreases and hence the droplet size. In 
bioassays, the surfactants showed no significant activity against the trophozoites and 
the essential oil of L. gracilis showed an IC50 of 9,52μg / ml. When the test was 
conducted with the microemulsion containing the same oil, this IC 50 fell to 2.55 μg / 
ml and using a formulation with smaller droplet tamnho this value fell to 0.65μg/ml, 
thus proving the efficacy of nanossistema.                                                                                        
 
Keywords: Acanthamoeba, amoebic keratitis, microemulsion, L. gracilis. 
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1 INTRODUÇÃO 

 

As amebas de vida livre (AVL) são protozoários unicelulares aeróbicos, 

pertencentes aos gêneros Naegleria, Balamuthia, Sappinia e Acanthamoeba, sendo 

este último responsável por patologias em humanos e animais como encefalites, 

ceratites, infecções na pele, pulmonares e generalizadas (MARCIANO-CABRAL & 

CABRAL, 2003; SCHUSTER & VISVESVARA, 2004b; KARUSKI, 2014). As 

Acanthamoebas são protozoários ubiquitários e anfizóicos, que podem viver 

livremente na natureza e agir como patógenos oportunistas. Apresentam-se como 

trofozoítos, forma ativa que se alimenta de bactérias, algas e leveduras, e como 

cistos, forma de resistência que são encontrados no solo, na poeira, na água ou nos 

alimentos (VISVESVARA; MOURA; SCHUSTER, 2007; SIDDIQUI & KHAN, 2012a; 

SIDDIQUI & KHAN, 2012b). 

As principais doenças ocasionadas pelas AVL do gênero Acanthamoeba são 

a encefalite amebiana granulomatosa, uma infecção cerebral, e a ceratite amebiana, 

uma infecção da superfície ocular que pode resultar em dor intensa e ulceração da 

córnea (KHAN & SIDDIQUI, 2009; CASTRILLÓN & OROZCO, 2013). A ceratite 

causada por Acanthamoeba geralmente está relacionada ao uso de lentes de 

contato, principalmente em usuários que fazem uso inadequado da solução 

multiúso, naqueles que têm falta de cuidados com a higienização dos estojos de 

armazenamento das lentes, que usam as lentes por períodos maiores que o 

recomendado, que não fazem acompanhamento médico, que usam solução salina 

feita em casa ou contaminada e, por fim, naqueles que nadam em piscinas, rios ou 

mares usando as lentes de contato (OBEID et al, 2003; FORISTER et al, 2009). 

A ceratite amebiana é uma doença crônica, bastante dolorosa, que atinge a 

visão de indivíduos saudáveis ou imunocomprometidos. Essa infecção pode ser 

caracterizada pela presença de ulcerações, inflamações, vermelhidão, irritação, 

lacrimejamento, edema na pálpebra, fotofobia e, em alguns casos, perda da visão 

(VISVESVARA & STHER-GREEN, 1990; RUTHES et al, 2004). É uma infecção de 

difícil diagnóstico, pois pode ser confundida com infecções fúngicas ou bacterianas e 

de difícil controle, pelo fato das amebas apresentarem resistência aos tratamentos 

existentes (BARROS, 2007; LORENZO-MORALES et al, 2013). 

Os estojos das lentes, geralmente, são a fonte primária de contaminação e, 

uma vez que as lentes de contato desses estojos se contaminam, os micro-
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organismos se proliferam, evoluindo para a formação de biofilmes causadores de 

várias patogenias (HENRIQUES et al, 2015). 

Há um dado relevante a respeito das soluções multiúso para lavagem de 

lentes de contato que pode contribuir para as infecções relacionadas à 

Acanthamoeba: segundo a ISO 14729 e a FDA (Food and Drug Administration, 

Estados Unidos), que regulamentam os requisitos microbiológicos e os métodos de 

ensaio para a produção de produtos de higiene para lentes de contato, não são 

necessários que essas soluções sejam testadas contra Acanthamoeba, o que torna 

os usuários de lentes vulneráveis a este tipo de infecção. Confirmando esse fato, 

Mohammadinia et al (2012) avaliaram a eficácia da solução multiúso de 

poliquaternário-1 e verificaram que esta tinha atividade limitada contra 

Acanthamoeba. 

Tem-se buscado novas substâncias e sistemas terapêuticos que inibam a 

formação dos cistos ou que sejam eficazes na eliminação dos trofozoítos, uma vez 

que pacientes têm apresentado reincidência da doença, devido à resistência a 

alguns fármacos utilizados e, além disso, observa-se também a ocorrência de efeitos 

colaterais aos fármacos utilizados nos esquemas terapêuticos (OHNISHI et al, 

2014).  

Existem alguns óleos essenciais (OE) que têm se mostrado eficazes frente 

aos trofozoítos de Acanthamoeba, como o trabalho realizado por Santos et al (2016), 

no qual comprovaram a ação amebicida dos óleos extraídos das plantas L. gracilis, 

L. alba, L. sidoides e L. pedunculosa. Essas espécies pertencem ao gênero 

verbanaceae e estão presentes em solos arenosos, em regiões tropicais e 

subtropicais (ATTI-SERAFINI et al, 2002; MELO et al, 2014). Das espécies acima 

citadas, a L. gracilis foi a que apresentou maior atividade, com uma IC50 de 

10,03µg/ml. Seu óleo é extraído das folhas e flores e há trabalhos que comprovaram 

sua atividade anti-inflamatória, antibacteriana, inseticida, analgésica, antioxidante, 

larvicida e leishmanicida (SILVA et al, 2008; MENDES et al, 2010; BARBOSA et al, 

2010; GUILHON et al, 2011; MELO et al, 2013; DIAS et al, 2015). 

Baseado no trabalho de Santos et al (2016) e com o objetivo de melhorar o 

desempenho das atividades dos óleos essenciais frente às AVL do gênero 

Acanthamoeba, pode-se utilizar a nanotecnologia farmacêutica como aliada. Esta 

tem sido utilizada como estratégia para estabelecer terapias mais eficientes, que 

possibilitem administrar os fármacos com mais segurança, minimizar os efeitos 
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colaterais e, no caso dos óleos essenciais, poder reduzir bastante sua instabilidade, 

volatilidade e hidrofobicidade (GRILL et al, 2009; VENUGOPAL et al, 2009). Na 

perspectiva da nanotecnologia, os sistemas microemulsionados surgem como uma 

excelente possibilidade de aperfeiçoar o efeito de fármacos e diminuir os efeitos 

indesejados no tratamento de doenças (SILVA et al, 2015). 

As microemulsões são sistemas transparentes, de baixa viscosidade, que 

contém óleo e água estabilizados por tensoativos. São mais estáveis que as 

emulsões, possuem baixa viscosidade e um tamanho de gotícula muito pequeno, na 

ordem de nanômetros, o que facilita sua penetração ou permeação. Estes sistemas 

apresentam o potencial de carrear fármacos hidrofílicos e/ou hidrofóbicos, uma vez 

que são, por definição, sistemas dispersos, do tipo água/óleo, bicontínuos ou 

óleo/água. São capazes de compartimentalizar a substância ativa e otimizar o efeito, 

em função de um alto potencial de dispersão em diminutas gotículas (nanométricas) 

(EI-MAGHRABY et al, 2008; JAWORSKA et al, 2015). Diante dessas características 

do sistema, sugere-se que o mesmo seja adequado para veicular substâncias 

hidrofóbicas, assim como o óleo essencial de L. gracilis. 

Partindo desse princípio e pelo fato de, até o presente momento, não existir 

na literatura trabalhos envolvendo microemulsão para avaliação da atividade 

amebicida, este trabalho teve como objetivo desenvolver e caracterizar sistemas 

microemulsionados contendo óleo essencial de L. gracilis, como fase oleosa, e 

analisar sua potencial ação amebicida frente à trofozoítos de Acanthamoeba 

castellanii.  
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2 REFERENCIAL TEÓRICO 

 

2.1 AMEBAS DE VIDA LIVRE (AVL) 

 
As amebas de vida livre (AVL) são protozoários oportunistas amplamente 

distribuídos na natureza e anfizóicos, com capacidade de viverem livremente no 

ambiente (BONILLA-LEMUS et al, 2014). As AVL são constituídas pelos gêneros 

Acanthamoeba, Naegleria, Balamuthia e Sappinia, sendo que Acanthamoeba é o 

gênero mais estudado, responsável por diversas patologias em humanos e animais 

(MARCIANO-CABRAL & CABRAL, 2003; SCHUSTER & VISVESVARA, 2004b; 

QVARNSTROM, NERAD & VISVESVARA, 2013). Dentre esse gênero, cerca de 24 

espécies foram identificadas e associadas às doenças em humanos, incluindo A. 

castellanii, A. polyphaga, A. astronyxis, A. hatchetti, A. culbertsoni, A. healyi e A. 

byers (QVARNSTROM, NERAD & VISVESVARA, 2013; CAUMO et al, 2014). 

As AVL do gênero Acanthamoeba podem ser encontradas no solo, poeira, ar, 

água do mar, água potável, piscinas, água de esgoto, soluções para lavagem ocular, 

lentes de contato, unidades de diálise, unidades de tratamento dental e unidades 

hospitalares (TRABELSI et al, 2012; CORSARO et al, 2010). Além disto, elas podem 

tolerar uma vasta gama de condições físicas e químicas, como mudanças de 

temperatura, salinidade e condições de pH, permitindo-lhes sobreviver em água 

destilada, cultura de tecidos e fluidos corporais de mamíferos, podendo causar 

infecções no corpo humano (VISVESVARA & MAGUIRE, 2006). 

Durante seu ciclo de vida, as Acanthamoebas, apresentam duas formas bem 

definidas: o cisto e o trofozoíto. Os trofozoítos funcionam como reservatórios para 

micro-organismos patógenos, resistentes à fagocitose por amebas, ajudando a 

dispersar esses agentes patogênicos aos humanos. Já os cistos são uma forma 

bastante resistente a variações físicas e químicas, como mudança de temperatura e 

alterações de pH (MARCIANO-CABRAL & CABRAL, 2003; KHAN, 2006). 

Quando os cistos entram em contato com o homem, através do trato 

respiratório, de lesões na pele, das mucosas ou de microtraumatismos na córnea, 

ocorre o desencistamento e se transformam em trofozoítos ativos, os quais podem 

se disseminar por via sanguínea, podendo causar várias doenças, principalmente 

em indivíduos imunocomprometidos (MARCIANO-CABRAL & CABRAL, 2003; 

KHAN, 2006).  
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O cisto possui uma parede interna (endocisto) e uma externa (ectocisto), 

compostas principalmente por proteínas e carboidratos, possuem poros 

denominados opérculos, pontos por onde a ameba sai quando ocorre o 

desencistamento entre as junções das duas paredes. O endocisto é formado, 

principalmente, por celulose, podendo apresentar a forma estrelada, poligonal ou 

arredondada. O ectocisto possui uma forma mais esférica e é composta por 

proteínas e polissacarídeos (ABEDKHOJASTEH et al, 2015; KHAN, 2006; 

SCHUSTER & VISVESVARA, 2004b). 

Os trofozoítos possuem pseudópodes finos e filamentosos, citoplasma 

vacuolizado, com um vacúolo contrátil destacado. Esta é a forma metabolicamente 

ativa das amebas, que se alimentam de bactérias, fungos e partículas orgânicas por 

fagocitose, podendo atuar como hospedeiros de bactérias patogênicas (SAUTER, 

2011; NEVES et al, 2011). É com essa forma que elas se reproduzem por divisão 

celular assexuada, conhecida como fissão binária (KHAN, 2006). Em contato com os 

seres humanos, esse gênero pode causar várias patologias, dentre as principais: 

ceratite amebiana – uma infecção ocular, e a encefalite amebiana granulomatosa 

(EAG) – uma infecção cerebral (SCHUSTER & VISVESVARA, 2004b; KARUSKI, 

2014). 

 

2.1.1 Doenças causadas pelas Amebas de Vida Livre 

 

2.1.1.1 Encefalite amebiana granulomatosa (EAG) 

 

A encefalite amebiana granulomatosa é uma doença oportunista e fatal que 

ocorre principalmente em indivíduos debilitados, alcoólatras, doentes crônicos, 

pessoas submetidas a tratamento com drogas imunossupressoras e pacientes 

imunocomprometidos. No entanto, já foram descritos casos em indivíduos sem sinais 

de imunodepressão (VISVESVARA; MOURA; SCHUSTER, 2007). Essa doença 

pode ser ocasionada por diferentes espécies de amebas do gênero Acanthamoeba, 

por uma espécie do gênero Balamuthia, a B. mandrillaris e por uma espécie do 

gênero Sapinia, a S. diploidea (MARCIANO-CABRAL & CABRAL, 2003). As amebas 

podem entrar no organismo do ser humano através do trato respiratório inferior ou 

de lesões na pele, se disseminar pelo sangue e atingir o cérebro, através do 
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revestimento endotelial dos capilares cerebrais (MARTINEZ, 1991; TRABELSI et al, 

2012; KRISTENSSON, MASOCHA & BENTIVOGLIO, 2013; BAIG, 2015). 

