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RESUMO 

Erros numéricos podem ser obtidos durante a formulação do método dos elementos finitos ao 

se tentar reproduzir geometrias complexas, a depender do polinômio de interpolação, da base 

dos pontos nodais, do número de elementos e do grau aproximador. Para contornar essas 

dificuldades, aproximações de alta ordem associadas às bases ortogonais de Lobatto, 

Legendre, Tchebychev e da base nodal equidistante são aplicadas na análise de problemas uni 

e bidimensionais da elastostática. Um estudo comparativo entre as bases nodais é feito com o 

intuito de verificar a convergência à medida que é elevado a ordem polinomial, levando-se em 

conta parâmetros quantificadores como a constante de Lebesgue e o número de condição. A 

partir desses parâmetros é realizada uma análise quanto a capacidade das interpolações em 

minimizar efeitos oscilatórios, conhecido como fenômeno Runge, quando se busca reconstruir 

geometrias complexas a partir de polinômios de alto grau. Para o caso do MEF bidimensional, 

uma análise da eficiência da interpolação frente a parâmetros, tais como o número de 

elementos e grau da aproximação do domínio é feito a fim de obter máxima eficiência com 

baixo custo computacional. Exemplos são avaliados e constatado a melhora da solução 

quando é utilizada expansões espectrais em detrimento da interpolação de base igualmente 

espaçada. 

Palavras-chave: Método dos elementos finitos, Polinômios ortogonais, Elementos espectrais 

de alta ordem, Fenômeno Runge, Constante de Lebesgue.  
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1. INTRODUÇÃO 

A simulação computacional vem ganhando significativos avanços no que diz respeito a 

modelagem e reprodução de problemas de sistemas físicos grandes e complexos. A 

engenharia estrutural, ao longo das últimas décadas, cada vez mais prioriza a eficiência e 

precisão na reprodução de geometrias reais. Precisão essa adquirida através de métodos que 

possibilitem a obtenção de soluções numéricas com rápida convergência. O Método dos 

Elementos Finitos (MEF), em geral, possui boa eficiência quando se analisa problemas 

simples a partir de elementos de baixa ordem, não necessitando, assim, a utilização de 

elementos mais sofisticados. Entretanto, cada vez mais a mecânica computacional vem se 

deparando com problemas de natureza singular, ou seja, de difícil representação e de obtenção 

de solução, obrigando então a utilização de ferramentas que assegurem a qualidade da solução 

física do problema. No caso da mecânica do contínuo, essas singularidades podem resultar de 

fontes geométricas, tais como entalhes e fraturas, descontinuidades das propriedades dos 

materiais, efeitos externos, como carregamentos com descontinuidade acentuada e, também, 

devido às condições de contorno. 

A implementação de aproximações de alta ordem surge como forma de contornar 

essas dificuldades encontradas em problemas mais complexos, cuja solução numérica é de 

difícil reprodução. Entretanto, encontra-se resistência em sua utilização seja por caráter 

teórico ou computacional (KARNIADAKIS; SHERWIN, 1999, apud ROCHA; KZAM, 

2013). Como forma de assegurar a convergência uniforme, a estimativa de erro a posteriori 

agora é considerada tão importante quanto à análise de elementos finitos em si, sendo de 

razoável dificuldade a utilização do MEF sem a tolerância da capacidade dos resultados. 

(ZIENKIEWICZ; RANK, 1987). 

Uma forma de estimar esse erro é a adoção de parâmetros quantificadores, como a 

constante de Lebesgue, definida como a soma dos valores máximos absolutos das funções de 

interpolação sobre todos os nós (BLYTH; POZRIKIDIS, 2005). Tal erro associado a efeitos 

oscilatórios devido a utilização de aproximações de alta ordem é denominado de fenômeno 

Runge e pode ser quantificado pela constante de Lebesgue. 

Neste trabalho são utilizadas aproximações de alta ordem, onde os nós são colocados 

cuidadosamente nos zeros dos polinômios ortogonais de Lobatto, Tchebychev, Legendre e da 
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base igualmente espaçada (este último não ortogonal), verificando-se a convergência na 

análise de problemas elastostáticos unidimensionais e bidimensionais via MEF. Para a 

estimativa do erro, o presente trabalho utilizou como parâmetros quantificadores o número de 

condição e a constante de Lebesgue, já comentada anteriormente. Desta maneira, busca-se 

então a identificação da distribuição de pontos que minimize o erro da interpolação. Diante do 

explanado acima, este trabalho será dividido da seguinte maneira.  

1.1. Organização do trabalho 

a) Capítulo 3: Além do que será exposto no capítulo 2 referente a objetivos gerais e 

específicos, na seção 3 será abordada a revisão da Literatura, no item 3.1 é 

apresentado uma introdução do método dos elementos finitos, no 3.2 interpolação 

espectral e 3.3 MEF de alta  ordem.  

b) Capítulo 4: São feitos comentários a respeito da interpolação de alta ordem, e nos 

itens 4.1 e 4.2 aplica-se estratégias de interpolação através do estudo da matriz de 

Vandermonde e bases nodais, respectivamente. A seção 4.3 traz comentários sobre o 

erro de interpolação e a 4.4 e 4.5 traz explicações sobre o número de condição e 

interpolação sobre domínio triangular.  

c) Capítulo 5: Traz a formulação forte e fraca para vigas de Euller-Bernoulli e no item 

5.4 é retratado a formulação do MEF para 2 dimensões.  

d) Capítulo 6: Traz a metodologia do trabalho, detalhando todas as etapas até a 

obtenção dos resultados. 

e) Capítulo 7: Traz os principais comentários decorrentes da análise dos resultados.  

Ainda têm-se as referências e Apêndices onde são expostos a mudança de variável e o 

método de integração utilizado para o programa unidimensional e bidimensional. 
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2. OBJETIVOS 

2.1. Objetivo geral 

Desenvolver e implementar computacionalmente a formulação do Método dos Elementos 

Finitos aplicados a problemas uni e bidimensionais da elastostática, a partir das funções 

interpoladoras espectrais de alta ordem. 

2.2. Objetivo específico 

 Desenvolver e implementar computacionalmente algoritmos para geração de 

elementos unidimensional e bidimensional (triangular) de alta ordem com característica 

espectral (Legendre, Lobatto e Tchebychev); 

 Desenvolver e implementar computacionalmente algoritmos para geração de 

elementos unidimensional e bidimensional (triangular) de alta ordem sem característica 

espectral (Lagrange); 

 Desenvolver e implementar computacionalmente a formulação do MEF uni e 

bidimensional para problemas da elastostática aplicando os elementos de alta ordem. 
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3. REVISÃO DA LITERATURA 

Nesta seção é realizada uma breve revisão do MEF, tanto na contextualização histórica quanto 

na aplicação de elementos de alta ordem para resolver problemas elastostático. 

3.1. Breve revisão histórica do Método dos Elementos Finitos (MEF)  

Um ponto lógico predecessor ao Método dos elementos Finitos é atribuído pelas grandes 

realizações da escola francesa, tal como Navier e St. Venant, de 1850 a 1875 (Apud 

GALLAGHER, 1975). Os conceitos de análise estrutural surgiram durante este período, 

devido aos esforços de Maxwell, Castigliano, Mohr e entre outros. Conceitos estes que 

representaram a base metodológica, que aproximadamente 80 anos mais tarde, dar-se-ia o 

nome de análise matricial das estruturas. 

O progresso no desenvolvimento da teoria e das técnicas que auxiliaram ao surgimento 

da análise dos elementos finitos foi lenta no período de 1875 a 1920. Esta lentidão foi 

ocasionada, em grande parte, por limitações práticas em resolver equações algébricas com 

algumas poucas incógnitas. Sendo que neste período, o interesse estrutural estava atrelado aos 

problemas de treliças e pórticos baseados em distribuição de tensão com parâmetros de forças 

incógnitas.  

Em aproximadamente 1920, devido aos esforços de Maney, nos Estados Unidos, e 

Ostenfeld, na Dinamarca, a ideia básica de análise de treliças e pórticos passou a ser abordado 

tendo os deslocamentos como parâmetros incógnitos. Esta ideia apresentou os conceitos 

percussores da análise matricial dos dias atuais. Diversas limitações no tamanho do problema, 

seja ele com incógnita força ou deslocamento, continuou até 1932, quando Hard Cross 

introduziu o método da distribuição de momento. Este método tornou possível a solução de 

problemas da análise estrutural com magnitude mais complexas que o mais sofisticado 

problema tratado pelas abordagens anteriores.  

O método da distribuição do momento tornou a parte mais importante para a análise 

prática das estruturas por durante 25 anos (GAUL; KÖGL; WAGNER, 2003). 

A aparição do primeiro computador digital, por volta de 1950, teve uma contribuição 

desprezível para a evolução dos conceitos numéricos para resolver problemas de Engenharia.  
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 Esta pouca contribuição dos computadores foi devido à dificuldade de codificação de 

procedimentos bem estabelecidos para a análise estrutural em formato adequado aos 

computadores: o formato de matriz. Dois notáveis desenvolvimentos foram publicados, um 

por Agryris e Kelsey e o outro por Turner, Clough, Martin e Topp. Essas publicações uniram 

os conceitos de análise estrutural e análise do contínuo, tendo como resultado a criação de 

desenvolvimentos no formato matricial. Estes autores influenciaram no desenvolvimento do 

método dos elementos finitos nos anos seguintes. No entanto, pode parecer impreciso atribuir 

o surgimento do MEF a estes trabalhos, pois características importantes do MEF apareceram 

até mesmo antes de 1950, nos artigos de Courant, McHenry e Hrenikoff (GAUL; KÖGL; 

WAGNER, 2003). O trabalho de Courant é particularmente significante, pois este se preocupa 

com problemas governados por equações aplicáveis a outras situações diferentes da mecânica, 

não apenas à análise estrutural. Entretanto, como este breve histórico é focado no método dos 

elementos finitos aplicados à mecânica estrutural, não seria nenhuma injustiça atribuir as 

importâncias devidas às duas publicações citadas acima. 