Quando a infecção já está instalada, os sintomas são semelhantes aos das 

patologias causadas por micro-organismos virais, meningite bacteriana e 

tuberculose. Dores de cabeça, febre, hemiparesia, alterações comportamentais, 

rigidez no pescoço, náuseas, vômitos, paralisia dos nervos cranianos, aumento da 

pressão intracraniana e convulsões são alguns sintomas causados pela EAG, 

podendo ocasionar até a morte do paciente (MARTINEZ & VISVESVARA, 1997; 

KARUSKI, 2014). 

 

Figura 1 – Necrose hemorrágica no tecido cerebral causada por Acanthamoeba 

 

Fonte: MARCIANO-CABRAL & CABRAL (2003). 

 

NA EAG, durante o processo de infecção, ocorre a formação de granulomas 

compostos por amebas, macrófagos, micróglia, células polimorfonucleares, células T 

e células B (KHAN, 2008). O desenvolvimento da doença é tão severo que lesões 

multifocais ou necrose hemorrágica no tecido cerebral é geralmente observada após 

necropsia (Figura 1) (SCHUSTER & VISVESVARA, 2004a). Existe uma grande 

dificuldade em realizar o diagnóstico dessa doença e, por conta disto, a maioria dos 

casos é diagnosticada após a morte. Exames de ressonância magnética, tomografia 

computadorizada e análise do líquido cefalorraquidiano podem ser utilizados para 

identificar as lesões cerebrais (MARTINEZ & VISVESVARA, 1997). 

Os medicamentos para a EAG são administrados por via intravenosa e 

incluem o isotionato de pentamidina, cetoconazol, sulfadiazina, fluconazol, 

anfotericina B, azitromicina, itraconazol ou rifampicina, que raramente levam a um 
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prognóstico de sucesso (SCHUSTER & VISVESVARA, 2004a; KHAN, 2008). 

Portanto, a encefalite amebiana é praticamente fatal por causa da dificuldade e 

atraso no diagnóstico da doença e da falta de antimicrobiano ideal para terapia 

(TRABELSI et al, 2012). 

 

2.1.1.2 Ceratite amebiana 

 

A ceratite por Acanthamoeba é uma doença relativamente rara. Os sintomas 

da doença incluem dor intensa, sensação de ter algo nos olhos, vermelhidão, visão 

desfocada, lacrimejamento, fotofobia e edemas. Geralmente ocorre após pequeno 

trauma da córnea, seguido por colonização da Acanthamoeba, proveniente de lentes 

de contato contaminadas. A característica clínica mais comum da ceratite amebiana 

é a presença de infiltrado estromal em anel (Figura 2 a e b). A Inflamação da córnea 

pode levar a danos oculares e, em casos severos onde pacientes não respondem ao 

tratamento médico e cirúrgico, enucleação dos olhos pode ser necessária 

(NAGYOVÁ; NAGY & TIMKO, 2010). 

O número de casos de infecção na córnea causada por Acanthamoeba tem 

apresentado um aumento significativo nos últimos anos. A razão para esse aumento 

ainda não é muito clara, mas existem evidências que isso se deve, principalmente, 

ao aumento no número de usuários de lente de contato, ao uso equivocado de 

soluções de manutenção para lentes de contato e à melhoria dos diagnósticos 

existentes (PANJWANI, 2010; LORENZO-MORALES et al, 2013; OMAÑA-MOLINA 

et al, 2016). 

Segundo Siddiqui (2012), existiam aproximadamente 120 milhões de usuários 

de lente de contato no mundo, mas o atual número de casos em todo o mundo é 

muito difícil estabelecer. Para Seal (2003), o número estimado de casos de ceratite 

amebiana era de 1,36 casos por milhão de lentes de contato nos EUA e 17 a 21 

casos por milhão na Inglaterra. No Brasil, o primeiro caso de ceratire amebiana foi 

descrito em 2003, através de um relato de caso de uma paciente do sexo feminino, 

de 34 anos, usuária de lente de contato por três anos (OBEID et al, 2003).  

A ceratite por Acanthamoeba se dá quando as amebas entram em contato 

com a córnea microtraumatizada. Essa contaminação pode ocorrer através do 

contato com água e partículas do ar ou do solo que contenham essas amebas 

(LLLINGWORTH, 1998; TRABELSI et al, 2012).  
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Figura 2 – Ceratite amebiana: inflamação da córnea com infiltrado inflamatório 
estromal em forma de anel ocasionado por Acanthamoeba 

 
Fonte: VISVESVARA; MOURA & SCHUSTER (2007). 

 
Ao entrar em contato com a córnea que tenha sofrido algum processo 

traumático, os trofozoítos aderem e penetram no epitélio. Essa adesão se deve à 

presença de proteínas na membrana do trofozoíto que se ligam às glicoproteínas do 

epitélio da córnea. Logo após os trofozoítos invadirem a córnea, ocorrem ulcerações 

e inflamações. Isso ocorre apenas em indivíduos com processos traumáticos na 

córnea, pois, em indivíduos normais, a imunoglobulina A e as proteases presentes 

no fluido lacrimal impedem a aderência da Acanthamoeba (SARAVANAN et al, 

2008; KHAN, 2003). A ceratite amebiana pode apresentar sintomas como visão 

borrada, dor intensa, fotofobia, diminuição da sensibilidade corneana, aumento da 

pressão ocular e sensação de corpo estranho (OBEID et al, 2003). 

Para o tratamento da ceratite amebiana, nenhum agente tópico tem sido 

descrito como eficaz. O tratamento desta infecção geralmente é realizado utilizando 

medicamentos como a propamidina, as biguaninas e a neomicina, todos de uso 

tópico e cetoconazol ou itraconazol por via oral (NEVES et al, 2011). 

Se não houver sucesso com o tratamento medicamentoso, o transplante de 

córnea é indicado como opção terapêutica. Essa intervenção é recomendada 

quando, na fase aguda da infecção, a córnea se torna muito fina ou danificada e a 

visão é limitada (KITZMANN et al, 2009; NGUYEN et al, 2010; LORENZO-

MORALES et al, 2013). Diante disto, pode-se inferir que a ceratite é uma doença de 

tratamento complicado e que ainda não existem métodos ou um único medicamento 

que possa eliminar o parasita (KHAN, 2009; LORENZO-MORALES et al, 2013).  
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2.2 OS ÓLEOS ESSENCIAIS (OE) 

 

Os óleos essenciais extraídos de plantas vêm sendo utilizados por um bom 

tempo para tratamento de enfermidades. São empregados nos cuidados 

terapêuticos da medicina popular e têm servido de base para despertar várias 

pesquisas na busca de novas formas de terapia originária das plantas (SAUTER, 

2011). São produtos do metabolismo secundário das plantas e possuem diversas 

funções, uma delas é a sobrevivência vegetal, exercendo um papel fundamental na 

defesa contra micro-organismos (SIANI et al, 2000). Diante dessa realidade, várias 

investigações científicas comprovam a atividade antimicrobiana e antifúngica dos 

diversos óleos essenciais existentes (ARRUDA et al, 2006; NOGUEIRA; DIAZ; 

SAKUMO, 2007). 

Esses óleos podem ser comercializados em sua forma bruta ou mais 

elaborada e podem ser aplicados na perfumaria, cosmética, alimentos e em 

medicamentos. O Brasil é considerado um país de bastante destaque no que se 

refere à produção de OE, ao lado da Índia, China e Indonésia, que são considerados 

os quatro grandes produtores mundiais (OLIVEIRA & CREMASCO, 2014).  

Os óleos essenciais são definidos como misturas complexas de substâncias 

voláteis, lipofílicas, geralmente odoríferas e líquidas. Possuem o sabor geralmente 

acre (ácido) e picante, são incolores ou ligeiramente amarelados, não são muito 

estáveis, principalmente na presença de ar, luz, calor e umidade (SIMÕES et al, 

1999). São geralmente extraídos de plantas, mediante hidrodestilação, arraste a 

vapor d’água, fluido supercrítico, entre outros métodos. A quantidade e qualidade do 

produto da extração podem variar a depender do clima, composição do solo, órgão 

da planta e técnica de extração (ANGIONI et al, 2006; OLIVEIRA & CREMASCO, 

2014).  

Sua composição química também pode estar relacionada a vários fatores 

inerentes ao desenvolvimento da planta como as condições climáticas, a hora da 

coleta, o tempo de extração, a idade da planta, a genética, o meio ambiente e as 

técnicas de cultura (TAVARES et al, 2005; NOGUEIRA; DIAZ; SAKUMO, 2007). De 

acordo com os fatores acima, pode-se obter um rendimento maior ou menor de óleo 

e a presença ou ausência de certos componentes como compostos majoritários. O 

trabalho realizado por Souza et al (2012) corrobora as afirmações acima, no qual foi 

feito o plantio de três mudas de L. gracilis e as manteve com tratamentos de 
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adubação orgânica diferentes, mas no mesmo local de plantio e mesma quantidade 

de irrigação. Ao final da colheita e após a extração do óleo essencial, foi verificado 

que a produção total de biomassa e o rendimento do óleo essencial responderam 

positivamente ao aumento das doses de adubo aplicadas. 

 

2.2.1 ÓLEO ESSENCIAL DE L. GRACILIS 

 

Das plantas medicinais usadas para fins terapêuticos, uma das espécies de 

grande importância é a da Família Verbenaceae, pertencente à ordem Lamiales. 

Esta família possui trinta e seis gêneros e um deles é o da Lippia (SANTOS et al, 

2009). O gênero Lippia contém cerca de duzentas espécies de plantas e a maioria é 

nativa da América e África, cresce em solos arenosos ao redor dos rios e lagos e em 

regiões tropicais e subtropicais (ATTI-SERAFINI et al, 2002; MELO et al, 2014).  

Existem algumas espécies deste gênero caracterizadas pela presença de 

óleos essenciais com atividades antimicrobianas, como é o caso da L. gracilis 

(Figura 3), conhecida no Brasil como alecrim-de-tabuleiro e nativa da região 

nordeste (ALBUQUERQUE et al, 2006). A L. gracilis é caracterizada por ter arbustos 

ramificados, com caule quebradiço, de até 2m de altura e por possuir folhas 

aromáticas e picantes (LORENZI & MATOS, 2008). 

 

Figura 3 – Aspecto botânico de L. gracilis: folhas e flores. 

 

Fonte: GONZAGA (2008) 
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Na crendice popular, o Alecrim-de-tabuleiro é utilizado para tratar várias 

doenças como gripe, tosse, sinusite, bronquite, congestão nasal, dor de cabeça, 

icterícia e, geralmente, são preparados como uma infusão e administrados por via 

oral. Também é usado como um macerado em álcool para administração tópica para 

o tratamento de feridas e sarna, como um bom antisséptico e em banhos para tratar 

e prevenir infecções do corpo (LORENZI & MATOS, 2008). 

O óleo essencial de L. gracilis é extraído das suas folhas e flores e, 

geralmente, possui atividade anti-inflamatória, antibacteriana, inseticida, analgésica, 

antioxidante, larvicida, antileishmanicida (SILVA et al, 2008; BARBOSA et al, 2010; 

MENDES et al, 2010; GUILHON et al, 2011; MELO et al, 2013; DIAS et al, 2015). 

Essa atividade se justifica pela presença de monoterpenos fenólicos como o 

carvacrol e o timol (ALBUQUERQUE et al, 2006), que podem aparecer como 

componentes majoritários deste óleo essencial, variando numa faixa de 0,7-50,13% 

e 3,83-38,30%, respectivamente, conforme pode ser observado na Tabela 1 

(OLIVEIRA, 2012). 

 

Tabela 1 – Teor de timol e carvacrol encontrado na planta da espécie L. gracilis por 
quatro pesquisas diferentes. 

Composto 

% 

SILVA et al 
(2008) 

MOTTA 
NETO et al 

(2010) 

MENDES et al 
(2010) 

NEVES et al 
(2008) 

Timol 3,83 4,92 32,68 38,30 
Carvacrol 44,43 50,13 7,53 0,70 
γ-Terpineno 9,16 8,08  14,9 
α-Terpineno  1,46 1,76  
p-cimeno  10,73 17,82  
(Z)-b-Ocimeno    3,40 
o-Cimeno 9,42    
b-Cariofileno 8,83 5,96 6,47  
Metil timol Etér 5,85 4,95   
Metil Timol   10,83  
Timol acetato    4,80 
1,8-Cineol 
(Eucaliptol) 

 3,45 3,45  

Mirceno   3,35 0,70 
b-Mirceno 1,67 2,08   
p-Acetilanisol    10,10 
α-Copaeno    3,80 
Biciclogermacreno 2,88    
Total 86,07 91,76 83,89 76,70 

Fonte: OLIVEIRA (2012) 
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Existem alguns estudos que comprovam essa atividade antimicrobiana e anti-

inflamatória da L. gracilis citada anteriormente como, por exemplo, o estudo feito por 

Mendes et al (2010), o qual demonstrou que o óleo essencial de L. gracilis 

apresentou atividade antinociceptiva e anti-inflamatória. Outro estudo, ainda, foi o 

realizado por Pessoa et al (2005), o qual evidenciou que o extrato de folhas frescas 

desta planta apresentou atividade antibacteriana moderada contra Staphylococcus 

aureus e Escherichia coli.  