A tecnologia da análise por elementos finitos teve avanços em numerosas fases desde 

1950 e para maiores detalhes é aconselhado ver o trabalho de Zienkiewicz (1970). Motivado 

por formulações de elementos para tensão plana, pesquisadores estabeleceram elementos 

associados para sólidos, placas, vigas, chapas e outras formas estruturais. Uma vez conhecida 

a abordagem para a análise linear, estática e elástica, a atenção foi destinada a fenômenos 

especiais tais como dinâmica, flambagem e não linearidades físicas e geométricas. Este 

avanço foi marcado por um período de intenso desenvolvimento de programas de 

computadores, os quais eram destinados a aproximar o MEF às aplicações práticas. 

Nos dias atuais, muitos pesquisadores continuam a se preocupar com a formulação de 

novos elementos, ao desenvolvimento de formulações do MEF melhoradas, além da criação 

de novos algoritmos para capturar fenômenos especiais, principalmente, os fenômenos não-

lineares e de interesses interdisciplinares. 

3.2. Interpolação Espectral  

 Os métodos que utilizam elementos espectrais/ℎ𝑚 combinam a flexibilidade geométrica das 

técnicas clássica dos elementos finitos e do volume finito tipo ℎ com as propriedades 

desejáveis de resolução dos métodos espectrais. Nesta abordagem, uma expansão polinomial 

de ordem 𝑚 é aplicada a cada domínio elementar da malha, com poucos elementos, na 



12 

 

formulação de elementos finitos. Esta técnica foi aplicada em muitos estudos fundamentais da 

mecânica dos fluidos (SHERWIN; KARNIADAKIS, 1996) e, mais recentemente, ganhou 

maior popularidade na modelagem de fenômenos baseados em ondas, tais como no 

eletromagnetismo computacional (HESTHAVEN; WARBURTON, 2002) e em problemas de 

águas rasas (BERNARD; REMACLE; COMBIEN; LEGAT; HILLEWAERT, 2009), em 

especial quando aplicado dentro de uma formulação de Galerkin descontínuo. 

Métodos dos elementos espectrais/ℎ𝑚 podem ser considerados como uma extensão de 

alta ordem do método dos elementos finitos clássicos (de baixa ordem) onde a convergência 

não só é possível através da redução do tamanho h característico da malha, mas também 

através do aumento da ordem polinomial local 𝑚 dentro de um subdomínio elementar. No 

entanto, o conceito de discretizações de alta e baixa ordem podem ter diferentes significados 

para diversas comunidades científicas. Por exemplo, nas obras seminais de Zienkiewicz e 

Taylor (ZIENKIEWICZ; TAYLOR, 1989) e Hughes (HUGHES, 1987) listam exemplos de 

expansões elementar somente até o terceiro ou, eventualmente, até a quarta ordem, 

implicando nestas ordens serem consideradas elevadas para a comunidade de elementos 

finitos tipo ℎ. Em contraste, as bibliografias da comunidade de elementos espectrais/ℎ𝑚 

(SZABO; BABUSKA, 1991; KARNIADAKIS; DEVILLE; FISCHER; MUND, 2002; 

SHERWIN, 2005; HESTHAVEN; WARBURTON, 2008) mostram exemplos típicos de 

problemas que vão desde aproximação de baixa ordem, minimamente considerado como de 

quarta ordem, até expansões polinomiais que vão de décima a décima-quinta ordem. Na outra 

extremidade do espectro, estão os grupos de pesquisa dos métodos espectrais global 

(GOTTLIEB; ORSZAG, 1977) que consideram uma expansão global de ordem 16 como 

sendo relativamente baixa para a aproximação. 

Pode-se perguntar se essas diferentes definições de baixa e alta ordem é apenas 

inerente à tradição ou folclore de cada uma das comunidades ou se existem razões mais 

práticas para estas distintas interpretações. Os proponentes dos métodos de baixa ordem 

podem destacar que alguns problemas de interesse prático são tão geometricamente 

complexos que não se pode, computacionalmente, dar ao luxo de usar técnicas de alta ordem 

em malhas pesadas para capturar a geometria. Alternativamente, os proponentes dos métodos 

de alta ordem destacam que, caso o problema de interesse possa ser capturado em um domínio 

computacional a um custo razoável, utilizando aproximações de ordem superior para soluções 

suficientemente suaves, então sua aplicação torna-se recomendada, pois irão proporcionar 
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uma precisão mais alta (VOS; SHERWIN; KIRBY, 2010). Esta maior precisão é devido ao 

fato de que os nós da base de interpolação são colocados cuidadosamente nas posições 

correspondentes aos zeros dos polinômios ortogonais, obtendo assim a expansão do elemento 

espectral (ROCHA e KZAM, 2013). 

Como pode ser observado, há uma divergência conceitual nas mais diversas 

comunidades científicas do que vem a ser elementos de alta ordem. Entretanto, neste trabalho 

é considerado elementos de alta ordem para o espectro de valores de 𝑚 maior que ordem 4. 

3.3. Método dos elementos Finitos de alta ordem 

O Método dos elementos Finitos é atualmente o método numérico mais utilizado para resolver 

equações diferenciais e sendo o MEF presente em numerosos softwares comerciais 

disponíveis no mercado. No MEF, o domínio do problema é dividido em um certo número de 

subdomínios (ou elementos finitos) com a conectividade entre os elementos fornecidas através 

de pontos nodais comuns. Funções de aproximação por partes para as variáveis desconhecidas 

são então selecionada para cada elemento finito que satisfaçam alguns requisitos mínimos de 

continuidade entre os elementos no contorno, que dependerão das suposições feitas no modelo 

matemático básico. O conjunto de equações simultâneas, normalmente, com coeficientes 

simétricos, obtêm-se através da formulação fraca da equação diferencial obtida pelo método 

dos resíduos ponderados, ou aplicando a condição de estacionária ao funcional para o 

problema, se disponível.  

A qualidade da solução aproximada depende da proximidade do modelo finito com o 

modelo matemático que representa o problema em análise. A proximidade é controlada pelos 

atributos do problema, pelo algoritmo numérico usado, pela distribuição e natureza do grau de 

liberdade, pelo número de dígitos de precisão utilizado na computação, e pelo tipo de 

algoritmo utilizado para calcular as integrais e para resolver o sistema de equações. No caso 

de problemas elípticos, todo o domínio espacial precisa ser refinado pois as condições de 

contorno afetam toda a região. No caso de problemas de valor inicial, o modelo de 

refinamento reque estratégias diferentes da utilizada para problemas elípticos, no sentido de 

que nos problemas de valor inicial, o futuro não afeta o presente e o refinamento pode ser 

variado de um estágio para outro, dependendo do comportamento local da solução. 
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No caso de problemas elípticos, a qualidade da solução é dependente do modelo 

utilizado, ou seja, dependente do tamanho e da ordem dos elementos, assim como da sua 

distribuição. O uso da forma fraca para a equação diferencial (ou, minimização do funcional 

no sentido variacional) conduz a resultados em que as derivadas da função aproximadora são 

menos precisas que a própria função, a menos que as derivadas sejam também aproximadas, o 

que é menos conveniente na formulação clássica do MEF. A qualidade da solução pode ser 

melhorada por refinamento do modelo de elementos finitos, seja por usando mais elementos 

de menor tamanho (conhecido como extensão h), ou por aumentar a ordem da função 

aproximadora por partes em uma malha fixa (conhecido como extensão p), ou, ainda, por uma 

combinação ótima das duas extensões (conhecido como extensão hp). Azabo (BABUSKA; 

SZABO; KATZ, 1981) e seus colaboradores foram responsáveis, não somente por iniciar os 

estudos das extensões p e hp, mas também por identificar o conjunto de funções base baseada 

nos polinômios de Legendre (ou suas integrais) como a melhor escolha a ser usado na 

formulação do MEF de alta ordem, devido a sua propriedade ortogonal e a sua natureza 

hierárquica (BABUSKA; SZABO; KATZ, 1981, BASU; PEANO, 1983). Uma outra 

alternativa para melhorar o modelo é realizar a redistribuição dos graus de liberdades por 

meio de mudanças estratégicas do tamanho dos elementos, reduzindo seus tamanhos e 

aumentando a ordem das funções de aproximação de modo que o número total de graus de 

liberdade permaneça inalterado (conhecido como extensão r). Nos elementos que fazem 

fronteira com ponto singular, ao invés de usar polinômios regulares (  
1

2

p

j jj
u u N 




  com 

1 1    e jN  como função base), usa-se polinômios de Legendre, ou de Chebyshev ou de 

Jacobi para capturar a singularidade (BASU; JORGE; BADRI; LIN, 2003). 

A qualidade da solução pode ser verificada, erroneamente, no sentido a posteriori 

usando informação não satisfatória, como por exemplo, devido a aplicações indevidas das 

condições de contorno naturais, e devido a violação dos requisitos de continuidade das 

derivadas dos funcionais, assim como, devido ao uso do grau das funções aproximadoras 

inadequados. Outro indicador indireto pode ser a grandeza do resíduo obtido quando a 

solução aproximada é substituída nas equações diferenciais que regem o problema de análise. 

Métodos têm sido propostos para estimar o erro por diferentes normas (por exemplo, norma 

de energia) em níveis elementar e global usando estimativas melhoradas da solução através de 

pós-processamento da solução atual. Estimativas pontuais do erro nos valores da função e das 

derivadas podem também ser obtidas comparando a solução atual com as estimativas 
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melhoradas da solução. Após a determinação das estimativas do erro global e local, o modelo 

de elementos finitos pode ser perfeitamente melhorado usando uma das extensões h, p, hp ou r 

(BASU; JORGE; BADRI; LIN, 2003).  

3.4. Interpolação de alta ordem 

Nesta seção é apresentada a fundamentação teórica para o desenvolvimento dos elementos de 

alta ordem por meio da construção da matriz de Vandermond generalizada. É ainda 

apresentada a construção das bases espectrais (Legendre, Lobatto, Tchebthev) e não espectral, 

Lagrange, para interpolações unidimensionais e bidimensionais. 

3.4.1. Matriz de Vandermond generalizada  

A estratégia para aumentar a ordem polinomial é obtida através da determinação da matriz de 

Vandermond. Este procedimento é empregado por ser de fácil generalização na geração de 

funções de forma para elementos uni e bidimensionais de ordem qualquer. (POZRIKIDIS, 

2005, apud, ROCHA E KZAM, 2013). 