Segundo as observações de Knowles et al (2005), esta atividade pode estar 

relacionada com a ação do timol e o carvacrol, que podem desintegrar a membrana 

externa de bactérias Gram-negativas, liberando lipopolissacarídeos e, 

consequentemente, gerando alterações na permeabilidade da membrana 

plasmática, o que resulta na morte da célula bacteriana. Ainda, segundo os autores, 

pode existir uma interação entre o carvacrol e o timol, promovendo uma ação 

sinérgica entre eles, potencializando a ação de ambos frente ao controle das células 

bacterianas.  

Por ser uma planta de grande variabilidade de componentes e de intensa 

atividade antimicrobiana, sua atividade amebicida também foi investigada. Conforme 

estudos de Santos et al (2016), sobre a ação amebicida de óleos essenciais do 

gênero Verbenacea, a L. gracilis foi a espécie que apresentou maior atividade sobre 

os trofozoítos da A. polyphaga, em comparação com a L. sidoides, L. alba e L. 

pedunculosa. Apesar do trabalho de Santos et al (2016) ter obtido um excelente 

resultado na atividade amebicida do óleo essencial de L. gracilis, com o auxílio da 

nanotecnologia, esse resultado pode ser otimizado. 

 

2.3 O USO DA NANOTECNOLOGIA E DAS MICROEMULSÕES 

 

Os óleos essenciais possuem algumas peculiaridades que podem interferir na 

sua eficácia, pois possuem uma alta volatilidade, são bastante instáveis 

(fotossensíveis), insolúveis em água, podendo ficar aderido nas membranas 

celulares antes de chegar ao seu local de ação (NASCIMENTO et al, 2007). De 

acordo com Carlucci & Bregni (2009), essas características  podem ser contornadas 

através da nanotecnologia e também está presente em 40% dos fármacos 

candidatos a novos medicamentos, como baixa solubilidade aquosa, baixa 
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capacidade de atravessar barreiras biológicas, baixa biodisponibilidade e baixa 

eficácia terapêutica do fármaco.  

Diante desta problemática é que o uso da nanotecnologia surge com o intuito 

de facilitar a administração de fármacos com algum tipo de limitação 

(EVANGELISTA, 2006). A administração de fármacos pode ser facilitada pela 

utilização de sistemas de liberação nanoestruturados, que possuem a capacidade de 

proteger as moléculas ativas contra degradação em meio fisiológico, liberar 

controladamente a substância ativa no sítio de ação e permitir a administração de 

fármacos hidrofóbicos em sistemas dispersos aquosos. Outras propriedades 

também são significativamente melhoradas como a redução da dose e dos efeitos 

adversos e alterações no processo de absorção, distribuição, metabolismo e 

eliminação de fármacos (CARLUCCI & BREGNI, 2009; BEDIN, 2011). 

A nanotecnologia farmacêutica e o seu emprego na medicina têm tido um 

elevado crescimento e, com o seu desenvolvimento, visa-se à criação de sistemas 

com propriedades e aplicações inovadoras, que estejam na escala nanométrica (10-9 

m = 1 nm) (FERREIRA & RANGEL, 2009). Dentre os exemplos de sistemas de 

liberação nanoestruturados existentes, podem-se citar as nanopartículas 

poliméricas, as nanopartículas lipídicas sólidas, os lipossomas, as microemulsões, 

as micelas e os dendrímeros (DEVALAPALLY, CHAKILAM & AMIJI, 2007). 

As microemulsões são bastante relevantes e surgem como um interessante 

sistema para este trabalho, pois funcionam como um sistema transportador de 

fármacos, que compartimentalizam a substância ativa e as direcionam para os sítios 

onde deverão exercer o efeito farmacológico (OLIVEIRA, 1992; HARWOOD 

ACADEMIC, 1998).  

Por volta dos anos de 1940, foi introduzido o conceito de microemulsão por 

Hoar & Schulman (1943) ao descreverem a produção de uma solução transparente 

e translúcida, a partir da titulação de uma emulsão com hexanol. Mas, apenas no 

final dos anos de 1950, Schulman; Stoeckenius & Prince (1959) estabeleceram o 

conceito de microemulsão que vem sendo definido e redefinido de acordo com os 

avanços tecnológicos (GOMES, 2010). 

As microemulsões (ME) são sistemas, geralmente, constituídos de água, óleo, 

agente tensoativo e, algumas vezes, cotensoativo. Diferentemente das emulsões, as 

microemulsões são sistemas transparentes, de baixa viscosidade, que contêm altas 

concentrações de óleo e água, estabilizados por tensoativo, podendo este ser 
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associado a cotensoativos (WUTTIKUL & BOONME, 2016). Elas são formadas 

espontaneamente quando os componentes são misturados nas concentrações 

adequadas (LEANPOLCHAREANCHAI et al, 2014). Já as emulsões se caracterizam 

por serem dispersões grosseiras bifásicas, turvas ou leitosas, termodinamicamente 

instáveis e que necessitam de uma energia externa para sua formação (TENJARLA, 

1999).  

As microemulsões possuem sua principal aplicação nas indústrias 

farmacêuticas e de cosméticos, têm sido utilizadas com bastante relevância na 

tecnologia farmacêutica e possuem grandes vantagens em relação às emulsões 

(MENDONÇA, 2005): 

 Podem ser preparadas de maneira simples, possuem estabilidade 

termodinâmica e são mais baratas que as emulsões; 

 São sistemas transparentes, podendo ser detectado facilmente 

qualquer precipitado ou heterogeneidade; 

 O efeito estabilizador dos tensoativos melhora a estabilidade dos 

fármacos; 

 Podem ser utilizadas para soluções injetáveis a depender do 

tensoativo compatível; 

 Possuem uma taxa elevada de difusão e penetração na pele e 

mucosas comparada às formulações convencionais. 

Essa elevada taxa de difusão pode ser justificada pelo tamanho das gotículas 

das microemulsões, que é muito reduzido, aproximadamente 100 vezes menos que 

as gotículas da emulsão, o que faz com que o sistema também se torne isotrópico, 

não espalhe a luz, porque possui um diâmetro médio das gotículas menor que ¼ da 

luz incidente (PESTANA, 2009).  

As microemulsões podem ser classificadas em três tipos (Figura 4): óleo em 

água (O/A), água em óleo (A/O) ou bicontínua (CUNHA JÚNIOR et al, 2003; 

NICOLETTI & FRASSON, 2006; SAHOO, PANI & SAHOO, 2014), como segue 

abaixo: 

a) óleo/água: apresentam uma fase aquosa contínua, com gotículas de 

óleo dispersas, as quais estão recobertas pelo tensoativo. Neste caso, 

ocorrem gotículas, cuja cabeça polar do tensoativo é voltada para a 

fase contínua aquosa e a cauda apolar se dirige para o interior 

hidrófobo (GOMES, 2010).  
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b) água/óleo: apresentam gotículas de água recobertas com tensoativos 

dispersas em uma fase oleosa contínua. Neste caso, formam as 

gotículas inversas, em que as moléculas anfifílicas nas membranas são 

orientadas com a parte lipofílica voltada para o óleo e a parte hidrofílica 

voltada para a água (GOMES, 2010).  

c) bicontínuas: neste caso, os componentes hidrofílicos e hidrofóbicos 

formam microemulsão com estrutura bicontínua, com uma rede de 

tubos aquosos em matriz oleosa e uma rede de tubos oleosos em 

matriz aquosa. Esse tipo de microemulsão pode transportar fármacos 

hidrofílicos e hidrofóbicos (GOMES, 2009). 

 

Figura 4 – Representação esquemática dos tipos de microemulsão. 

Fonte: CUNHA JÚNIOR et al (2003). 
Nota: 1- ME óleo em água 2- ME bicontínuas 3- ME água em óleo 

 

Existem vários fatores que podem determinar qual o tipo de microemulsão 

será formada: o tipo de tensoativo, cotensoativo e óleo, a razão de água / óleo, a 

temperatura e a presença de íons na fase aquosa (JONSSON et al, 1998). 

A escolha do tensoativo é muito importante para determinar o tipo de 

microemulsão formada. Por isso, é essencial conhecer as características dos 

tensoativos utilizados, analisando suas propriedades e observando em qual aplicação 

será utilizado. O tensoativo pode ser utilizado puro ou em mistura com outros 

componentes, tendo o objetivo de produzir microemulsões estáveis através da 

diminuição da tensão interfacial. 

Essa redução da tensão interfacial permite a formação de um filme interfacial 

fluido, composto por moléculas de tensoativos. Geralmente, é necessária a adição de 

um cotensoativo para que esse filme se torne mais flexível e alcance valores de 
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tensão inferiores a 1mN/m. Com essa adição de cotensoativo, pode ocorrer um 

aumento na estabilidade e na região de ocorrência de microemulsão (FENG-FENG; 

LI-QIANG & CHEN-HO, 2005; GOMES, 2010).  

 

2.4 TENSOATIVOS 

 

Os tensoativos são substâncias que, quando presentes em um sistema, têm a 

capacidade de adsorver na superfície (interface em que uma fase é gasosa) ou na 

interface (fronteira entre duas fases imiscíveis) e alterar sua energia livre (ROSEN & 

KUNJAPPU, 2012). Eles possuem uma natureza anfifílica, ou seja, possuem uma 

região hidrofóbica, que possui afinidade por solventes apolares e uma região 

hidrofílica, que tem afinidade por solventes polares conforme se observa na Figura 

5. A região hidrofóbica pode ser formada por cadeias hidrocarbônicas saturadas ou 

insaturadas, ou, em poucos casos, anéis aromáticos. A outra região, que é a 

hidrofílica, pode ser aniônica, catiônica, anfótera e não-iônica (ROSSI et al, 2007).  

 

Figura 5 – Esquema ilustrativo de uma molécula de tensoativo 

 

Fonte: Blog da LabNews – Soluções em limpeza de materiais1 

 

                                                 
1 Disponível em: http://www.midiaslabnews.com.br/blog/a-importancia-do-tensoativo-na-formulacao-do-

detergente-enzimatico. Acesso em 30/05/2016. 
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Em decorrência dessas características, os tensoativos possuem uma grande 

importância e podem ser utilizados com bastante versatilidade nos muitos processos 

tecnológicos. Podem desempenhar diferentes funções como: emulsificante, 

lubrificantes, agente farmacêutico, cosméticos, plásticos, inibidores de corrosão, 

entre outras (ROSSI et al, 2006). 

Os tensoativos são classificados de acordo com a região hidrofílica, como 

segue abaixo: 

a) tensoativos iônicos: em solução aquosa, se dissociam, formando íons 

carregados negativamente (tensoativos aniônicos) ou positivamente 

(tensoativos catiônicos);  

b) tensoativos não-iônicos: quando em contato com solução aquosa, não 

fornece íons e a sua solubilidade em água se deve à presença, em 

suas moléculas, de grupamentos funcionais que possuem forte 

afinidade pela água;  

c) tensoativos anfóteros: em condições normais, contêm tanto carga 

aniônica quanto catiônica. 

 

A escolha do tensoativo utilizado pode ser analisada através do Equilíbrio 

hidrófilo-lipófilo (EHL) do mesmo. Griffin, em 1948, determinou o conceito de EHL, no 

qual ele classificou em uma escala de 1 a 50, onde o valor de EHL aumenta conforme 

a hidrofilia da substância. O valor do EHL pode classificar os tensoativos. Aqueles que 

apresentam EHL muito baixo ou menor que 3 são denominados lipofílicos. Os que 

apresentam EHL entre 3 e 9 apresentam propriedades emulsificantes, dando origem a 

microemulsões do tipo A/O. Substâncias com EHL entre 9 e 16 apresentam 

características hidrofílicas, originando emulsões do tipo O/A. Já as que possuem EHL 

acima de 16 apresentam características exacerbadamente hidrofílicas, atuando como 

solubilizantes (PRISTA et al, 1990; BARROS, 2013). 

Os óleos e as substâncias também possuem valores de EHL e, a depender 

da composição e do tipo de emulsão formada, a esses também se podem atribuir um 

valor de EHL. Esse valor é utilizado para orientar na escolha do tensoativo utilizado, 

que deve ter um EHL próximo ao do óleo e, quando utilizado em combinação com 

outros tensoativos possui um EHL resultante desta mistura (ANSEL; POPOVICH & 

ALLEN JÚNIOR, 2000; BARROS, 2013).  
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Um tipo de tensoativo bastante utilizado é o tween 80 (polissorbato 80), 

geralmente empregado na produção farmacêutica, devido ao baixo custo e 

toxicidade reduzida. É um tensoativo não-iônico, proveniente do sorbitano 

polietoxilato e ácido oleico e sua estrutura química está representada na Figura 6. A 

característica hidrofílica da cadeia de polioxietileno faz do tween, tensoativo 

hidrofílico, geralmente solúvel ou dispersivo em água, empregado na obtenção de 

microemulsões do tipo óleo em água (O/A) (WEISZHÁR et al, 2012; BRAUN et al, 

2015). 

 

Figura 6 – Estrutura química do Tween 80 (Polissorbato) 
 

O

OCH2CH2OH
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Fonte: MARTINI (2005). 

 
Na estabilização de sistemas dispersos do tipo microemulsão, também são 

descritos os cotensoativos, responsáveis pela redução adicional da tensão interfacial 

necessária para a formação e estabilidade termodinâmica das microemulsões. Além 

disso, promove fluidificação do filme interfacial formado pelo emulsionante, o que 

impede a elevação significativa da viscosidade do sistema obtido. Os principais 

cotensoativos utilizados no preparo de microemulsões são álcoois e glicois de baixa 

massa molecular, que apresentam uma cadeia carbônica entre dois e dez carbonos 

(CUNHA JÚNIOR et al, 2003, BEDIN, 2011). 

A literatura mostra que a adição de um cotensoativo diminui o tamanho das 

gotículas e amplia as regiões de microemulsões (OLIVEIRA et al, 2004). Dessa 

forma, o tamanho da gotícula é extremamente afetado pela mistura de tensoativo e 

cotensoativo no sistema, havendo tendência à diminuição do tamanho das gotículas 

com o aumento da sua concentração, gerando um sistema opticamente transparente 

ou translúcido. Isso ocorre porque a mistura de tensoativo com um cotensoativo é 

mais eficiente em reduzir a tensão interfacial entre óleo-água, proporcionando a 

redução máxima do tamanho das gotículas da fase interna. Como exemplos desses 
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cotensoativos, descritos na literatura, tem-se o etanol absoluto, álcool isopropílico e 

o propilenoglicol (FORMARIZ et al, 2005; ROSEN & KUNJAPPU, 2012).  

Quando uma molécula com estrutura anfipática é dissolvida num solvente 

aquoso, o grupo hidrofóbico orienta-se de modo a minimizar o contato com as 

moléculas de água. A superfície de água fica coberta por uma camada de 

tensoativo, com os seus grupos hidrofóbicos voltados para o ar. Dessa forma, ocorre 

uma diminuição da tensão superficial da água (ROSEN & KUNJAPPU, 2012). Se a 

concentração do tensoativo em solução for aumentada, as moléculas que estão no 

seio da solução se associam, formando micelas, de forma a diminuir a energia do 

sistema (MYERS, 1999).  

As micelas são agregados moleculares, que possuem regiões estruturais 

hidrofílicas e hidrofóbicas, as quais se associam espontaneamente em solução 

aquosa, a partir de certa concentração, denominada concentração micelar crítica 

(CMC). Elas podem ser usadas como microrreservatórios hidrossolúveis 

biocompatíveis para a liberação de fármacos hidrofóbicos pouco solúveis (SINKO, 

2008). 

Essas micelas podem apresentar diferentes tipos de agregados, que podem 

ser determinados pela análise geométrica da molécula, a qual é definida pelo fator 

de empacotamento, conforme a equação abaixo (MYERS, 1999; GALGANO, 2012): 

 

𝑓 =
𝑉

𝐴.𝐿
        Onde: V – volume da cadeia hidrofóbica 

A- Área secional por cabeça polar do tensoativo 

L – comprimento da cadeia hidrofóbica 

 

De acordo com esse fator de empacotamento, os diferentes agregados são 

formados em conformidade com a Figura 7 que segue.  

  



36 

 

Figura 7 – Estruturas previstas de agregação das micelas de acordo com o fator de 
empacotamento 

Fonte: HIEMENZ & RAJAGOPALAN (1997). 

 

2.5 DIAGRAMAS DE FASE 

 

Os diagramas de fase (DF) podem ser descritos como ternários (DFT) 

(formados por três constituintes) ou pseudoternários (DFPT) (formado por mais de 

três constituintes) e são representados por triângulos equiláteros, cujos lados são 

usados como eixos, correspondendo aos constituintes. Geralmente, a proporção de 

cada componente é representada como porcentagem de peso total da formulação e, 

assim, cada vértice corresponde a 100% do componente indicado. Desta forma, os 

diagramas são ferramentas capazes de identificar cada região e facilitar o trabalho 

dos pesquisadores (BORBA & SANTANA, 2007; CARVALHO, 2009; SILVA et al, 

2009). 

A construção de diagramas de fase é uma ferramenta fundamental para a 

obtenção de sistemas microemulsionados, pois descreve em que condição 

experimental é possível se obter as regiões limites de transição entre emulsões, as 

separações de fases e as microemulsões O/A e A/O (OLIVEIRA et al, 2004; SYED & 
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PEH, 2014). Geralmente, as microemulsões são formadas por quatro componentes 

(água, óleo, tensoativo e cotensoativo), o que torna apropriada a utilização do 

diagrama de fases pseudoternário DFPT, que difere do diagrama ternário 

convencional pelo fato de o tensoativo e o cotensoativo estarem agrupados como 

um único componente (GUIMARÃES, 2013).  

Segundo Oliveira et al (2004), os diagramas de fase geralmente são 

construídos através de titulações preparando misturas binárias dos componentes e 

titulando com a terceira fase, como segue: pode-se associar a mistura emulsiva (T) 

com o óleo (O) e titular com a fase aquosa (A) ou associar a mistura emulsiva com a 

fase aquosa (A) e titular com a fase oleosa (O). Na Figura 8, está representada a 

titulação feita com a fase aquosa, na qual as linhas traçadas são direcionadas ao 

infinito da fase aquosa (representa 100% de fase aquosa). 

 

Figura 8 – Ilustração de um diagrama de fases feito por titulação com a fase aquosa. 

 

Fonte: OLIVEIRA et al (2004). 

 

Oliveira et al (2004) mostram também a descrição das regiões obtidas em um 

diagrama de fase, representada na Figura 9, em que as microemulsões representam 

a existência de um sistema opticamente transparente representado pela região ME. 

De acordo com os autores, as regiões de 1 a 5 descrevem os diferentes tipos 

de sistemas, onde na região 1 a concentração de tensoativo é baixa e existe uma 

elevada quantidade de água, predominando a formação de microemulsão O/A. A 

região 2 possui uma grande quantidade de fase oleosa e pouca de água e 
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tensoativo, predominando a formação de microemulsão A/O. A região 3 e 4 é 

intermediária e possuem sistemas correspondentes a fases bicontínuas onde ocorre 

a passagem paulatina de um sistema O/A para A/O e vice-versa. A região 5 é 

descrita como muito instável onde pode ocorrer separação entre as fases aquosas e 

oleosas. 

 

Figura 9 – Representação dos pontos de titulação e regiões do diagrama de fases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fonte: OLIVEIRA et al (2004) 

 

2.6 MÉTODOS DE CARACTERIZAÇÃO 

 

Diversas técnicas podem ser utilizadas com o objetivo de caracterizar 

sistemas microemulsionados. Dentre elas, pode-se citar a microscopia de luz 

polarizada, utilizada para verificar a isotropia do sistema; o espalhamento dinâmico 

de luz, utilizado para medir o diâmetro da gotícula ou fase dispersa; a reologia, para 

verificar as propriedades reológicas do sistema e outros métodos mais corriqueiros 

como densidade e condutividade elétrica (SADURNÍ et al, 2005; MASON et al, 2006; 

BEDIN, 2011). 
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2.6.1 Microscopia de Luz Polarizada 

 

Através da microscopia de luz polarizada (MLP), é possível avaliar estruturas 

isotrópicas dos sistemas microemulsionados. Na MLP, um microscópio comum, junto 

a um condensador e acoplado a um polarizador orienta as ondas luminosas 

provenientes da fonte de luz em uma só direção, em um só plano (ABRAMOWITZ, 

PARRY-HILL & DAVIDSON, 2005). 

As alterações que uma substância birrefringente provoca na direção da 

propagação da luz, em um equipamento desse tipo, são feitas graças ao analisador, 

um segundo sistema de polarização, junto à ocular. O máximo de luz é obtido 

quando o polarizador e analisador estão com eixos em paralelo e, ao contrário, a luz 

extingue quando são perpendiculares (ABRAMOWITZ, PARRY-HILL & DAVIDSON, 

2005; ZHENG et al, 2011). 

Alguns cristais líquidos exibem estruturas anisotrópicas e, com isso, são 

obtidas imagens características do tipo de fase formada. Por exemplo, a fase 

lamelar pode ser identificada através da visualização das “cruzes de malta” e a fase 

hexagonal, através da presença de estrias ou estruturas parecidas com fibras. Já as 

estruturas isotrópicas, como as microemulsões, por não desviarem a propagação da 

luz polarizada, são visualizadas como campo escuro (CARVALHO, 2009). 

 

2.6.2 Condutividade Elétrica 

 

A técnica da condutividade elétrica é utilizada para verificar mudanças 

estruturais nas microemulsões. Através do volume da fração aquosa das 

microemulsões, pode-se observar um aumento na condutividade elétrica. 

Geralmente em sistemas com até 30% da fase aquosa, a condutividade é 

inicialmente baixa, sugerindo a existência de estruturas reversas em meio oleoso 

não condutor (A/O).  

Nos casos de a fase aquosa ser estabelecida entre 30 e 70%, o aumento na 

condutividade não é linear, indicando a formação de estruturas bicontínuas. Acima 

de 70% de fase aquosa, a condutividade aumenta linearmente, indicando a 

formação de estruturas O/A (ROSSI et al, 2007).. Assim, a condutividade das 

microemulsões pode auxiliar bastante na determinação do tipo de microemulsão 

formada em um sistema (SRIPRIYA et al, 2007). 
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2.6.3 Espalhamento de Raio-X a baixos ângulos (SAXS) 

 
A técnica de espalhamento de raios-X pode ser dividida em espalhamento de 

raios-X a altos ângulos (WAXS – wide-angle X-ray scattering) e espalhamento de 

raios-X a baixos ângulos (SAXS – small-angle X-ray scattering). Ambas não 

apresentam diferenças físicas fundamentais. Entretanto, em experimentos de SAXS, 

os ângulos de espalhamento acessados são menores, o que possibilita a 

caracterização de materiais em uma escala de comprimento consideravelmente 

maior (KELLERMANN, 2003; FRANZINI, 2006).  

A utilização da técnica de Espalhamento de raios X a baixo ângulo (SAXS) na 

caracterização de sistemas microemulsionados é importante, devido à possibilidade 

de se determinar o tamanho médio, a forma e a distância entre os objetos 

espalhadores, como gotículas, micelas ou estruturas líquido-cristalinas (CARVALHO, 

2009).  

Na técnica de SAXS, um feixe de raios-X de luz monocromática (luz visível, 

raio x, nêutrons, elétrons), com comprimento de onda variável é incidido sobre uma 

amostra e o espalhamento gerado neste caso é coletado, na maioria das vezes, por 

um detector bidimensional. No experimento, o número de fótons como função do 

ângulo de espalhamento é medido. Esse espalhamento é possível devido às 

heterogeneidades das densidades eletrônicas das estruturas do sistema 

(CARVALHO, 2009).  

No caso de sistemas diluídos, as partículas estão distantes umas das outras e 

não interagem entre si fazendo com que a intensidade espalhada seja descrita pelo 

fator de forma P(q). Sistemas formados pela associação de água, óleo, estabilizados 

por tensoativos abaixo da CMC, pode ter a intensidade obtida pelo SAXS similar à 

observada em partículas diluídas ou monodispersas.  

Já para sistemas concentrados, são muitas as partículas espalhadoras que 

interagem entre si e, neste caso, o espalhamento medido refletirá sua geometria e 

arranjo. Em sistemas nos quais a concentração de tensoativos é maior que a CMC, 

ocorre interação entre as moléculas de tensoativos em diversos graus de 

organização. Segundo Formariz et al (2007), o padrão de espalhamento poderá ser 

similar ao observado em partículas dispersas numa matriz homogênea. Neste caso, 

a intensidade espalhada é descrita na equação abaixo 
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𝐼 (𝑞) = 𝑁. 𝑃(𝑞). 𝑆(𝑞) 

 

Onde: 

P(q) – fator de forma 

I(q) – intensidade do espalhamento 

N – número de objetos espalhadores 

S (q) – fator de estrutura do conjunto 

 

Através da técnica do SAXS, pode-se deduzir uma distância média d, entre 

duas gotículas, tomando como base o valor da posição do vetor de espalhamento 

quando a intensidade é máxima (qmax): 

 

𝑑 =
2π

𝑞𝑚𝑎𝑥
 

 

Essa técnica é interessante para a caracterização de sistemas 

nanoestruturados, pelo fato de existir a possibilidade de exploração dos dados na 

determinação do tamanho médio e da distância entre os objetos espalhadores, como 

micelas e microemulsões. Ela também permite avaliar a estrutura de objetos 

espalhadores, mesmo que estes não estejam organizados. Além disso, caracteriza 

materiais que têm distância entre objetos espalhadores maiores que o limite de 

trabalho da difração de raios–X e partículas com tamanho entre 1 e 100nm 

(AMERICAN CHEMICAL SOCIETY, 1995; CARVALHO, 2009).  

 

2.6.4 Reologia 

 

A reologia é útil para avaliar sistemas microemulsionados, pois o 

comportamento do fluido está relacionado com o tipo e grau de organização do 

sistema (FORMARIZ et al, 2005). As determinações das características reológicas 

são usadas para caracterizar o comportamento mecânico dos fluidos, a facilidade 

com que o material pode ser vertido de um frasco, ser apertado em um tubo, manter 

a forma do produto num frasco ou, após a extrusão, esfregar o produto sobre a pele 

(KLEIN, 2007). 
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Segundo Sinko (2008), viscosidade é a resistência ao fluxo por parte de um 

líquido. Quanto maior a viscosidade, maior é a resistência de um líquido. A reologia 

estuda a deformação e fluidez dos materiais sob a influência de forças externas. 