O termo geral do polinômio interpolador é obtido por: 

Fish e Belytschko (2007) ressaltam uma propriedade importante das funções de forma 

denominada delta de Kronecker (δ𝑖𝑗). A partir de tal propriedade, conclui-se que essas 

funções possuem valor unitário nos nós analisados, enquanto que nos demais nós, seu valor é 

nulo. Matematicamente tem-se:  

𝛿𝑖𝑗 {
1,    𝑖 = 𝑗
0,   𝑖 ≠ 𝑗

}, 

ao impor as propriedades da partição da unidade, a equação 3 fica escrita como: 

 𝜑𝑖(𝜉) = ∑ 𝑎𝑖𝑗𝜉
𝑗 = 𝑎𝑖0 + 𝑎𝑖1𝜉 + ⋯+ 𝑎𝑖𝑚𝜉

𝑚𝑚
𝑗=0 . (3) 

 
𝜑𝑖(𝜉 = 𝜉𝑘) =∑𝑎𝑖𝑗𝜉

𝑗 = 𝑎𝑖0 + 𝑎𝑖1𝜉𝑘 +⋯+ 𝑎𝑖𝑚𝜉𝑘
𝑚 = 𝛿𝑖𝑚,

𝑛

𝑗=0

 (4) 
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sendo 𝜑𝑖, as funções de forma avaliadas nos pontos 𝑖 = 1, . . . , (𝑚 + 1),  𝑎𝑖𝑗 os coeficientes 

dos polinômios e 𝛿𝑖𝑘, o delta de Kronecker. Tem-se: 

[

𝑎10 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑘0 ⋯ 𝑎𝑘𝑚

] [
1 ⋯ 1
⋮ ⋱ ⋮
𝜉1
𝑚 ⋯ 𝜉𝑘

𝑚
] = [

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] , 

esta representação simbólica fica: 

em que M, é a matriz com os coeficientes dos polinômios interpoladores, V é a matriz de 

Vandermonde e I é a matriz identidade. A matriz que contém as potências das coordenadas 

adimensionais é denominada de matriz de Vandermonde e os seus coeficientes são obtidos 

diretamente pelo cálculo de sua inversa. 

calculado os valores dos coeficientes, as funções de forma em um ponto de coordenadas 

adimensional qualquer, podem ser calculadas a partir: 

3.5. Bases nodais  

Na tentativa de obtenção da função aproximadora para a resolução do problema físico, a base 

interpoladora utilizada torna-se de imprescindível importância. Uma vez que esta interfere 

diretamente na eficiência e precisão da análise numérica, seja por erros cometidos na 

representação geométrica, seja por erros obtidos na resposta mecânica do problema. Uma 

correta distribuição dos pontos nodais dentro de uma base é fundamental no estudo da 

convergência uniforme quando se utiliza funções de alta ordem. A seguir são apresentadas as 

bases nodais estudadas durante esse trabalho. 

3.5.1. Base nodal igualmente espaçada 

 𝑀𝑉 = 𝐼,  (5) 

 𝑀 = 𝑉−1, (6) 

 
𝜑𝑖(𝜉𝑝) =∑𝑎𝑖𝑗(𝜉𝑝)

𝑖

𝑚

𝑗=0

. 
 

(7) 
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Para a construção do conjunto de pontos igualmente espaçados, {𝜉𝑘 𝜖 ℝ; −1 ≤ 𝜉𝑘 ≤ +1}, é 

obtido pela expressão: 

 𝜉𝑘 = 𝜉1 + 𝑟(𝑘 − 1), (8) 

sendo 𝑘 = 1,… , (𝑛 + 1), a partição do intervalo, 𝜉1 = −1, o ponto inicial, 𝑟 =
2

𝑛
 a razão da 

progressão e 𝑛 o grau da interpolação. 

3.5.2. Base nodal espectral 

Para construção da base nodal espectral têm-se de fundamental importância os polinômios 

ortogonais, uma vez que a posição destes pontos da base é obtida pelos zeros dos polinômios 

com característica de ortogonalidade.  

Os Polinômios Ortogonais vem sendo utilizados na matemática aplicada para a 

resolução de diversos problemas, por serem uma base apropriada para a aproximação de 

funções. Entre os principais polinômios ortogonais, sendo estes os utilizados neste trabalho, 

tem-se: os polinômios de Legendre, Tchebychev e Lobatto. 

3.5.2.1. Polinômios de Legendre 

Os Polinômios de Legendre estão definidos no intervalo [−1,1], segundo o produto: 

Seus primeiros polinômios são: 

𝑃0(𝑥) = 1, 

𝑃1(𝑥) = 𝑥, 

𝑃2(𝑥) =
1

2
(3𝑥2 − 1), 

𝑃3(𝑥) =
1

2
(5𝑥3 − 3𝑥), 

𝑃4(𝑥) =
1

8
(35𝑥4 − 30𝑥2 + 3). 

 
(𝑓, 𝑔) =  ∫𝑓(𝑥)𝑔(𝑥)𝑑(𝑥)

1

−1

 
 

(9) 



18 

 

De acordo com Pozrikidis (2005), os polinômios de Legendre podem ser obtidos pela 

fórmula de recorrência abaixo, onde 𝑃𝑜(x) = 1 e 𝑃1(x) = x. A figura 1 mostra o 

comportamento dos polinômios de Legendre, além dos polinômios de Lobatto e Tchebychev. 

 

 

 

 

 

 

 

 
 
 

 

Figura 1. Primeiros polinômios das bases ortogonais de Legendre, Tchebychev e Lobatto. 
 

 
 

3.5.2.2. Polinômios de Tchebychev  

São definidos no intervalo [−1,1] pelo produto: 

Seus primeiros polinômios são descritos abaixo: 

 𝑃𝑛+1(𝑥) =
2𝑛+1

𝑛+1
𝑥 𝑃𝑛(𝑥) −  

𝑛

𝑛+1
𝑃𝑛−1(𝑥),  𝑛 ≥  1. (10) 

 (𝑇𝑛, 𝑇𝑚) = ∫
1

√1−𝑥²
𝑇𝑛(𝑥)𝑇𝑚(𝑥)𝑑𝑥

1

−1
, (11) 
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𝑇0 = 0, 

𝑇1 = 𝑥, 

𝑇2 = 2𝑥² − 1, 

𝑇3 = 4𝑥³ − 3𝑥, 

𝑇4 = 8𝑥
4 − 8𝑥2 + 1. 

Sua função de recorrência segundo Pozrikidis (2005) é: 

com, 𝑇𝑜(𝑥) = 1 𝑒 𝑇1(𝑥) = 𝑥. 

3.5.2.3. Polinômios de Lobatto  

Os polinômios de Lobatto são definidos no intervalo [−1,1] e formados por: 

em que, sua fórmula de recorrência segundo Pozrikidis (2005) é: 

com, 𝑃𝑛 e 𝑃𝑛+1, polinômios de Legendre. Os primeiros polinômios de Lobatto são descritos 

abaixo. 

𝑃0 = 1, 

𝑃1 = 3𝑥, 

𝑃2 =
5

2
(5𝑥2 − 1), 

𝑃3 = 
5

2
(7𝑥3 − 3𝑥). 

A maior razão para a escolha dos polinômios de Lobatto é que a interpolação nodal 

sempre irá variar em uma amplitude de ⌈−1,1⌉·, independente da ordem polinomial utilizada: 

 𝑇𝑛+1(𝑥) =  2𝑥 𝑇𝑛(𝑥) −   𝑇𝑛−1(𝑥),  𝑛 ≥  1, (12) 

 (𝐿𝑛, 𝐿𝑚) = ∫ (1 − 𝑥2)𝐿𝑛(𝑥)𝐿𝑚(𝑥)𝑑𝑥
1

−1
, (13) 

 𝐿𝑛(𝑥) =  
1

𝑥2 − 1
[(𝑛 + 1) 𝑥 𝑃𝑛+1(𝑥) −   (𝑛 + 1)𝑃𝑛(𝑥)],  𝑛 ≥  0, (14) 
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 𝜑𝑖(𝜉) ≤ 1., (15) 

devido a essa propriedade, as oscilações Runge são suprimidas, acarretando em uma melhor 

eficiência na interpolação e o raio de convergência na interpolação com respeito ao grau 𝑚, é 

mais rápido do que qualquer potência 1/𝑚 (POZRIKIDIS, 2005). 

3.6. Erro na interpolação 

A estimativa do erro mostra-se hoje em dia tão importante quanto a análise dos resultados em 

si. Considerando uma função 𝑓(𝑥) a qual é interpolada por polinômios, 𝑃𝑚(𝑥), de grau igual 

ou menor a 𝑚. A diferença entre o valor da função exata e a função aproximadora é o erro da 

interpolação. 

as condições de interpolação garantem que nos pontos de interpolação 𝑥𝑖, 

para 𝑖 = 1, 2, … ,𝑚 + 1, 𝑒(𝑥) tem no mínimo 𝑚+ 1 zeros no domínio de interpolação. Em 

geral, 𝑒(𝑥) ≠ 0 quando 𝑥 ≠ 𝑥𝑖. 

Quando a função f(x) é suficientemente suave, o erro ocorrido pela interpolação 

polinomial é dado por (Davis, 1975). 

Segundo Rocha e Kzam (2013), a análise da convergência de uma função requer a 

utilização de parâmetros quantificadores da magnitude do erro. Essa medida do erro será 

realizada pela norma máxima de uma função 𝑓(𝑥) denotada por ‖𝑓(𝑥)‖, ou seja, o valor 

absoluto máximo de 𝑓(𝑥). Para todos os polinômios de grau 𝑛 de aproximação de uma função 

𝑓(𝑥), existe um polinômio ótimo, denotado de 𝑃𝑚
𝑜𝑡𝑖(𝑥), que exibe o erro mínimo ‖𝑒(𝑥)‖, 

 𝑒(𝑥) =  𝑃𝑚(𝑥) −  𝑓(𝑥), (16) 

 𝑒(𝑥𝑖) = 0. (17) 

 
𝑒(𝑥) = −

𝑓(𝑚+1)(𝜉)

(𝑚 + 1)!
(𝑥 − 𝑥1)(𝑥 − 𝑥2)… (𝑥 − 𝑥𝑚)(𝑥 − 𝑥𝑚+1). 