Tecnicamente, é definida como “a resistência ao fluxo ou ao movimento” (ANTONIO, 

2007). 

As medidas reológicas provêm informações sobre a estabilidade física e a 

consistência da microemulsão. Diferentes forças agem sobre os materiais, em 

função das condições de estocagem, processamento ou condições de aplicação e a 

resultante destas forças pode modificar o comportamento reológico destes materiais 

(ANTONIO, 2007; SANTIS, 2008). Nos estudos de reologia, os fluidos recebem 

classificação que compõem os sistemas, denominando-os de newtonianos e de não-

newtonianos. As formulações que possuem partículas assimétricas, como a maioria 

dos produtos cosméticos e farmacêuticos, apresentam fluxo não-newtoniano 

(MORAES, 2008), que pode ser: pseudoplástico, plástico e dilatante (Figura 10).  

 

Figura 10 – Representação de Curvas Reológicas demonstrando os 4 tipos de 
classificação reológica dos fluídos 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fonte: FONTES (2000). 

 

Os fluidos não-newtonianos são aqueles que não apresentam uma relação 

linear entre a tensão de cisalhamento e a taxa de cisalhamento, isto é, os valores da 

viscosidade mudarão com a variação nos valores da taxa de cisalhamento. Quando 

os valores da viscosidade diminuem com o aumento da taxa de cisalhamento, diz-se 

que o material possui comportamento pseudoplástico. Quando o contrário acontece, 

ou seja, a viscosidade aumenta com aumento da taxa de cisalhamento, diz-se que o 

material possui comportamento dilatante. Já os fluidos plásticos necessitam de uma 
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tensão finita, conhecida como tensão de escoamento ou “yield stress”, para que 

ocorra movimento das partículas (FERREIRA et al, 2005; SINKO, 2008). 

O fluxo classificado como newtoniano é aquele em que a curva de fluxo gera 

uma reta que passa pela origem, no qual todos os pares de valores de taxa e tensão 

de cisalhamento pertencentes a esta reta são constantes, o que significa que a 

viscosidade não é afetada por mudanças na taxa de cisalhamento. Portanto, a 

viscosidade desse tipo de fluxo é constante (SCHRAMM, 2006). 
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3 OBJETIVOS 

 

3.1 OBJETIVO GERAL 

 

Desenvolver e caracterizar sistemas microemulsonados, contendo o óleo 

essencial de L. gracilis como fase oleosa e analisar sua potencial ação amebicida 

frente a trofozoítos de Acanthamoeba castellanii. 

 

3.2 OBJETIVOS ESPECÍFICOS 

 

 Extrair e caracterizar o óleo essencial de L. gracilis; 

 Obter as microemulsões contendo óleo essencial de L. gracilis a partir do 

diagrama de fases pseudoternário; 

 Caracterizar os sistemas obtidos; 

 Verificar a citotoxicidade das microemulsões obtidas em células de cultura 

de mamíferos. 

 Determinar a IC50 das microemulsões obtidas sobre os trofozoítos de A. 

castellanii. 
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4 MATERIAIS E MÉTODOS 

 

4.1 MATERIAIS 

 

 Tween 80 como tensoativo; 

 Propilenoglicol como cotensoativo; 

 Água purificada obtida a partir de sistema Milli-Q®;   

 Óleo essencial de L. gracilis (OELG) 

 Meio de cultura PYG (2% de proteose peptona, 0,2% de extrato de 

levedura e 1,8% de glucose); 

 Trofozoítos de Acanthamoeba castellanii, 

 MTT (brometo de 3-(4,5-dimetil-tiazol-2-il) -2,5 difeniltetrazólio) 

 DMSO (sulfóxido de dimetilo) 

 

4.2 EQUIPAMENTOS E VIDRARIAS 

 

 Agitador magnético (FISATOM®); 

 Balança analítica (DENVER® APX 200); 

 Clevenger modificado; 

 Cromatógrafo gasoso acoplado a espectrômetro de massa, (Shimadzu QP 

5050 A); 

 Microscópio de luz polarizada (Olympus modelo BX51); 

 Reômetro Anton Paar (MCR -302); 

 Pipeta de Pasteur; 

 Pipetas graduadas de 1,0 ml a 10,0 ml; 

 Bequérs de 5,0 ml a 150 ml; 

 Tensiômetro Attension da Biolim Scientific (Sigma 700); 

 Provetas 20ml; 

 Placas de 24 e 96 poços de cultura de tecidos (TPP®); 

 Câmara de Neubauer, 

 Microscópio óptico. 
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4.3 MÉTODOS 

 

4.3.1 Extração do óleo essencial de L. gracilis 

 

As folhas de L. gracilis foram obtidas no Campus Rural da Universidade 

Federal de Sergipe. No processo de extração, foram utilizados 400g de folhas as 

quais foram secas à 40±1 ºC, em um forno com circulação de ar por cinco dias. As 

folhas foram trituradas em um triturador para aumentar a área de contato com a 

água no momento da extração. O pó das folhas foi colocado em um equipamento 

extrator do tipo Clevenger modificado por um período de 3 horas a temperaturas 

abaixo de 60 oC. Foram utilizados 2 litros de água para cada 100g de folha e 

destilados no balão volumétrico acoplado ao aparelho. O óleo essencial obtido foi 

acondicionado em frasco âmbar e armazenado sob refrigeração (RESENDE, 2013). 

 

4.3.1.1 Determinação da densidade do óleo 

 

Para a determinação da densidade de massa (ρ), o picnômetro de 2 ml foi 

pesado a 20ºC e, após limpo e seco, seu valor foi registrado. Posteriormente, o 

mesmo picnômetro foi pesado com água destilada na mesma temperatura e seu 

valor também foi registrado. Por último, foi pesado com o óleo essencial. 

O peso da amostra foi obtido através da diferença de massa do picnômetro 

cheio e vazio. A densidade relativa foi calculada (𝑑20
20) determinando a razão entre a 

massa da amostra líquida e a massa da água, ambas a 20 °C. Após a determinação 

da densidade relativa, foi calculada a densidade de massa (ρ) do óleo essencial que 

foi próximo de 0,93g/ml (FARMACOPÉIA BRASILEIRA, 1998). 

 

4.3.1.2 Identificação dos constituintes químicos do óleo essencial 

 

A análise qualitativa da composição química do óleo essencial foi realizada 

utilizando um cromatógrafo gasoso acoplado a um espectrômetro de massas 

CG/EM/DIC (GCMSQP2010 Ultra, Shimadzu Corporation, Kyoto, Japão), equipado 

com um amostrador com injeção automática AOC-20i (Shimadzu) e coluna capilar 

de sílica fundida Rtx®-5MS Restek (5%-difenil-95%-dimetilpolisiloxano) 30 m x 0,25 

mm de diâmetro interno, 0,25 mm de espessura de filme, em um fluxo constante de 
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(%) (%) 

Hélio 5.0, com taxa de 1,0 mL min-1. A temperatura de injeção foi de 280 °C, 1,0 μL 

(10 mg mL-1), com uma razão de split de 1:30. A programação de temperatura do 

forno iniciou-se a partir de 50 °C (isoterma durante 1,5 min), com um aumento de 4 

°C min-1, até 200 °C, em seguida, a 10 °C min-1 até 300 °C, permanecendo por 5 

min. As condições do EM foram: detector de captura iônica operando por impacto 

eletrônico e energia de impacto de 70 eV; velocidade de varredura 1000 u/s; 

intervalo de varredura de 0,50 fragmentos/s e fragmentos detectados na faixa de 40 

a 500 Da. A análise foi realizada no Departamento de Química da Universidade 

Federal de Sergipe (COSTA, 2010). 

 

4.3.2 Análise da Tensão Superficial e Determinação da Concentração Micelar 

Crítica 

 

A tensão superficial é uma propriedade muito importante dos líquidos, em 

especial, da água. Ela é fundamental para os sistemas biológicos e químicos tais 

como membranas biológicas e produtos químicos (HENN, 2003). Neste estudo, a 

tensão superficial da água foi analisada com o objetivo de avaliar a influência do 

propilenoglicol no comportamento do tween 80 como tensoativo, determinando a 

concentração micelar crítica (CMC) do tween isolado e misturado com o 

propilenoglicol em várias concentrações. 

Para realizar a determinação da Concentração Micelar Crítica (CMC), foi 

utilizado o aparelho Tensiômetro Attension (Sigma 700), à temperatura ambiente, 

para a determinação da tensão superficial. Durante a medição, a placa de Wilhelmy 

foi submersa nas amostras e o tensiômetro mediu a força de empuxo do líquido sobre 

a placa, calculando, assim, a tensão superficial através do tamanho da placa 

conhecida. Para a realização do experimento, a água foi utilizada como padrão e sua 

tensão superficial foi previamente medida. 

Para a obtenção das amostras, foi preparada uma solução aquosa inicial de 

0,5g/l para o tensoativo tween e para as misturas tween: propilenoglicol 1:1 e 2:1 e, a 

partir destas soluções, foram realizadas 10 diluições para cada solução com 

concentrações próximas à CMC do tween. Então, foi realizada a leitura no 

equipamento, que foi feita em triplicata, para cada diluição. Com os dados das 

tensões superficiais obtidos, foi plotado um gráfico para a determinação da CMC. As 
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medidas foram realizadas no Laboratório de Biotecnologia Ambiental (Labam) da 

Universidade Federal de Sergipe (FERREIRA, 2014).  

 

4.3.3 Obtenção das microemulsões através de diagrama de fases 

pseudoternário 

 

As microemulsões foram preparadas através da construção dos diagramas de 

fase pseudoternários. Os diagramas foram compostos pelos seguintes componentes: 

tween 80, propilenoglicol, água e óleo essencial de L. gracilis. O tensoativo e o 

cotensoativo utilizados foram combinados na razão de 1:1 e 2:1 e misturados por 

30min. 

À mistura de Tensoativo/Cotensoativo (T/Co-t) na proporção de 1:1 e 2:1 foi 

acrescentada a fase oleosa e homogeneizada por agitação magnética, à 

temperatura ambiente por mais 30min, nas seguintes proporções de fase oleosa e 

mistura de tensoativo e cotensoativo: 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, onde 

cada proporção corresponde a um ensaio, formando, assim, 9 ensaios. Em cada 

ensaio foram feitas titulações com água purificada ultrapura Mili-Q, acrescentando 

500µl gota a gota, sob agitação magnética e registrando as mudanças de aspecto 

visual a cada 3 minutos.  

 
4.3.4 Caracterização dos Sistemas 

 

4.3.4.1 Microscopia de luz Polarizada 

 

A identificação da isotropia nos sistemas obtidos através da titulação nos 

diagramas de fase pseudoternários foi realizada por MLP (Olympus modelo BX51), 

equipado com uma câmera digital (Evolution LC Color) e Software analisador de 

Imagem (Pixel Link), depois de percorrido o tempo mínimo de cinco dias para o 

equilíbrio dos sistemas e as medições feitas à temperatura ambiente (25ºC). Para a 

realização do experimento, foi colocada uma gota de cada amostra em uma lâmina de 

vidro, coberta por uma lamínula e analisada sob luz polarizada. O teste foi realizado 

no Laboratório Multiusuário do Departamento de Física da Universidade Federal de 

Sergipe (CARVALHO, 2009).  
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4.3.4.2 Condutividade Elétrica 

 

A condutividade elétrica dos sistemas foi avaliada por meio de condutivímetro 

digital (PHOX- C1000), previamente calibrado com solução de calibração 

apresentando condutância de 146,9 µS.cm-1, à temperatura de 25 ± 0,5 °C (REIS, 

2014). O teste foi realizado no Laboratório de Nanotecnologia e Nanomedicina 

(LNMed) da Universidade Tiradentes (UNIT). 

 

4.3.4.3 Espalhamento de Raios-X a baixo ângulo 

 

O arranjo estrutural das microemulsões foi analisado a partir de medidas de 

SAXS à temperatura ambiente. Os dados foram coletados em uma estação de 

medidas do Laboratório Nacional de Luz Síncrontron (LNLS), em Campinas-SP, na 

estação D11A, equipada com um monocromador do tipo Si (111), com comprimento 

de onda de 1,499Å. A intensidade de espalhamento I(q) foi expressa em unidades 

arbitrárias e o espalhamento de ar parasita (espalhamento de partículas existentes no 

sistema sem amostra) foi subtraído da intensidade total da amostra (CARVALHO, 

2009; RESENDE, 2013). 

 

4.3.4.4 Reologia 

 

A determinação reológica foi realizada em um reômetro AR2000ex da TA 

Instruments e as formulações foram avaliadas a uma temperatura controlada de 25 ºC 

± 2 ºC. As amostras foram aplicadas na placa inferior do reômetro, assegurando o 

mínimo de cisalhamento e permitindo um tempo de repouso de 1min antes de cada 

determinação. Cada corrida teve duração de 4 minutos. O tipo de geometria utilizada 

para as análises foi tipo cone/placa (CP) com 50 mm de diâmetro, 1◦ ângulo do cone e 

30 mm de espaçamento entre o cone e a placa. Os dados foram ajustados com o 

modelo da lei de Newton através do software OriginPro v.8. 