 

(18) 
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chamado de erro minimax e denotado de 𝜌𝑚[𝑓(𝑥)]. Esse polinômio ótimo não 

necessariamente é um polinômio de interpolação da função 𝑓(𝑥). 

Considerando para todas as funções f(x) com a norma máxima unitária, ‖𝑓(𝑥)‖ = 1, a 

correspondente norma do erro de interpolação é: 

para enfatizar que o polinômio 𝑃𝑚(𝑥) aproxima a função 𝑓(𝑥), é utilizado como notação 

𝑃𝑚(𝑥, 𝑓). Em seguida é aplicado o lema de Lebesgue (Karniadakis e Sherwin, 1999), e 

desenvolve a desigualdade. 

sendo que: 

‖𝑒(𝑥)‖ máximo é calculado sobre todas as funções admissíveis, 𝑓(𝑥). Assim, 

Para obter um limite para a norma ‖𝑃𝑚‖,o polinômio interpolante é expresso em 

termos dos polinômios da equação 5. Relembrando a condição que ‖𝑓(𝑥)‖ = 1, pode-se 

escrever: 

 ‖𝑒(𝑥)‖ ≡ ‖𝑃𝑚(𝑥) − 𝑓(𝑥)‖ = ‖(𝑃𝑚(𝑥) − 𝑃𝑚
𝑜𝑡𝑖(𝑥)) + (𝑃𝑚

𝑜𝑡𝑖(𝑥) − 𝑓(𝑥)‖

≤ ‖𝑃𝑚(𝑥) − 𝑃𝑚
𝑜𝑡𝑖(𝑥)‖ + ‖𝑃𝑚

𝑜𝑡𝑖(𝑥) − 𝑓(𝑥)‖

= ‖𝑃𝑚 (𝑥) − 𝑃𝑚
𝑜𝑡𝑖(𝑥)‖ + 𝜌𝑚[𝑓(𝑥)], 
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 ‖𝑃𝑚(𝑥, 𝑓) − 𝑃𝑚
𝑜𝑡𝑖(𝑥)‖ = ‖𝑃𝑚(𝑥, 𝑓) − 𝑃𝑚 (𝑥, 𝑃𝑚

𝑜𝑡𝑖)‖

≤ ‖𝑃𝑚‖. ‖𝑓(𝑥) − 𝑃𝑚
𝑜𝑡𝑖(𝑥)‖, 

(20) 

 𝑃𝑚 = max‖𝑃𝑚(𝑓(𝑥))‖, (21) 

 ‖𝑒(𝑥)‖ ≤ (1 + ‖𝑃𝑚‖)𝜌𝑚[𝑓(𝑥)]. (22) 

 
‖𝑃𝑚‖ ≡ max(|∑ 𝑓(𝑥𝑖)𝜑𝑖(𝑥)

𝑚+1

𝑖=1

|) ≤ max (∑|𝑓(𝑥𝑖)||𝜑𝑖(𝑥)|

𝑚+1

𝑖=1

) ≤ max(ℑ𝑚(𝑥)), (23) 
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em que: 

é a função de Lebesgue, cujo máximo valor é a constante de Lebesgue, 

É conhecido que a constante de Lebesgue possui o comportamento crescente á medida 

que 𝑚 tende ao infinito. O teorema de 𝐸𝑟𝑑𝑜̈𝑠 coloca um limite inferior para o crescimento 

possível da constante (RIVLIN, 1969) 

onde c é uma constante positiva. Assim, a constante de Lebesgue cresce tão rápido quanto 

ln𝑚.Quando os pontos são igualmente espaçados no intervalo definido, a constante de 

Lebesgue cresce rapidamente com o aumento de 𝑚, exibindo o comportamento: 

É possível provar que quando os nós de interpolação são colocados nos zeros dos 

polinômios ortogonais a constante de Lebesgue, cresce muito lentamente á quase taxa 

logarítmica ideal segundo Fejér, (1932a) e Fejér, (1932b), apud Rocha e Kzam (2013). Para a 

interpolação de Lobatto, a análise numérica revela o limite (BOS, 1983; HESTHAVEN e 

TENG, 2000, apud ROCHA e KZAM (2013) 

3.7. Número de condição  

Para a resolução de sistemas lineares, um aspecto é bastante significante e deve ser 

considerado, quando a solução de determinada equação é muito sensível a pequenas 

 
ℑ𝑚(𝑥) ≡ ∑|𝜑𝑖(𝑥)|

𝑚+1

𝑖=1

 
 

(24) 

 Λ𝑚 ≡ max(ℑ𝑚(𝑥)) (25) 

 Λ𝑚 ≤
2

𝜋
ln𝑚 + 1 − 𝑐, (26) 

 
Λ𝑚~

2𝑚

𝑚 log𝑚
. 

 

(27) 

 Λ𝑚 ≤
2

𝜋
ln(𝑚 + 1) + 0,685. (28) 



23 

 

mudanças nos seus coeficientes. Esse Fenômeno é denominado de mal condicionamento e 

está relacionado a singularidade da matriz dos coeficientes (Franco, 2010). Este aspecto pode 

ser quantificado e expresso por meio de: 

sendo ‖𝐴‖ a norma euclidiana da matriz analisada, e ‖𝐴‖−1 sua inversa. ‖𝐴‖ pode ser 

expresso através de: 

3.8. Interpolação em domínio triangular 

Segundo Pozrikidis (2005), para a interpolação de uma função 𝑓(𝜉1, 𝜉2), é necessário realizar 

uma expansão polinomial sobre a área de um triangulo padrão no plano paramétrico 𝜉1 − 𝜉2: 

𝑓(𝜉1,𝜉2)    =  𝑎00 

+ 𝑎10𝜉1 + 𝑎01𝜉2 + 

𝑎20𝜉1
2 + 𝑎11𝜉1𝜉2 + 𝑎22𝜉2

2 + 

𝑎30𝜉1
3 + 𝑎21𝜉1

2𝜉2 + 𝑎12𝜉1𝜉2
2 + 𝑎03𝜉2

3 + 

cuja soma dos índices 𝑖 + 𝑗 dos coeficientes 𝑎𝑖𝑗 é constante a cada linha e o número de 

coeficientes é determinado por: 

A expansão polinomial pode ser escrita como: 

 𝑐𝑜𝑛𝑑(𝐴) = ‖𝐴‖‖𝐴‖−1, (29) 

  ‖A‖E = √∑ aij
2n

i,j=1 (norma euclidiana). (30) 

 𝑎𝑚0𝜉1
𝑚 + 𝑎(𝑚−1)1𝜉1

(𝑚−1)
𝜉2 +⋯+ 𝑎1(𝑚−1)𝜉1𝜉2

(𝑚−1) + 𝑎0𝑚𝜉2
𝑚, (30) 

 𝑁 = (
𝑚 + 2

2
) =  

1

2
(𝑚 + 1)(𝑚 + 2). (31) 

 𝑓(𝜉1, 𝜉2) =  ∑ [∑ 𝑎𝑖𝑗𝑀𝑖𝑗(𝜉1, 𝜉2
𝑚−𝑗
𝑖=0 ) ]𝑚

𝑗=0 .  

(32) 
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Para o processo de interpolação, é introduzido a função de interpolação cardinal para o 

nó i, 𝜓𝑖(𝜉1, 𝜉2), para 𝑖 = 1,2, …𝑁 , com a propriedade: 

em que 𝛿𝑖𝑗  é o delta de Kronecker. A interpolação polinomial sobre o triângulo paramétrico 

pode ser escrito da seguinte forma: 

As funções de interpolação podem ser apresentadas como combinações lineares de um 

conjunto N de polinômios independentes, 𝜙𝑗(𝜉1, 𝜉2), sendo assim, a função de interpolação 

cardinal para o nó 𝑖 de ordem 𝑚 no plano 𝜉1 − 𝜉2 é escrito da seguinte forma : 

onde 𝑐𝑗 corresponde a 𝑁 coeficientes de expansão paro o nó desejado, e sendo 𝑗 = 1,2, … ,𝑁. 

𝜙𝑗, é o vetor das funções de base e para isso. 

Diversas são as escolhas possíveis, sendo as melhores os polinômios de Appel e 

Proriol. Porém estudos realizados por Blyth e Pozrikidis (2005) revelaram que Proriol tem 

uma melhor eficiência quando comparado ao polinômio de Appel. 

3.8.1. Interpolação de Proriol 

A base mais desejável segundo Proriol (1957) apud Rocha (2015) é constituída pelo 

polinômio de Proriol, o qual é totalmente ortogonal sobre a área do triangulo. Independente da 

escolha da base deve-se impor a condição de interpolação cardinal, que pode ser escrita pela 

Equação (36): 

 𝜓𝑖(𝜉1
𝑗
, 𝜉2
𝑗
) =  𝛿𝑖𝑗, (33) 

 𝑓(𝜉1, 𝜉2) =  ∑ 𝜓𝑖(𝜉1
𝑗𝑁

𝑗=1 , 𝜉2
𝑗
)𝑓(𝜉1

𝑗
, 𝜉2
𝑗
).  