 

4.3.4.5 Tamanho de gotícula e índice de polidispersão 

 

Para determinar o tamanho médio das gotículas e o índice de polidispersão, 

foi realizada a técnica do Espalhamento de luz dinâmico (DLS) utilizando o 
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equipamento Zetasizer Nano ZS (Malvem Instruments, UK). As amostras foram 

diluídas em água Mili-Q e aproximadamente 1000µl de amostra foram inseridas em 

cubeta apropriada para a realização das medidas a uma temperatura de 25 ºC. As 

medidas foram realizadas em triplicata para cada amostra. Foram utilizados como 

parâmetros de medida os índices de refração do meio dispersante, água (IR= 1,33) 

(GALVÃO, 2015) 

 

4.3.5 Citotoxicidade sobre células de cultura de mamíferos 

 

O método MTT foi utilizado para avaliar o efeito citotóxico do óleo essencial 

de L. gracilis, da mistura do tween com o propilenoglicol na proporção 1:1 e da 

microemulsão em fibroblastos (L929) nas concentrações de 10, 20, 50, 100 e 150 

µg/ml. Os resultados dos testes foram expressos em percentual de viabilidade. Para 

classificar a citotoxicidade dos compostos foi utilizada a escala de intensidade 

baseada em Rodrigues et al (2014). 

A atividade citotóxica das amostras testadas foi realizada por meio do ensaio 

de MTT (brometo de 3-(4,5-dimetil-tiazol-2-il) -2,5 difeniltetrazólio). Os fibroblastos 

foram mantidos em meio de cultura DMEM, suplementada com 10% de soro total 

bovino e 1% de antibióticos (penicilina e estreptomicina, GIBCO). As células (1 x 105 

células totais) foram plaqueadas em placas de 96 poços e mantidas a 37ºC em 

atmosfera de 5% de CO2. Depois de 24 horas, 10µl das amostras foram adicionadas 

a cada poço na concentração final de 50µg/ml.  

O fármaco doxorrubicina (5µg/ml) foi utilizado como controle positivo. Após 72 

horas, 25µl da solução de MTT (5mg/ml) foi adicionada a cada poço e a mistura foi 

incubada por mais 3 horas. Ao fim desse tempo, o meio de cultura com excesso de 

MTT foi aspirado e 100µl de DMSO foram adicionados a cada poço para interromper 

a reação e solubilizar os cristais de formazan. A densidade ótica (DO) dos poços foi 

medida a 570nm. 

 

4.3.6 Determinação da atividade amebicida 

 

Para a realização desse estudo, foram usados trofozoítos de A. castellannii 

(cepa de procedência clínica isolada de lesão de ceratite amebiana), os quais foram 
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mantidos no laboratório de Parasitologia e Entomologia Tropical da Universidade 

Federal de Sergipe, em meio PYG (2% de proteose peptona, 0,2% de extrato de 

levedura e 1,8% de glucose), à temperatura ambiente. 

Para determinar o potencial amebicida, 8 x 104 trofozoítos de A. castellannii, 

em fase logarítmica de crescimento (48 a 72 horas de cultura) foram distribuídos em 

placas de 24 poços de cultura de tecidos (TPP®), contendo 2 ml de meio de cultura 

PYG por poço. Os parasitos foram expostos às formulações selecionadas. Cada 

formulação foi avaliada em triplicata e todas as experiências foram realizadas três 

vezes. 

Vinte e quatro horas após o tratamento, as placas foram colocadas em gelo 

durante 40 minutos, homogeneizadas e uma alíquota de 12 µl foi analisada em 

câmara de Neubauer para contagem das amebas. 

Para calcular a concentração de microemulsão que resultou em 50% de 

inibição de crescimento das amebas (IC50), foi utilizado o programa Microsoft Excel, 

utilizando as percentagens de viabilidade celular e inibição do crescimento, 

calculada a partir dos resultados de contagens de câmara de Neubauer (SANTOS et 

al, 2016). 

 

4.3.7 Análise Estatística 

 

Os testes estatísticos foram utilizados nas análises das atividades 

amebicidas. Foram realizados os testes de ANOVA de medidas repetidas para 

comparar as concentrações e verificar se há diferença significativa entre as médias. 

Havendo diferença, utilizou-se o teste Post Hoc de BONFERRONI para verificar 

quais as concentrações que tiveram diferenças entre médias. 
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5 RESULTADOS E DISCUSSÃO  

 

5.1 RENDIMENTO E DENSIDADE DO ÓLEO ESSENCIAL DE L. GRACILIS 

 

O óleo obtido apresentou-se com coloração amarelo-pálida e seu rendimento 

médio foi de 2,5% ± 0,25 (relação volume/massa), e está em concordância com a 

literatura, com descrição de teores de 0,43 a 7,99% (DIAS et al, 2015) e sua 

densidade foi de 0,93g/ml.  

 

5.2 CONSTITUINTES QUÍMICOS DO ÓLEO ESSENCIAL DE L. GRACILIS 

 

Na análise da composição química do óleo de L. gracilis, feita por 

cromatografia gasosa, foram identificados 34 componentes (Gráfico 1), pertencentes 

à classe dos terpenos. Os principais componentes estão demonstrados na Tabela 2.  

 

Gráfico 1 – Perfil cromatográfico do óleo essencial de L. gracilis por cromatografia 
gasosa 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fonte: O AUTOR (2016) 
Nota: 9. p-cimeno; 12. g-terpineno; 17. metil timol; 19. timol; 20. carvacrol e  24. (E)- cariofileno são 

os principais constituintes do óleo essencial de L. gracilis 

 

 

Tabela 2 – Principais Constituintes Químicos do Óleo essencial de L. gracilis com 
suas respectivas porcentagens. 

           (Continua) 

Componente AI Calc AI Lit % 

p-cimeno 1017 1020 14,10 

γ-terpineno 1050 1054 13,09 

Área (%)  
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   (Conclusão) 

Componente AI Calc AI Lit % 

metil-timol 1224 1232 4,26 

timol 1281 1289 4,59 

carvacrol 1297 1298 41,92 

(E)-cariofileno 1418 1417 4,12 

Fonte: O AUTOR (2016) 

 
O Carvacrol foi o componente majoritário com 41,92%, seguido do p-cimeno 

com 14,10% e o γ-terpineno com 13,09%. Comparado a outros estudos, ocorre uma 

variabilidade dos componentes majoritários que, segundo Gomes, Nogueira & 

Moraes (2011), pode estar relacionado às condições genéticas, em função do local e 

das condições em que a planta foi cultivada. 

De acordo com o estudo de Melo et al (2014), que analisaram os constituintes 

químicos de três genótipos de L. gracilis, essa variabilidade de componentes 

realmente foi comprovada. Em um genótipo, o timol foi o componente majoritário 

com 40,52%, em outro o carvacrol foi o majoritário com 45,84% e, por fim, no 

terceiro genótipo, o carvacrol também se apresentou como o composto principal, 

mas com 32,60%. 

 

5.3 ANÁLISE DA TENSÃO SUPERFICIAL E DETERMINAÇÃO DA CONCENTRAÇÃO MICELAR 

CRÍTICA 

 

Na análise da tensão superficial, observa-se que, na maioria dos pontos, 

ocorreu um comportamento típico de queda da tensão superficial (Tabela 3) com o 

aumento da concentração de tensoativo, alcançando um certo ponto em que a 

tensão superficial se manteve praticamente constante. Segundo Pires (2002), após a 

CMC, a atividade do monômero permanece, praticamente, constante ou diminui um 

pouco. Consequentemente, não ocorre alta variabilidade na tensão superficial.  

 

Tabela 3 – Valores da tensão superficial para as diluições do Tween 80 e do Tween 
80 com o propilenoglicol 1:1 e 2:1 

           (Continua) 

TENSOATIVOS 

 

CONCENTRAÇÃO 

g/L 

VALORES DA TENSÃO SUPERFICIAL 

mN/m 

TWEEN 80 
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  (Conclusão) 

TENSOATIVOS 

 

CONCENTRAÇÃO 

g/L 

VALORES DA TENSÃO SUPERFICIAL 

mN/m 

 0,005 50,210 

 0,007 47,721 

 0,01 46,370 

 0,015 44,806 

 0,02 42,672 

 0,03 41,634 

 0,04 41,183 

 0,05 41,010 

 0,06 39,997 

 0,07 40,109 

TWEEN 80 / PROPILENOGLICOL 1:1  

 0,005 53,837 

 0,007 53,446 

 0,01 51,822 

 0,015 49,112 

 0,02 48,011 

 0,03 48,883 

 0,04 48,693 

 0,05 47,993 

 0,06 47,798 

 0,07 48,046 

TWEEN 80 / PROPILENOGLICOL 2:1 

 0,005 52,040 

 0,007 50,618 

 0,01 46,909 

 0,015 42,955 

 0,02 41,825 

 0,03 41,316 

 0,04 40,433 

 0,05 39,889 

 0,06 39,909 

 0,07 39,789 

Fonte: O AUTOR (2016) 
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Nessa região, em que a tensão se manteve constante, infere-se ser a região 

da CMC. Seria nela que estaria ocorrendo a saturação de micelas. Os gráficos 2, 3 e 

4 apresentam a região encontrada para a CMC. 

 

Gráfico 2 – Concentração micelar crítica do tween 80  

 

Fonte: O AUTOR (2016) 
Nota: valor da CMC 0,022 g/l 

 

Gráfico 3 – Concentração micelar crítica do Tween 80 / Propilenoglicol 1:1  

 

Fonte: O AUTOR (2016) 
Nota: valor da CMC 0,016 
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Gráfico 4 – Concentração micelar crítica do Tween/ propilenoglicol 2:1  

 

Fonte: O AUTOR (2016) 
Nota: valor da CMC 0,018 
 

Para calcular o valor da CMC, foi encontrado o ponto de intersecção das duas 

retas. Observa-se então que o valor da CMC do tween 80 foi de 0,022 g/l e na 

presença do propilenoglicol na proporção 1:1, esse valor cai para 0,016, 

confirmando assim a ação do propilenoglicol como cotensoativo do sistema. Ao 

analisar a proporção tween/propilenoglicol 2:1, observa-se um ligeiro aumento no 

valor da CMC que vai para 0,018 g/l. Esse aumento é considerado aceitável, pois na 

proporção 2:1 a quantidade de propilenoglicol é menor, consequentemente a 

redução da tensão superficial é menor que em maiores proporções de 

propilenoglicol, justificando a característica de cotensoativo do mesmo e sua ação 

sinérgica. 

Segundo Rosen & Kunjappu (2012), quando uma mistura de tensoativo e 

cotensoativo é utilizada para a formação de micelas e ocorre uma redução na CMC, 

pode-se dizer que houve um sinergismo e, do contrário, seria um antagonismo. Vale 

ressaltar que, para a realização desse experimento foram adquiridos tensoativos 

exclusivamente para esse teste, livre de qualquer impureza externa e dentro do 

prazo de validade, já que, segundo Balan (2006), a presença de impurezas pode 

interferir na tensão superficial.  
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5.4 OBTENÇÃO DOS SISTEMAS ATRAVÉS DO DIAGRAMA DE FASES 

 

O diagrama de fases pseudoternário foi utilizado para a obtenção das 

amostras. Com seu auxílio, é possível descrever em que condições experimentais os 

componentes devem ser combinados, a fim de formar as microemulsões. Estas 

foram desenvolvidas, utilizando os componentes água, óleo essencial de L. gracilis, 

tween 80 e propilenoglicol. Foram obtidos dois diagramas de fases, um na proporção 

de tween/propilenoglicol 1:1 e outro na proporção tween/propilenoglicol 2:1. Para a 

obtenção desses diagramas, foi utilizado o método da titulação que é bastante 

reprodutível. Foram observados 12 pontos do DFPT 1:1, que formaram um sistema 

homogêneo, límpido e translúcido, característico de microemulsão e 9 pontos no 

DFPT 2:1, conforme Figura 11, e a composição centesimal das amostras está 

representada na Tabela 4.: 

 

Figura 11 – Diagramas de fases A e B e as microemulsões obtidas. 
 

A1

A2

A3

A4

A5

A6
A7

A8
A9

A1A1

A10

A11

A1A1

A12

B1

B2

B3

B4

B5

B6

B7

B8

B9

 

Fonte: O AUTOR (2016) 
Nota: cada ponto representa uma microemulsão (ME) obtida. 

T/P – Tween e Propileno / A-água / O-óleo. 
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Tabela 4 – Composição centesimal das amostras A1-A12 do diagrama A (Tween / 
Propilenogicol 1:1) e B1-B9 do diagrama B (Tween / Propilenoglicol 2:1) 

 

Formulação 
Água 

(%) 

Tween 80 

(%) 

Propilenoglicol 

(%) 

Óleo de L. gracilis 

(%) 

DIAGRAMA A 

A1 9,00 41,00 41,00 9,00 

A2 16,00 38,00 38,00 8,00 

A3 23,00 35,00 35,00 7,00 

A4 29,00 32,00 32,00 7,00 

A5 33,34 30,00 30,00 6,66 

A6 38,00 28,00 28,00 6,00 

A7 42,00 26,00 26,00 6,00 

A8 44,00 25% 25 6,00 

A9 47,00 24,00 24,00 5,00 

A10 9,00 36,5 36,5 18,00 

A11 17,00 33,00 33,00 17,00 

A12 23,00 31,00 31,00 15,00 

DIAGRAMA B 

B1 9,00 55,00 27,00 9,00 

B2 17,00 50,00 25,00 8,00 

B3 23,00 46,00 23,00 8,00 

B4 29,00 43,00 21,00 7,00 

B5 33,00 40,00 20,00 7,00 

B6 9,00 49,00 24,00 18,00 

B7 17,00 45,00 22,00 16,00 

B8 23,00 41,00 21,00 15,00 

B9 29,00 36,00 21,00 14,00 

Fonte: O AUTOR (2016) 
 

O aspecto visual dessas formulações foi bastante característico de 

microemulsão, apresentando um aspecto límpido e translúcido de coloração 

amarelada. Isso indica que as proporções utilizadas entre os componentes foram 

adequadas para reduzir a tensão interfacial na formação dos sistemas. Após cinco 

dias da preparação das amostras, as formulações mantiveram o mesmo aspecto e 
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permaneceram constantes durante todo o período de estudo, conforme Figura 12 

abaixo: 

 

Figura 12 – Microemulsões obtidas a partir dos diagramas de fases A e B  
 

Diagrama A 

 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

 

Diagrama B 

 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 

 

Fonte: O AUTOR (2016) 

 

O tensoativo tween 80 e o cotensoativo propilenoglicol foram escolhidos por 

serem tensoativos não-iônicos, que possuem uma grande vantagem para utilização 

em formulações farmacêuticas, pois têm baixa toxicidade às membranas celulares, 

baixa irritabilidade e uma elevada estabilidade química (GRAMPUROHIT, 

RAVIKUMAR & MALLYA, 2011). 

O valor do EHL do óleo também é uma informação bastante importante para a 

escolha dos tensoativos, pois segundo Schmidts & Cols (2010) apud Assis (2014), as 

microemulsões são melhores formuladas quando o EHL da mistura dos tensoativos 

está próximo ao EHL do óleo. 
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5.5 CARACTERIZAÇÃO ESTRUTURAL DAS MICROEMULSÕES 

 

A caracterização foi realizada com as amostras formadas nos dois diagramas 

(A e B) e todas apresentaram um comportamento isotrópico (campo escuro), ou 

seja, as amostras sob o plano da luz polarizada não desviam a luz. A amostra A12 

representa as formulações obtidas nos dois diagramas e sua fotomicrografia está 

representada na Figura 13. 

 

Figura 13 – Fotomicrografia do comportamento isotrópico (campo escuro) 
representada pela microemulsão A12 do diagrama A 

 

 

 

 

 

 

 

 

 

Fonte: O AUTOR (2016) 
Nota: A seta indica a presença de bolha de ar para comprovar o campo escuro. 

 

Através da técnica de SAXS, também é possível confirmar a isotropia do 

sistema. Os resultados do SAXS foram coerentes com a técnica de microscopia de 

luz polarizada, indicando formação de microemulsão e um aspecto isotrópico nos 

sistemas. Adiante, é apresentado o gráfico da curva da intensidade de 

espalhamento (I) em função do vetor de espalhamento (q) para as amostras do 

diagrama A da primeira linha de diluição (A1 a A9). Os sistemas exibem um pico 

alargado centrado em q, observando que não houve formação de cristal líquido e 

que a estrutura observada nas amostras analisadas é esférica, confirmando a 

existência de microemulsão.  

O perfil das curvas de SAXS (Gráfico 5) mostra, também, que as formulações 

apresentam um segundo ombro, com valores de q mais altos e, de acordo com a 

microscopia de luz polarizada, não existe a formação de estruturas birrefringentes, 

A12
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eliminando, assim, a possibilidade da formação de estruturas cristalinas. Pode-se 

inferir, então, que esta é uma região de microemulsões bicontínuas. 

 

Gráfico 5 – Curvas de SAXS das amostras A1 a A9 

1

A1

A2

A3

A4

A5

A6

A7

A8

I(
q
)

q(nm
-1
)

A9

 

Fonte: O AUTOR (2016) 
Nota: As setas indicam formação de um pico alongado centrado seguido de um segundo ombro ou 

pico. 

 

Foi observado neste trabalho que os valores da condutividade elétrica, não só 

desta linha de diluição analisada, mas das amostras dos dois diagramas, 

apresentaram valores muito baixos. Esse fato pode ser explicado pela alta 

quantidade de tensoativo exigida por este tipo de sistema, assim como foi 

encontrado por Reis (2014), em que foi obtido valor muito baixo de condutividade em 

uma provável microemulsão do tipo O/A, justificada pela alta quantidade de 

tensoativo utilizada. 

Conforme a Tabela 5, a condutividade elétrica apresenta coerência com a 

composição dos sistemas, confirmando o aumento da fase aquosa e a diminuição 

dos tensoativos e da fase oleosa. A condutividade elétrica mostrou-se proporcional 

ao aumento da fase aquosa.  
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Tabela 5 – Condutividade elétrica das amostras dos DIAGRAMAS   
 

FORMULAÇÃO 
ÁGUA 

(%) 
TWEEN 
80 (%) 

PROPILENOG. 
(%) 

ÓLEO DE 
Lipia G. (%) 

CONDUTIVIDADE 
(µS.cm-1)  

DIAGRAMA A 

Primeira linha de diluição 

A1 9,00 41,00 41,00 9,00 4,2 

A2 16,00 38,00 38,00 8,00 6,2 

A3 23,00 35,00 35,00 7,00 9,6 

A4 29,00 32,00 32,00 7,00 16,3 

A5 33,00 30,00 30,00 7,00 20,6 

A6 38,00 28,00 28,00 6,00 27,7 

A7 42,00 26,00 26,00 6,00 33,8 

A8 44,00 25,00 25,00 6,00 35,3 

A9 47,00 24,00 24,00 5,00 42,6 

Segunda linha de diluição 

A10 9,00 36,5 36,50 18,00 3,5 

A11 17,00 33,00 33,00 17,00 8,0 

A12 23,00 31,00 31,00 15,00 12,1 

DIAGRAMA B 

Primeira linha de diluição 
B1 9,00 55,00 55,00 9,00 4,9 

B2 17,00 50,00 50,00 8,00 10,5 

B3 23,00 46,00 46,00 8,00 12,5 

B4 29,00 43,00 43,00 7,00 23,3 

B5 33,00 40,00 40,00 7,00 23,6 

Segunda linha de diluição 

B6 9,00% 49,00% 24,00% 18,00% 5,2 

B7 17,00 45,00 22,00 16,00 8,7 

B8 23,00 41,00 21,00 15,00 17,1 

B9 29,00 36,00 21,00 14,00 25,0 

Fonte: O AUTOR (2016) 

 

Na segunda linha de diluição (A10-A12), os gráficos do SAXS (Gráfico 6) 

apresentam um pico suave e pouco definido, e logo depois aparece um ombro bem 

característico de microemulsão bicontínua, semelhante com os gráficos de SAXS 

das demais formulações. Ferreira (2011) também obteve curvas de SAXS muito 

próximas a estas em suas microemulsões bicontínuas, desenvolvidas com baixas 
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I 
(q

) 

quantidades de água. Esse comportamento pode estar relacionado ao tamanho da 

gotícula, pois o SAXS é uma técnica que consegue visualizar o espalhamento de luz 

de partículas de 1 a 100nm e gotículas com tamanhos maiores pode desatinar as 

curvas de SAXS.  

 

Gráfico 6 – Curvas de SAXS das amostras A10 a A12 

 

Fonte: O AUTOR (2016) 

 

Para verificar essa hipótese, foi selecionada a formulação A12 e foram 

determinados o seu tamanho e o índice de polidispersão através da técnica de 

Espalhamento Dinâmico de Luz (DLS), uma técnica precisa e adequada para os 

estudos das propriedades internas das microemulsões. Essa formulação apresentou 

um índice de polidispersão de 0,267, indicando uma distribuição homogênea das 

gotículas e um tamanho de gotícula de 140,86nm, conforme o DLS, elucidando, 

assim, o possível comportamento irregular nos gráficos de SAXS para esta linha de 

diluição. 

A formulação A1 também foi selecionada para verificar seu tamanho no DLS, 

já que pertence a uma outra linha de diluição e não houveram discrepâncias em 

seus dados de SAXS. A amostra apresentou tamanho de 51,51nm, compatível com 

o limite de leitura do SAXS.  

No diagrama B, para as duas linhas de diluição, também pode ser observado, 

através dos dados de SAXS, um comportamento típico de microemulsão 

bicontínuas. A formação de picos alargados, simétricos, com formação de um ombro 

com valores de q mais altos indicam a formação de estruturas bicontínuas (Gráfico 7 

e 8). 
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Gráfico 7 – Curvas de SAXS das amostras B1 a B5 

Fonte: O AUTOR (2016) 

 

Gráfico 8 – Curvas de SAXS das amostras B6 a B9 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: O AUTOR (2016) 

 

Outro fator a ser observado é que o aumento na quantidade de tensoativo 

promove um pequeno deslocamento dos picos para valores maiores de q. Isso 

indica que, segundo a equação d=2π/q (sendo d o diâmetro das partículas 

espalhadoras), o tamanho das gotículas do sistema diminui à medida que o valor de 

q aumenta, conforme demonstrado na Tabela 6. Segundo Oliveira et al (2004), 

quando aumenta o número de moléculas de tensoativo em um sistema, essas 

começam a se comprimir, umas ao lado das outras, promovendo uma pressão 

I 
(q

) 
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bilateral que acaba provocando uma diminuição da tensão interfacial formando, 

assim, gotículas menores.  

 

Tabela 6 – Relação quantidade de tensoativo x distância das gotículas 

Formulação 
Quantidade de 
Tensoativo (%) 

Valores de Q Distância (d) Å 

Primeira linha de diluição 
B1 82 0,83 7,56 
B2 75 0,79 7,94 
B3 69 0,75 8,37 
B4 64 0,75 8,37 
B5 60 0,72 8,72 

Segunda linha de diluição 
B5 73 0,61 10,29 
B6 67 0,56 11,21 
B7 62 0,56 11,21 
B8 57 0,53 11,84 

Fonte: O AUTOR (2016) 

 

Na reologia, todas as amostras (A1-A9, A10-A12, B1-B5 e B6-B9) exibiram 

comportamento newtoniano (Gráfico 9), no qual apresentaram uma relação linear 

entre a tensão de cisalhamento e a taxa de cisalhamento, apresentando valores do 

coeficiente de correlação R2 > 0,99 indicando que existe uma boa correlação entre a 

tensão de cisalhamento e a taxa de cisalhamento (KLEIN, 2007). Os reogramas 

apresentados no gráfico 9 representam essa relação entre tensão e taxa de 

cisalhamento para todas as amostras citadas acima. 

Foi possível observar que nas formulações A1-A9 e B1-B5 houve um 

aumento de viscosidade à medida que a fase aquosa foi sendo acrescentada e a 

fase oleosa diminuída. A viscosidade aumentou de 0,09 a 0,23 Pa.s nas amostras 

A1-A9 e de 0,24 a 0,44 Pa.s nas amostras B1 a B5. Isso pode está relacionado ao 

tamanho de gota que segundo Moghimipour, Salimi & Eftekhari (2013) é pertinente à 

quantidade de óleo no sistema que quanto maior essa quantidade maior o tamanho 

de gotícula e vice-versa. 

Diante disto observa-se então que as amostras com menor quantidade de 

óleo (A9) possuíam um menor tamanho de gotícula e uma maior viscosidade e as 

com maior quantidade de óleo (A1) possuíam maiores tamanhos de gotículas e 

viscosidades menores, conforme Tabela 7. A mesma inferência foi obtida por 

Salager (1999) e Oliveira (2010), os quais concluíram que gotas menores implicam 

em viscosidades maiores. 
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Tabela 7 – Relação viscosidade em função do tamanho da gotícula e quantidade de 
óleo 

 

Formulação 
Quantidade de óleo 

(%) 

Tamanho de Gotícula 

(nm) 

Viscosidade 

(Pa. s) 

A1 9 51,51 0,09 

A9 5 13 0,23 

Fonte: O AUTOR (2016) 

 

Nas formulações da linha de diluição A10-A12 e B6-B9, não houve alteração 

significativa no comportamento reológico do sistema, tendo suas curvas 

praticamente sobrepostas. 

 

Gráfico 9 – Reograma das formulações obtidas ( A1-A9, A10-A12, B1-B5, B6-B9). 
 

 
 
Fonte: O AUTOR (2016) 
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5.6 ESCOLHA DA FORMULAÇÃO PARA A ATIVIDADE AMEBICIDA 

 

Dos dois diagramas formados, o diagrama A foi o escolhido para a seleção da 

amostra utilizada nos ensaios biológicos, pelo fato de ter formado um maior número 

de sistemas termodinamicamente estáveis devido à eficiente proporção de 

tensoativo e cotensoativo (1:1) utilizada, comprovada através do teste de tensão 

superficial. 

Dentre as amostras do diagrama A, três formulações foram consideradas 

como pretendentes para os ensaios, A10, A11 e A12, pelo fato de possuírem 

maiores quantidades de óleo.  