(34) 

 𝜓𝑖(𝜉1, 𝜉2) = 𝑐𝑁𝜙1(𝜉1, 𝜉2) + 𝑐𝑁−1𝜙2(𝜉1, 𝜉2) + ⋯+ 

+ 𝑐2𝜙𝑁−1(𝜉1, 𝜉2)  𝑐1𝜙𝑁(𝜉1, 𝜉2) , 

(35) 

 𝑉𝑖
𝑇 . 𝑐 = 𝑒𝑖 , (36) 
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em que 𝑉𝜙 é dado por: 

sendo o termo 𝑉𝜙 a matriz de Vandermonde generalizada 𝑁 𝑥 𝑁 com componentes 𝑉𝜙𝑖 =

 𝜙𝑖(𝜉1
𝑗
, 𝜉2
𝑗
). E tendo como coeficientes da expansão: 

𝑐 =  

{
 
 

 
 
𝐶𝑁
𝐶𝑁−1
𝐶3
𝐶2
𝐶1 }

 
 

 
 

,                                                                  (38) 

ainda, sendo 𝑒𝑖 o vetor unitário no espaço de dimensão n associado ao nó. Assim, tem-se que:  

em que 𝜙(𝜉1, 𝜉2), é o vetor de função da base. Aplicando para todos os nós se tem: 

então rearranjando o problema: 

Para introduzir o Polinômio de Proriol, inicialmente é mapeado o triângulo contido no 

plano 𝜉1 − 𝜉2 para o quadrado padrão −1 ≤ 𝜉1
, ≤ 1, −1 ≤ 𝜉2

, ≤ 1, usando a transformação de 

Duff, de acordo com Pozrikidis (2005): 

 

𝑉𝜙 = (
𝜙1(𝜉1

1, 𝜉2
1) ⋯ 𝜙1(𝜉1

𝑁, 𝜉2
𝑁)

⋮ ⋱ ⋮
𝜙𝑁(𝜉1

1, 𝜉2
1) ⋯ 𝜙𝑁(𝜉1

𝑁 , 𝜉2
𝑁)
), 

 

(37) 

 𝜓𝑖 =  𝜙(𝜉1, 𝜉2). [𝑉𝜙
𝑇]
−1
. 𝑒𝑖, (39) 

 𝜓(𝜉1, 𝜉2) = 𝜙 (𝜉1, 𝜉2). [𝑉𝜙]
−1, (40) 

 𝑉𝜙. 𝜓(𝜉1, 𝜉2) =  𝜙(𝜉1, 𝜉2). (41) 

 𝜉1
,  =  

(1 + 𝜉1
,  )(1 − 𝜉2

,  )

4
 , 𝜉2

,  =
( 1 + 𝜉2

, )

2
 . (42) 



26 

 

O Polinômio de Proriol, 𝑃𝑅𝑘𝑙, envolve monômios da forma 𝜉1
𝑝𝜉2

(𝑗−𝑝+𝑞)
com ordem 

k+q combinada e com 𝑝 = 1,2, … , 𝑘 e 𝑞 = 1,2, … , 𝑙. Então, segundo Rocha (2015). Pode-se 

escrever o polinômio de proriol da seguinte maneira: 

Os primeiros polinômios de Proriol são: 

PR00 = 1 , 

PR10 = 2ξ1 + ξ2, 

PR01 = 3ξ2 − 1, 

PR20 = 6ξ1
2 + 6ξ1ξ2 + ξ2

2 − 6ξ1 − 2ξ2 + 1 , 

3.8.2. Base nodal uniforme em domínio triangular 

Para polinômio interpolador de grau 𝑚, a distribuição igualmente espaçada é dada por 

(POZRIKIDIS, 2005). 

com 𝑖 =  1,2, . . . , 𝑚 + 1 e 𝑣𝑖 são valores adimensionais. 

Para garantir a interpolação sobre 𝑚 + 1 pontos, 𝑣1 = 0 e 𝑣𝑚+1 = 1, as linhas dos nós 

vertical e horizontal são descritas abaixo, com 𝑗 = 1,2, . . . . , . 𝑚 + 1. 

Os nós ao longo da hipotenusa do triângulo estão localizados pelo movimento vertical 

para cima a partir dos nós no eixo 𝜉1, ou horizontalmente para a direita a partir dos nós no 

eixo 𝜉2 , os nós interiores são colocados nas linhas vertical e horizontal, produzindo(𝜉1
𝑖 , 𝜉2

𝑖) 

(Rocha, 2013). A figura 2 demonstra como ocorre a distribuição igualmente espaçada dos nós 

ao longo do triângulo retângulo. 

 
PRkl = [∑ (𝐤

𝐢
)( 𝐤
𝐤−𝐢
) (

𝛏𝟏
´ −𝟏

𝟐
)
𝐤−𝐢

(
𝛏𝟏
´ +𝟏

𝟐
)
𝐢

(
𝟏−𝛏𝟐

´

𝟐
)
𝐤

𝐤
𝐢=𝟎 ] 

.[∑ (𝐥+𝟐𝐤+𝟏
𝐣

) ( 𝐥
𝐥−𝐣
)𝐥

𝐣=𝟎 (
𝛏𝟐
´ −𝟏

𝟐
)
𝐥−𝐣

(
𝛏𝟐
´ −𝟏

𝟐
)
𝐣

]. 

(43) 

 
𝑣𝑖 =

(𝑖 − 1)

𝑚
 , 

(44) 

 𝜉1
𝑖 = 𝑣𝑖  ,   𝜉2

𝑗
= 1 − 𝑣𝑚+2−𝑗. (45) 
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Fonte - Adaptado do Rocha, 2015. 

 

Figura 2.  Ilustração da distribuição igualmente espaçada de nós sobre o triângulo. 

Para 𝑖 = 1,2, . . . 𝑚 + 1 . As linhas diagonais correspondem a valores constantes da 

coordenada baricênctrica 𝜉3 = 1 − 𝜉1 − 𝜉2, variando de 𝜉3 = 0 á 𝜉3 = 1 dentro da área do 

triângulo. Cada linha diagonal é identificada pelo índice: 

De acordo com Pozrikidis (2005), para cada nó (𝑖, 𝑗) formado pela intersecção entre as 

linhas 𝑖, verticais e as horizontais, 𝑗, a expressão de interpolação pode ser escrita como o 

produto entre três funções: 

 𝑘 = 𝑚 + 3 − 𝑖 − 𝑗, (46) 

 𝜓𝑖𝑗(𝜉1, 𝜉2) = Ξ𝑖
(𝑖−1)(𝜉1).𝐻𝑗

(𝑗−1)(𝜉2). 𝑍𝑘
(𝑘−1)(𝜉3), (47) 
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em que Ξ𝑖
(𝑖−1)(𝜉1) é um polinômio de grau (𝑖 − 1) definido por: 

Ξ𝑖
(0) = 1, 

para 𝑖 =  2, 3, . . . , 𝑚 + 1. E 𝐻𝑗
(𝑗−1)(𝜉2) é um polinômio de grau (𝑗 − 1) definido por: 

𝐻𝑗
(0)(𝜉2) = 1, 

para 𝑗 = 2,3, . . . 𝑚 + 1. E por fim, 𝑍𝑘
(𝑘−1)(𝜉3) é um polinômio de grau (𝑘 − 1) definido por: 

𝑍𝑘
(0) = 1, 

sendo 𝜉3 = 1 − 𝜉1 − 𝜉2, para 𝑘 = 2,3, . . . , 𝑚 + 1. 

3.8.3. Bases nodais ortogonais em domínio triangular 

Para a distribuição nodal das bases ortogonais. Emprega-se os nós nos zeros escalados dos 

polinômios ortogonais de grau 𝑚 − 1, definido por: 

em que 𝑡𝑖, 𝑝𝑎𝑟𝑎 𝑖 = 2,3, . . . , 𝑚, são os zeros do polinômio de grau 𝑚 − 1 distribuídos no 

intervalo de (−1,1). 

De acordo com Blyth e Pozrikidis (2005), a assimetria da distribuição nodal em 

relação aos três vértices é uma deficiência que pode ser contornada por meio da redistribuição 

dos nós. Para tanto é realizado o mapeamento para o espaço 𝜉1
𝑖  e 𝜉2

𝑗
 dado pela Equação (52), 

com 𝑖 = 1,2, . . . , 𝑚 + 1 , 𝑗 = 1,2, . . . 𝑚 + 2 − 𝑖 e 𝑘 = 𝑚 + 3 − 𝑖 − 𝑗. Cabe ressaltar que a 

 
Ξ𝑖
(𝑖−1)(𝜉1) =

(𝜉1 − 𝑣1)(𝜉1 − 𝑣2)… (𝜉1 − 𝑣𝑖−2)(𝜉1 − 𝑣𝑖−1)

(𝑣𝑖 − 𝑣1)(𝑣𝑖 − 𝑣2)… (𝑣𝑖 − 𝑣𝑖−2)(𝑣𝑖 − 𝑣𝑖−1)
, 

(48) 

 
𝐻𝑗
(𝑗−1)(𝜉2) =

(𝜉2 − 𝑣1)(𝜉2 − 𝑣2)… (𝜉2 − 𝑣𝑗−2)(𝜉2 − 𝑣𝑗−1)

(𝑣𝑗 − 𝑣1)(𝑣𝑗 − 𝑣2)… (𝑣𝑗 − 𝑣𝑗−2)(𝑣𝑗 − 𝑣𝑗−1)
, 

(49) 

 
𝑍𝑘
(𝑘−1)(𝜉3) =

(𝜉3 − 𝑣1)(𝜉3 − 𝑣2)… (𝜉3 − 𝑣𝑘−2)(𝜉3 − 𝑣𝑘−1),

(𝑣𝑘 − 𝑣1)(𝑣𝑘 − 𝑣2)… (𝑣𝑘 − 𝑣𝑘−2)(𝑣𝑘 − 𝑣𝑘−1)
 

(50) 

 𝑣1 = 0,   𝑣𝑖 = (1 + 𝑡𝑖−1) 𝑒 𝑣𝑚+1 = 1, (51) 
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Equação (52) é aplicada apenas aos pontos internos, os dois valores extremos permanecem 

inalterados. 

 A figura abaixo mostra como ocorre a redistribuição dos pontos do triângulo retângulo 

padrão para o triângulo equilátero: 

Fonte - Adaptado do Rocha, 2015. 

 

Figura 3. Redistribuição dos nós das bases nodais do triângulo retângulo padrão para o 

equilátero. 

3.9. Formulação do Método dos Elementos Finitos Elastostático 

Nesta seção é apresentado a formulação do MEF para estruturas unidimensionais e 

bidimensionais. Na abordagem unidimensional, é realizado o desenvolvimento formulacional 

do MEF para a teoria de vigas de Euller-Bernouli. Já para a abordagem bidimensional, é 

realizada a modelagem do MEF para problemas de estado plano. 

3.10. Formulação Forte para vigas de Euller-Bernoulli: abordagem unidimensional 

Para a modelagem matemática existem algumas hipóteses que devem ser consideradas na 

formulação de vigas de Euller-Bernoulli (OÑATE, 2013): 

a) O deslocamento vertical v de pontos da seção transversal são pequenos e iguais à 

deflexão de um ponto no eixo neutro da mesma seção; 

 
𝜉1
𝑖 =

1

3
(1 + 2𝑣𝑖 − 𝑣𝑗 − 𝑣𝑘),  𝜉2

𝑗
=

1

3
(1 + 2𝑣𝑗 − 𝑣𝑖 − 𝑣𝑘). 