De acordo com os dados de SAXS e de outras técnicas de caracterização, as 

amostras foram consideradas bicontínuas. Assim, o tipo de microemulsão não 

influenciaria muito na escolha da formulação. Diante disto, pretendeu-se escolher 

aquela formulação que possuísse uma boa quantidade de óleo essencial 

(constituinte necessário para exercer a atividade), mas que, na medida do possível, 

obtivesse uma menor quantidade de tensoativo, já que não se tinham 

conhecimentos prévios sobre uma possível atividade amebicida dos mesmos e nem 

que tipo de influência os tensoativos poderiam causar nos testes. Assim, a 

formulação A12 foi selecionada para os ensaios de atividade amebicida.  

Com o intuito de observar se uma formulação com tamanho de gota menor 

apresentava melhores resultados, resolveu-se realizar os testes amebicidas com a 

formulação A9, apesar de não apresentar grandes quantidades de óleo, por possuir 

um tamanho de gota de 13nm.  

 

5.7 CITOTOXICIDADE SOBRE CÉLULAS DE CULTURA DE MAMÍFEROS 

 

No teste de citotoxicidade das amostras sobre células de cultura de 

mamíferos (Tabela 8), o óleo essencial de L. gracilis, para as concentrações de 10 e 

20 µg/ml foi considerado não citotóxico (100% e 94,3% de viabilidade). Já na 

concentração de 50 µg/ml apresentou leve citotoxicidade (67% de viabilidade) e 

quando utilizado na concentração de 100 e 150 µg/ml o óleo apresentou severa 

toxicidade. Enquanto que a mistura tween/propilenoglicol 1:1 e a formulação foram 

consideradas não citotóxicas em todas as concentrações utilizadas (10, 20, 50, 100, 

150 µg/ml) com viabilidade > 80%.  
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Tabela 8 – Atividade citotóxica do óleo essencial de L. gracilis, do tween 
80/Propilenoglicol 1:1 e da formulação sobre fibroblastos 

 

Concentração 

(µg/ml) 

Viabilidade (%) 

Óleo Essencial de 

L. gracilis 

Tween + 

Propilenoglicol 1:1 
Formulação 

10 100,0±0,234 100,0±0,352 87,1±0,166 

20 94,3±0,414 100,0±0,133 92,0±0,156 

50 67,0±0,351* 95,9±0,187 95,2±0,132 

100 23,0±0,13*** 100,0±0,199 84,4±0,24 

150 0,0±0,051*** 100,0±0,187 82,8±0,197 

Nota: não citotóxicos = viabilidade > 80%;  
*leve citotoxicidade = viabilidade > 50% e < 80%;  
**moderada citotoxicidade = viabilidade > 30% e < 50%;  
***severa citotoxicidade = viabilidade < 30% 

 

5.8 ATIVIDADE AMEBICIDA  

 

Antes de realizar a atividade amebicida da microemulsão contendo o óleo 

essencial de L. gracilis, foi necessário avaliar os excipientes da formulação e 

verificar se existia possibilidade de os mesmos possuírem atividade frente aos 

trofozoítos das Acanthamoebas. Diante do exposto acima, foi realizado os seguintes 

experimentos: 

 

5.8.1 Atividade amebicida dos excipientes da formulação 

 

Conforme Gráfico 10, os trofozoítos foram expostos aos tensoativos nas 

concentrações de 100, 200, 400, 600 e 800 µg/ml e na concentração mais elevada 

inativou pouco mais de 20%. Os resultados do teste ANOVA evidenciaram que, para 

o tween e o propilenoglicol, não houve diferença estatisticamente significativa entre 

nenhuma das médias das concentrações utilizadas com p = 0,210 e 0,069 

respectivamente.  
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Gráfico 10 – Atividade amebicida do tween 80, propilenoglicol e da mistura tween 80 
/ propilenoglicol 1:1.  

 
Fonte: O AUTOR (2016) 

 

Além dos testes com os componentes isolados, foi realizado o experimento 

com a mistura de propilenoglicol e tween 80 na proporção 1:1, mesma proporção 

utilizada na formulação, a fim de descartar qualquer possibilidade de interação entre 

eles que pudesse manifestar alguma ação amebicida.  

No teste de ANOVA, os resultados mostraram que houve diferença 

significativa nas médias das concentrações (p < 0,001). Para verificar entre quais 

médias houve diferença significativa, foi realizado o teste de BONFERRONI e foram 

encontradas diferenças significativas nas concentrações de 600 (p < 0,01) e 

800µg/ml (p < 0,05) em relação ao controle. Já nas concentrações de 100 a 

400µg/ml, não houve diferenças em relação ao controle. 

Ressalta-se que essas concentrações utilizadas para os testes com os 

excipientes (100 a 800 µg/ml) estão muito acima da concentração presente na 

formulação estudada. Observou-se que o máximo da concentração de cada 

tensoativo presente na formulação e que foram testadas nas amebas não chega a 

5µg/ml. O que se nota, segundo o Gráfico 10, é que nessa concentração não ocorre 

praticamente inativação das amebas comparadas ao controle que é composto 

apenas de meio PYG e amebas. 

Só após a realização dessas análises foi possível dar seguimento aos 

experimentos com o óleo essencial de L. gracilis e, posteriormente, com as 

microemulsões desenvolvidas. 
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5.8.2 Atividade amebicida do óleo essencial de L. gracilis 

 

Com base no trabalho de Santos et al (2016) e, de acordo com os resultados 

obtidos, o óleo essencial de L. gracilis foi testado nas concentrações de 5, 10, 20, 

30, 40 e 50 µg/ml ( 

 

Gráfico 11). Logo na primeira concentração, de 5 µg/ml, foi observado a 

inviabilidade de 32% das amebas. Já na concentração máxima, 50 µg/ml, foi inibido 

o crescimento de 83% das amebas. 

Foi aplicado o teste de ANOVA e se verificou que houve diferença significativa 

entre as médias das concentrações (p < 0,001). Posteriormente, foi aplicado o teste 

de BONFERRONI e seu resultado indicou que houve diferenças significativas entre 

todas as concentrações de óleo essencial de L. gracilis utilizado em relação ao 

controle (p < 0,001). 

A IC50 (Concentração Inibitória Máxima) foi encontrada próxima ao valor de 

9,52 µg/ml, resultado semelhante aos estudos de Santos et al (2016), que avaliaram 

a atividade amebicida do óleo essencial de L. gracilis em trofozoítos de 

Acanthamoeba polyphaga, provenientes de cepa ambiental e encontraram o valor de 

10,08 µg/ml para a IC50. 

 

Gráfico 11 – Atividade amebicida do óleo L. gracilis 

Fonte: O AUTOR (2016) 
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5.8.3 Atividade amebicida das microemulsões contendo óleo essencial de L. 

gracilis 

 

A microemulsão desenvolvida (A12) foi testada nas concentrações 

semelhantes às realizadas com o óleo de L. gracilis, 5, 10, 20, 30, 40 e 50 µg/ml. Foi 

observado que, logo na concentração de 5 µg/ml, a microemulsão inativou mais de 

60% das amebas, indicando que a IC50 estaria abaixo dessas concentrações. Outra 

sequência de testes foi realizada em concentrações mais baixas: 1, 2, 3, 4, 5 e 

10µg/ml.  

De acordo com o Gráfico 12, a formulação apresentou atividade amebicida 

em todas as concentrações no período de tempo de 24 horas. Já nas menores 

concentrações, de 1 e 2 µg/ml, a formulação inviabilizou 30 e 44%, respectivamente, 

dos trofozoítos. Esse resultado diverge significativamente do controle que recebeu 

apenas meio de cultura PYG e amebas. Nas concentrações maiores, 3, 4, 5 e 10 

µg/ml, a inviabilidade foi de 54, 62, 66 e 72%, respectivamente, comparados com o 

controle.  

O teste ANOVA indica que houve diferença significativa entre as médias das 

concentrações utilizadas (p < 0,001). Para descobrir onde houve diferenças, foi 

utilizado o teste de BONFERRONI, que mostrou diferença significativa entre as 

médias de todas as concentrações em relação ao controle (p < 0,001). Observa-se, 

também, que a atividade amebicida da microemulsão foi dose dependente, 

significando que a inativação dos trofozoítos foi diretamente proporcional ao 

aumento da dose. 

 

Gráfico 12 – Atividade amebicida da amostra 12 

 

Fonte: O AUTOR (2016) 
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Em relação à IC50 obtida pelo óleo de L. gracilis puro, a formulação A12 

conseguiu diminuí-la para 2,55 µg/ml, ou seja, quando incorporado na formulação, é 

necessária uma dose de óleo essencial de L. gracilis de, aproximadamente, três 

vezes menos para inativar a mesma quantidade de trofozoítos (50%). Ao utilizar a 

formulação A9 (Gráfico 13), que possui um tamanho de gotícula de 13nm, essa IC50 

caiu para 0,65 µg/ml, tornando esta microemulsão 15 vezes mais potente em relação 

ao óleo de L. gracilis puro. 

 

Gráfico 13 – Atividade Amebicida da Amostra 9 

 

Fonte: O AUTOR (2016) 
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todas as concentrações em relação ao controle (p < 0,001). 

Comparado a outros estudos, a microemulsão com o óleo essencial de L. 

gracilis apresentou excelente atividade. CASTRO et al (2013) utilizaram o extrato de 

Acanthospermum australe (carrapicho rasteiro) frente a trofozoítos de A. polyphaga 

e obteve uma IC50 de 8,77mg/ml. Um outro fator observado no trabalho de 

CASTRO et al (2013) e que não foi observado no presente trabalho foi a formação 

de cistos em todas as concentrações de extrato utilizado. Isso é muito importante 

porque o principal fator causador de resistência aos tratamentos é a capacidade de 
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encistamento das amebas que conduz a uma reiinfecção (SCHUSTER & 

VISVESVARA, 2004). 

No trabalho realizado por Ródio (2008), no qual avaliou a atividade amebicida 

do extrato aquoso bruto de Pterocaulon playstachyum, conhecida como quitoco, 

sobre os trofozoítos de A. castellanii, foi possível observar que 41,4% dos trofozoítos 

foram inativados utilizando uma dose de 5 mg/ml do extrato em um tempo de 48 

horas. Enquanto que, neste estudo, para inativar esta mesma concentração de 

trofozoítos, foi necessária uma dose de, aproximadamente, 3 µg/ml com a 

formulação A12 e menos de 1µg/ml com a formulação A9, em apenas 24 horas.  

Em um outro estudo realizado por Karusky (2014), no qual se avaliou a 

atividade amebicida do extrato aquoso bruto de própolis verde, foi necessária uma 

dose de 2,5 mg/ml do extrato para inativar 58% dos trofozoítos em 24 horas, 

enquanto que a formulação A9, do presente trabalho, conseguiu inativar esses 58% 

com uma dose de 0,5 µg/ml, também em 24 horas.  

Em relação à otimização dos resultados obtidos entre as formulações A12 e 

A9, esta pode ser justificada pelo tamanho de gotícula da microemulsão, que na 

formulação A12 foi de 140 nm e na A9 foi de 13nm. Segundo Gogotsi (2006) e Cao 

& Wang (2004), sistemas compostos por nanopartículas, por possuirem tamanhos 

menores, são mais reativos que sistemas com tamanhos de partículas maiores. Ao 

reduzir o tamanho de gotícula de uma microemulsão, ocorre um aumento na sua 

área de superfície por unidade de massa comparada a partículas maiores, tornando-

as mais interativas ao meio em que está imersa.  
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6 CONCLUSÃO 

 

 O teste da tensão superficial demonstrou que o propilenoglicol possui 

influência sinérgica sobre o tween 80, agindo como cotensoativo. 

 

 Conseguiu-se obter sistemas microemulsionados contendo o óleo 

essencial de L. gracilis, utilizando o Tween 80 e o propilenoglicol como 

tensoativos e cotensoativos, respectivamente, empregando-se a 

ferramenta do diagrama de fases, que se mostrou simples e útil para a 

reprodução desses sistemas. 

 

 Através da técnica de SAXS, foi possível observar que as microemulsões 

estão em uma região bicontínua e que os valores de q estão relacionados 

com a quantidade de tensoativo do sistema e, consequentemente, ao 

tamanho das gotículas. 

 

 Por meio do DLS, foi confirmado que o sistema é formado por gotículas 

dispersas na ordem de nanômetros e com um índice de polidispersão 

baixo, característico de uma microemulsão.  

 

 Na análise reológica, percebeu-se que os sistemas possuem 

comportamento newtoniano típico de microemulsão e sua viscosidade 

cresce à medida que a fase aquosa aumenta e a fase oleosa diminui.  

 

 Nos testes biológicos, os tensoativos não apresentaram atividade 

amebicida significativa frente aos trofozoítos de Acanthamoeba castellanii. 

 

 O teste da citotoxicidade mostrou que o óleo essencial de L.gracilis em 

suas maiores concentrações (100 e 150μg/ml) é considerado toxico, 

enquanto que a formulação e os tensoativos não são tóxicos em todas as 

concentrações utilizadas. 
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 A formulçao A12 apresentou uma excelente atividade amebicida, três 

vezes mais potente que o óleo essencial de L. gracilis puro, enquanto que 

a formulação A9, por possuir tamanho de gota menor, apresentou-se 15 

vezes mais potente que o óleo essencial puro, com uma IC50 de 0,65 µl/ml. 
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