(52) 
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b) O deslocamento lateral u de um ponto na seção transversal é nulo; 

c) As seções transversais planas normais ao eixo neutro da viga permanecem ortogo-

nais e planas ao eixo após a deformação; 

d) O material é assumido como elástico e isotrópico. 

A hipótese-chave na teoria de vigas é que secções normais á linha central de uma viga 

permanecem retilíneas e normais. A figura abaixo mostra uma viga antes e depois de receber 

um determinado carregamento. 

Fonte - Adaptado do Oñate, 2013. 

 

Figura 4. Cinemática da viga de Euler-Bernoulli. 

É de fácil compreensão que antes de receber o carregamento, o ponto A está a uma 

posição mais acima, tomando então após o carregamento uma nova posição 𝐴´. Além disso, a 

seção transversal sofre uma rotação 𝜃 =
𝑑𝑣

𝑑𝑥
 e o ponto 𝐴´ assume uma nova posição 𝐴´´. 

gerando um deslocamento 𝑢𝑎 no sentido negativo do eixo x. E G’ passa a ser o ponto 

correspondente ao eixo neutro. Pode-se ver que a hipótese de normalidade  conclui que a 

componente x do deslocamento pela profundidade da viga é: 

 𝑢 = −𝑦 sin 𝜃(𝑥), (53) 

a rotação é determinada por: 

𝜃 =
𝑑𝑣

𝑑𝑥
. 
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aplicando a relação tensão-deslocamento é possível escrever a equação da deformação 

longitudinal: 

𝜖𝑥𝑥 = −𝑦
𝑑2𝑣

𝑑𝑥2
, 

considerando o caso geral em que a linha central é mais alongada: 

 
𝑢(𝑥) = 𝑢𝑚(𝑥) − 𝑦

𝑑𝑣(𝑥)

𝑑𝑥
, 

(54) 

as deformações então são dadas por: 

𝜖𝑥𝑥 = −𝑦
𝑑2𝑣

𝑑𝑥2
, 

𝜖𝑦𝑦 =
𝑑𝑣

𝑑𝑦
= 0, 

𝛾𝑥𝑦 = −
𝑑𝑣

𝑑𝑥
+
𝑑𝑣

𝑑𝑥
= 0, 

utilizando a relação tensão-deformação elástico linear, é possível escrever: 

𝜎𝑥𝑥 = 𝐸𝜖𝑥𝑥 = 𝐸 (
𝑑𝑢𝑚(𝑥)

𝑑𝑥
− 𝑦

𝑑2𝑣(𝑥)

𝑑𝑥
), 

usando a definição do momento como o produto da força e do braço de momento: 

 𝑚 = −∫𝑦𝜎𝑥𝑥𝑑𝐴, (55) 

ao substituir a lei de Hooke pela expressão da força temos que: 

𝑚 = −∫ 𝑦𝐸 (
𝑑𝑢𝑚(𝑥)

𝑑𝑥
− 𝑦

𝑑2𝑣(𝑥)

𝑑𝑥
)𝑑𝐴 = ∫ 𝐸𝑦²

𝑑2𝑣(𝑥)

𝑑𝑥
𝑑𝐴,

𝐴𝐴

 

considerando 𝐸𝐼 constante sobre a seção transversal: 

𝑚 = 𝐸
𝑑2𝑣(𝑥)

𝑑𝑥
∫ 𝑦²𝑑𝐴 = 𝐸𝐼
𝐴

𝑑2𝑣(𝑥)

𝑑𝑥
= 𝐸𝐼

𝑑²𝑣(𝑥)

𝑑𝑥²
, 

em que 𝐼 é o momento de inércia da seção transversal. Portanto conclui-se: 
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Fonte - Adaptado do Belytschko, 2009. 

 

Figura 5.  Equilíbrio do corpo rígido 

Ao considerarmos o equilíbrio vertical da viga mostrada na figura acima, pela soma 

das forças verticais obtemos: 

−𝑣(𝑥 + ∆𝑥) + 𝑣(𝑥) + 𝑝 (𝑥 +
∆𝑥

2
)∆(𝑥) = 0, 

dividindo por ∆(𝑥) e fazendo ∆(𝑥) → 0, temos que: 

𝑑𝑣

𝑑𝑥
− 𝑝(𝑥) = 0, 

considerando o equilíbrio do momento tem-se: 

−𝑚(𝑥) + 𝑚(𝑥 + ∆(𝑥)) − 𝑣(𝑥 + ∆𝑥)∆(𝑥) + 𝑝(𝑥)∆(𝑥)
∆(𝑥)

2
= 0, 

portanto obtém-se: 

combinando as duas equações pode-se obter: 

 
𝑚 = 𝐸𝐼

𝑑²𝑣(𝑥)

𝑑𝑥²
= 𝐸𝐼. 

(56) 

 𝑑𝑚

𝑑𝑥
− 𝑣(𝑥) = 0, 

(57) 
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𝑑²𝑚

𝑑𝑥²
−
𝑑𝑣

𝑑𝑥
= 0, 

𝑑²𝑚

𝑑𝑥²
− 𝑝(𝑥) = 0, 

𝑑2

𝑑𝑥
(𝐸𝐼

𝑑2𝑣

𝑑𝑥2
) − 𝑝(𝑥) = 0, 

se 𝐸𝐼 for constante tem-se: 

 
𝐸𝐼

𝑑4

𝑑𝑥4
− 𝑝(𝑥) = 0. 

(58) 

A equação apresentada acima é denominada de equação que governa o problema e 

juntamente com as condições de contorno apresentadas a seguir forma a formulação forte para 

a teoria de vigas de Euller-bernoulli. 

𝑣 = 𝑣̅ em Γ𝑣, 

𝑑𝑣

𝑑𝑥
= 𝜃 em Γ𝜃, 

𝑚𝑛 = −𝐸𝐼
𝑑²𝑣

𝑑𝑥²
 𝑒𝑚 Γ𝑚, 

𝑣𝑛 = −𝐸𝐼
𝑑3𝑣

𝑑𝑥3
 𝑒𝑚 Γ𝑣. 

3.10.1. Formulação Fraca 

A determinação de uma solução aproximada é de fundamental importância na engenharia, já 

que o desenvolvimento analítico utilizando equações diferenciais se torna muito complexo e 

menos prático. O desenvolvimento da formulação fraca visa resolver esse problema, sendo 

efetuado, multiplicando a equação de equilíbrio e as condições de contorno por uma função 

peso 𝑤(𝑥) e integrada no seu domínio correspondente. 

 ∫ 𝑤 [
𝑑2𝑚

𝑑𝑥2
− 𝑝(𝑥)] 𝑑(𝑥) = 0

𝐷
, (59) 

𝑑𝑤

𝑑𝑥
(𝑚 − 𝑚̅)|

Γ𝑚

= 0, 

𝑤(𝑣𝑛 − 𝑣̅|𝑟𝑣 = 0. 

Utilizando a técnica de integração por partes, podemos escrever a equação integral 

(fraca) equivalente à forma forte da seguinte forma: 
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com: 

𝑣 = {𝑣; 𝑣 ∈ 𝐻2, 𝑣 = 𝑣̅ 𝑒𝑚 Γ𝑣,
𝑑𝑣̅

𝑑𝑥
= 𝜃 𝑒𝑚 Γ𝜃}, 

𝑣0 = {𝑤;𝑤 ∈ 𝐻2, 𝑤 = 𝑣 𝑒𝑚 Γ𝑣,
𝑑𝑤

𝑑𝑥
= 0 𝑒𝑚 Γ𝜃}. 

Sendo 𝐻², o conjunto das funções suaves com continuidade c¹.  

3.11. MEF unidimensional 

Como concluído na seção anterior, as soluções tentativa e as funções peso precisam ser 

funções com grau de continuidade c¹. Foi utilizada a classe de função dos polinômios para 

garantir os requisitos de interpolação, sendo então descrito abaixo: 

onde 𝑎0, … , 𝑎𝑚+1 são os coeficientes polinomiais e 𝜉 são pontos adimensionais. Os 

deslocamentos e forças são expressos da seguinte maneira: 

𝑑𝑒 =

[
 
 
 
 
𝑣1
𝜃1
⋮

𝑣𝑚+1
𝜃𝑚+1]

 
 
 
 

, 

em que v se refere aos deslocamentos verticais e 𝜃 a rotações para cada nó do referente 

elemento (ver figura 4). 

As funções peso e tentativa são interpoladas com as mesmas funções de forma ,assim: 

𝑣𝑒 = 𝑁𝑒𝑑𝑒 ,     𝑤𝑒 = 𝑁𝑒𝑤𝑒 , 

pode-se então concluir que: 

𝑑²𝑁𝑒

𝑑𝑥²
= 𝐵𝑒 ,       

𝑑²𝑣𝑒

𝑑𝑥²
= 𝐵𝑒𝑑𝑒 , 

 ∫
𝑑²𝑤

𝑑𝑥²
𝐸𝐼

𝑑²𝑣

𝑑𝑥²
𝑑𝑥 = ∫𝑤𝑝(𝑥)𝑑𝑥 + (

𝑑𝑤

𝑑𝑥
𝑚)|

Γ𝑚
+ 𝑤𝑣|Γ𝑣  𝑝𝑎𝑟𝑎 ∀𝑤 ∈   𝑣0, (61) 

 𝑣(𝑥) = 𝑎0 + 𝑎1𝜉+,… ,+𝑎𝑚+1𝜉
𝑚+1, (62) 
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a matriz de rigidez elementar é, portanto expressa como: 

Vetor de forças: 

𝑓𝑒 = ∫ 𝑁𝑒𝑇𝑝𝑑𝑥 +
𝐷

(𝑁𝑒𝑇𝑣)̅̅ ̅|
Γ𝑣
++(

𝑑𝑁𝑒𝑇

𝑑𝑥
𝑚̅)|

Γ𝑚

. 

Fonte - Adaptado de Oñate, 2013. 

 

Figura 6.  Exemplo de elemento de viga com 4 graus de liberdade. 

3.12. Formulação do MEF bidimensional 

A formulação para o método dos elementos finitos bidimensional segue procedimento 

semelhante à abordagem unidimensional. Este trabalho fará uma abordagem para problemas 

encontrados na categoria de estado plano de tensão, onde uma das dimensões é considerada 

muito pequena em relação a outra, podendo então ocorrer uma simplificação para efeito de 

cálculo. Entre os problemas que podem ser abordados utilizando essa análise estão as vigas, 

placas e entre outras. O vetor deslocamento em um ponto é representado por: 

𝑢(𝑥, 𝑦) = [𝑢(𝑥, 𝑦)  𝑣(𝑥, 𝑦)]𝑇. 

O campo de deformação para o estado plano de tensão, derivada da teoria da 

elasticidade é dado por: 

𝜖𝑥 =
𝜕𝑢

𝜕𝑥 
  ,    𝜖𝑦 =

𝜕𝑣

𝜕𝑦 
. 

 𝐾𝑒 = ∫𝐸𝐼𝐵𝑒
𝑇
𝐵𝑒𝑑𝑥. (63) 
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𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑥 
+
𝜕𝑢

𝜕𝑥 
   ,    𝛾𝑥𝑦 = 𝛾𝑦𝑧 = 0  .  

O vetor deformação, composto pelas deformações longitudinal e cisalhante, é 

escrito da seguinte forma: 

𝜖 = [
𝜕𝑢

𝜕𝑥 
   
𝜕𝑣

𝜕𝑦 
   (
𝜕𝑢

𝜕𝑦 
+
𝜕𝑣

𝜕𝑥 
)]
𝑇

, 

tensão e deformação são relacionadas por: 

para o estado plano de tensão, pode-se determinar 

𝐷 =
𝐸

1−𝑣²
[

1 𝑣 0
𝑣 1 0

0 0
1−𝑣

2

], 

em que 𝑣 é o módulo de Poisson e 𝐸 refere-se ao módulo de Elasticidade. 

3.12.1. Discretização no estado plano de tensão 

A figura abaixo mostra a discretização de um elemento triangular retirado de uma malha de 

elementos triangulares para um dado problema no estado plano de tensões. 

 

 

 

 

 

 

 

 

 

 𝜎 = 𝐷𝜖, (65) 
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Fonte - Adaptado de Oñate, 2013. 

 

Figura 7. Discretização por elementos triangulares. 

Para esse elemento triangular, as coordenadas 𝑥, 𝑦 (vemos que 𝑥, 𝑦, e 𝑢, 𝑣 são funções 

de 𝜉 𝑒 𝜂. Portanto 𝑢 = 𝑢[𝑥(𝜉, 𝜂), 𝑦(𝜉, 𝜂)] e de modo semelhante, 𝑣 = 𝑣[𝑥(𝜉, 𝜂), 𝑦(𝜉, 𝜂)]) 

podem ser expressas como; 

em que 𝑚 refere-se ao grau da aproximação utilizada. Pode-se concluir que: 

𝜖 = [
𝜕𝑢

𝜕𝑥 
   
𝜕𝑣

𝜕𝑦 
   (
𝜕𝑢

𝜕𝑦 
+
𝜕𝑣

𝜕𝑥 
)]
𝑇

=

[
 
 
 
 
 
 
𝜕𝑁1
𝜕𝑥

0
𝜕𝑁2
𝜕𝑥

0
𝜕𝑁1
𝜕𝑦

0

𝜕𝑁1
𝜕𝑦

𝜕𝑁1
𝜕𝑥

𝜕𝑁2
𝜕𝑦

     

0 , ⋯  ,
𝜕𝑁𝑚+1
𝜕𝑥

0

𝜕𝑁2 
𝜕𝑦

, ⋯ , 0
𝜕𝑁𝑚+1
𝜕𝑦

𝜕𝑁2
𝜕𝑥

, ⋯ ,
𝜕𝑁𝑚+1
𝜕𝑦

𝜕𝑁𝑚+1
𝜕𝑥 ]

 
 
 
 
 
 

{
 
 

 
 
𝑢1
𝑣1
𝑢2
𝑣2
𝑢3
𝑣3}
 
 

 
 

 

pode ser aferido então que: 

em que: 

 𝑢 = 𝑁1𝑢1 + 𝑁2𝑢2, … , 𝑁𝑚+1𝑢𝑚+1, 

𝑣 = 𝑁1𝑣1 + 𝑁2𝑣2, … , 𝑁𝑚+1𝑣𝑚+1, 
(66) 

 𝜖 = 𝐵𝑎(𝑒), (67) 
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𝐵 = [𝐵1, 𝐵2, … , 𝐵𝑚+1]. 

3.12.1.1. Formulação forte e fraca 

Resumo das relações que podem ser estabelecidas para elasticidade linear 2D: 

1. Equação de equilíbrio: 

∇𝑠
𝑇=

[
 
 
 
 
𝜕

𝜕𝑥
0

𝜕

𝜕𝑦

0
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 

. 

Segundo Belytschko (2009), a partir do equilíbrio de forças de um corpo de formato 

arbitrário e espessura unitária pode-se obter: 

2. Equação cinemática (relação deformação-deslocamento): 

3. Equação constitutiva (relação tensão-deformação): 

em que 𝜎⃗𝑥 𝑒 𝜎⃗𝑦 são os vetores de tração ao longo dos eixos x e y, 𝑏𝑥 𝑒 𝑏𝑦 são as forças de 

campo ao longo dos eixos x e y. As condições de contorno de deslocamento são escritas 

como: 

𝑢 = 𝑢̅ 𝑠𝑜𝑏𝑟𝑒  Γ𝑢, 

sobre qualquer porção de contorno, o deslocamento ou tração precisam ser prescritos, então: 

Γ𝑢⋂Γ𝑡 = Γ. 

 ∇𝑠
𝑇𝜎 + 𝑏 = 0,   𝑜𝑢  ∇⃗⃗⃗. 𝜎⃗𝑥 + 𝑏𝑥 = 0  𝑒   ∇.⃗⃗⃗ ⃗ 𝜎⃗𝑦 + 𝑏𝑦 = 0 (68) 

 𝜖 = 𝐵𝑎(𝑒), (69) 

 𝜎 = 𝐷𝜖, (70) 
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Para obter a formulação fraca, primeiro é definido as funções pesos admissíveis e as 

soluções tentativas, em seguida multiplica-se as equações de equilíbrio nas direções x e y 

sobre as funções peso correspondentes e integra-se sobre os domínios correspondentes : 

a) ∫ 𝑤𝑥 ∇⃗⃗⃗.𝐷
𝜎⃗𝑥𝑑𝐷 + ∫ 𝑤𝑥𝑏𝑥𝑑𝐷 = 0      ∀𝑤𝑥  ∈  𝑈0 ,𝐷

 

b) ∫ 𝑤𝑦 ∇⃗⃗⃗.𝐷
𝜎⃗𝑦𝑑𝐷 + ∫ 𝑤𝑦𝑏𝑦𝑑𝐷 = 0   ∀𝑤𝑦  ∈  𝑈0 ,     𝐷

 

c) ∫ 𝑤𝑥(𝑡𝑥 − 𝜎⃗𝑥. 𝑛⃗⃗)𝑑Γ = 0 
Γ𝑡

                       ∀𝑤𝑥  ∈  𝑈0, 

d) ∫ 𝑤𝑦(𝑡𝑦 − 𝜎⃗𝑦. 𝑛⃗⃗)𝑑Γ = 0 
Γ𝑡

                       ∀𝑤𝑦 ∈  𝑈0, 

em que:  

𝑤 = [
𝑤𝑥
𝑤𝑦
],     𝑤⃗⃗⃗ = 𝑤𝑥𝑖 + 𝑤𝑗𝑗. 

O teorema de Green é então aplicado ao primeiro termo nas equações anteriores e 

fornece: 

∫ 𝑤𝑥 ∇⃗⃗⃗.𝐷
𝜎⃗𝑥𝑑𝐷 = ∮ 𝑤𝑥𝜎⃗𝑥 . 𝑛⃗⃗𝑑Γ −Γ

∫ 𝑤𝑥 ∇⃗⃗⃗.𝐷
𝜎⃗𝑥𝑑𝐷, 

∫ 𝑤𝑦 ∇⃗⃗⃗.𝐷
𝜎⃗𝑦𝑑𝐷 = ∮ 𝑤𝑦𝜎⃗𝑦 . 𝑛⃗⃗𝑑Γ −Γ

∫ 𝑤𝑦 ∇⃗⃗⃗.𝐷
𝜎⃗𝑦𝑑𝐷, 

adicionando as duas equações e lembrando que as funções peso 𝑤𝑥  𝑒 𝑤𝑦 desaparecem sobre 

Γ𝑢, é obtido: 

∫(∇⃗⃗⃗𝑤𝑥. 𝜎⃗𝑥 + ∇⃗⃗⃗𝑤𝑦. 𝜎⃗𝑦)𝑑𝐷 = ∮(𝑤𝑥𝜎⃗𝑥 . 𝑛⃗⃗ + 𝑤𝑦𝜎⃗𝑦. 𝑛)⃗⃗⃗⃗⃗𝑑𝐷 + ∫(𝑤𝑥.

𝐷

𝑏𝑥 + 𝑤𝑦𝑏𝑦)𝑑𝐷

Γ𝐷

, 

simplificando a expressão e colocando em forma matricial, pode ser obtido: 

em que: 

𝑈 = {𝑢; 𝑢 ∈ 𝐻1, 𝑢 = 𝑢̅ 𝑒𝑚 Γ𝑢  }. 

𝑈0 = {𝑤;𝑤 ∈ 𝐻1, 𝑤 = 0 𝑒𝑚 Γ𝑢  }. 

3.13.  Interpolações de Ordem Superior 

 

∫(∇𝑠𝑤
𝑇)𝜎𝑑𝐷 = ∫ 𝑤𝑇𝑡𝑑Γ + ∫ 𝑤𝑡𝑏𝑑𝐷

𝐷Γ𝐷

 (71) 
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A qualidade da solução está fortemente associada ao nível de refinamento dos elementos, 

podendo ser, pelo aumento do grau 𝑚 da função interpoladora, pela diminuição do tamanho h 

do elemento ou ainda uma combinação de ambos (ℎ𝑚). Além disso, a escolha da base 

influencia fortemente a estabilidade e eficiência dos procedimentos numéricos utilizados ao se 

reproduzir numericamente a geometria analisada (NOGUEIRA e BITTHENCOURT, 2007). 

A obtenção de interpolações de alta ordem segue os mesmos passos anteriormente descritos, 

mudando-se apenas as funções de forma.  

3.14. MEF de alta ordem 

Tanto para elementos bidimensionais quanto para unidimensionais, os conceitos apresentados 

anteriormente podem ser facilmente estendidos para elementos isoparamétricos de alta ordem. 

Somente as funções de forma 𝑁 serão alteradas, mantendo as exigências expostas 

anteriormente. Vale ressaltar que para o estudo unidimensional os delocamentos podem ser 

obtidos em apenas uma direção (vertical ou horizontal), já pra o bidimensional é feito um 

mapeamento nessas duas direções. Portanto para a formulação isoparamétrica, podemos 

expressar as coordenadas de um ponto dentro do elemento em termos nodais como: 

𝑥 = 𝑁1𝑥1 + 𝑁2𝑥2 +⋯+𝑁𝑚+1𝑥𝑚+1, 

𝑦 = 𝑁1𝑦 + 𝑁2𝑦2 +⋯+𝑁𝑚+1𝑦𝑚+1. 

A geração de rigidez do elemento segue os mesmos passos de rotina: 

𝑢 = 𝑁𝑞, 

𝜖 = 𝐵𝑞, 

 

 

 

 

 𝐾𝑒 = 𝑡𝑒 ∫ 𝐵𝑇(𝜉1, 𝜉2)𝐷𝐵(𝜉1, 𝜉2)𝑑𝑒𝑡𝐽𝑑𝐴𝐴
. (71) 
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4. METODOLOGIA 

A reprodução de geometrias complexas exige a utilização de ferramentas que assegurem a 

eficiência na interpolação. Expansões espectrais são então implementadas com o intuito de 

garantir a convergência uniforme da solução física do problema. Para problemas uni e 

bidimensionais do MEF os nós de colocação espectrais são posicionados nos zeros dos 

polinômios de Lobatto, Tchebychev e Legendre, com base no estudo feito por Blyth e 

Pozrikidis (2005), em que um conjunto triangular de Lobatto, construído por regras simples, 

goza de propriedades de convergência na interpolação comparáveis ao conjunto de pontos 

mais desejáveis de Fekete, garantindo uma boa precisão na reprodução de problemas de difícil 

modelagem numérica. Entretanto a implementação de alta ordem do método dos elementos 

finitos é muitas vezes dificultada devido ao seu caráter teórico e computacional, 

especificamente a versão 𝑚 do FEM precisa de alta qualidade na integração numérica e 

diferenciação numérica, funções de forma apropriadas, continuidade inter-elemento 𝐶0, 

numeração dos graus de liberdade, aplicações das condições de contorno e pós-processamento 

dos resultados (NOGUEIRA; BITTENCOURT, 2007). 

Diante do exposto acima, neste projeto são utilizadas expansões espectrais onde os nós 

de colocação serão dispostos nos zeros dos polinômios ortogonais de Lobatto, Tchebychev e 

Legendre, frente aos nós distribuídos uniformemente. Será feito um estudo comparativo entre 

essas bases, com o intuito de verificar a convergência uniforme a medida que o grau 

aproximador é elevado. Como parâmetro para quantificar o desempenho dos conjuntos 

nodais, é utilizada a constante de Lebesgue, definida como a máxima soma dos valores 

absolutos das funções de interpolação dos nós (BLYTH; POZRIKIDIS, 2005) e o número de 

condição pela norma euclidiana.  

A implementação computacional de alta ordem espectral para as bases ortogonais e 

equidistante é realizada na linguagem Fortran. As geometrias reproduzidas, desde função 

racional, trigonométrica e polinomial , são analisadas em um estudo comparativo para 

resultados que utilizam tanto elementos de baixa ordem quanto de alta ordem. Além do estudo 

de interpolação, é feito uma aplicação ao MEF unidimensional e bidimensional para 

problemas elastostáticos, onde serão aplicadas expansões espectrais, posicionando-se 

cuidadosamente os nós sobre os zeros dos polinômios ortogonais. No caso bidimensional será 

utilizada a função interpolante de Proriol. 
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Para o desenvolvimento da formulação será utilizada a teoria clássica de vigas de 

Euler-Bernoulli e por fim os resultados do presente trabalho são comparados com estudos já 

feitos por autores que utilizaram tanto elementos de baixa quanto altar ordem, como é o caso 

nos estudos feitos por Rocha; Kzam (2013) e Pozrikidis (2006). 

4.1. Cronograma 

A tabela a seguir representa o cronograma de atividades ao longo do primeiro até o 12º mês, 

completando 1 ano de duração. A parte colorida indica qual atividade foi feita em cada mês e 

em seguida é apresentada cada atividade. 

Tabela 1. Cronograma do projeto ao longe de 12 meses. 

 

 Atividade (A-1): Revisão bibliográfica, 

 Atividade (A-2): Construção e implementação computacional dos elementos uni e 

bidimensionais de alta ordem,  

 Atividade (A-3): Estudo comparativo entre as funções aproximadoras, 

 Atividade (A-4): Implementação computacional do MEF espectral de alta ordem, 

 Atividade (A-5): Validação para o MEF de alta ordem, 

 Atividade (A-6): Escrita do relatório parcial, 

 Atividade (A-7): Escrita do relatório final, 

 Atividade (A-8): Preparação de artigos para congressos e/ou revistas internacionais. 

 

 

 

Ago Set Out Nov Dez Jan Fev Mar Abr Mai Jun Jul

A-1

A-2

A-3

A-4

A-5

A-6

A-7

A-8

Previsto Desenvolvido

2016 2017
Atividade
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5. RESULTADOS E DISCUSSÃO 

Nesta seção são apresentados alguns exemplos de problemas utilizados como forma de 

validação computacional. Inicialmente foi feito um estudo da reprodução de geometrias, tanto 

simples quanto complexas, a partir das bases nodais anteriormente apresentadas. Após isso foi 

feito uma análise do erro por meio de parâmetros como a constante de Lebesgue e o número 

de condição. A seguir é introduzido os resultados encontrados para interpolações de alta 

ordem aplicadas ao MEF unidimensional e bidimensional para problemas elastóstaticos. 

5.1. Interpolação para função trigonométrica e polinomial 

Para ilustrar a eficiência na reprodução de geometrias simples, é feito um estudo comparativo 

entre as bases nodais para uma geometria senoidal (Figura 8) e polinomial (Figura 9). A 

figura 8 mostra essa reprodução para as 4 bases nodais, podendo então ser verificado uma 

melhor convergência para aproximações superiores ao grau 3. As funções  reproduzidas 

foram: 

Por serem geometrias relativamente simples, a convergência ocorre rapidamente, 

sendo  fácil a verificação de uma boa eficiência entre todas as bases nodais.  

 

 

 

 𝐹(𝑥) = sin(𝑥)  ;   𝐹(𝑥) = 𝑥10 + 𝑥5 + 𝑥3 + 5 (72) 
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Figura 8. Reprodução da geometria senoidal para as bases nodais empregando-se polinômios de alta e 

baixa ordem. 
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Figura 9. Reprodução da geometria senoidal para as bases nodais empregando-se polinômios de alta e 

baixa ordem. 

Os erros apresentados são de difícel percepção, por isso, a figura 10 mostra na escala 

logarítimica, o erro absoluto em detrimento do aumento do grau de aproximação. É de fácil 

compreensão que com o aumento do grau interpolante, o erro diminui gradativamente, sendo 

que a base de Lobatto é a que apresenta menores erros. Outra análise realizada é com relação 

a menor velocidade de convergência da aproximação para a função senoidal com relação à 

polinomial. Mostrando que mesmo sendo uma função relativamente simples, quando 

comparada com outra ainda mais simples, mostra uma menor precisão. 
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Figura 10. Erro na escala logarítmica na reprodução da função senoidal (à esquerda) e polinomial (à 

direita) para polinômios de baixa e alta ordem. 

5.2. Fenômeno Runge 

Considerando a função analítica a ser aproximada: 

É feito um estudo do fenômeno Runge, a partir da convergência entre as bases 

ortogonais, equiparando-as com a equidistante. O intervalo de mapeamento se dá em [−1,1]·, 

sendo possível observar o péssimo desempenho da base igualmente espaçada. Esse 

desempenho está localizado nas regiões próximas as bordas, como pode ser visto na figura 11. 

 

 

 𝑓(𝑥) =
1

1 + 25𝑥²
. (73) 
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Figura 11. Efeito da distribuição da base na interpolação polinomial racional (fenômeno Runge). 

Para reproduzir o desempenho da base equidistante frente as ortogonais, a figura a 

seguir relaciona o erro absoluto à medida que o grau aproximador é aumentado (Figura 12). 

Fica clara a alta taxa de deterioração da base equidistante com o aumento do grau polinomial. 
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Figura 12. Erro absoluto na reprodução da função racional entre as bases nodais. 

Para quantificar o efeito Runge, a seguir é plotada a constante de Lebesgue versus o 

grau do polinômio interpolador (Figura 13). Considerando os valores obtidos pela imagem 

mostrada abaixo, percebe-se uma grande velocidade no crescimento para a base equidistante, 

enquanto que para Lobatto, Legendre e Tchebychev essa constante cresce muito lentamente, 

tornando então o erro limitado. Dentre as ortogonais, Lobatto foi a que obteve a melhor 

eficiência. 

 

Figura 13.  Gráfico da constante de Lebesgue para as bases nodais. 

5.3. Condicionamento das bases ortogonais 
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Em seguida é avaliado o condicionamento da matriz de Vandermonde, a medida que é 

aumentado o grau de aproximação do polinômio interpolador, a figura 14, traz esse conceito 

aplicando a norma euclidiana, equação 29, proporcionando uma quantificação do erro para as 

bases ortogonais e equidistante. É possível perceber que para a base com nós equidistantes, o 

número de condição cresce em uma velocidade ilimitada com o aumento do grau de 

interpolação, já para as bases ortogonais, esse valor cresce mais lentamente.  

 

Figura 14. Número de condição para as bases nodais. 

5.4. Interpolação triangular de ordem qualquer 

A seção a seguir apresenta o mapeamento de uma geometria complexa para o problema 

bidimensional. A fim de destacar o fenômeno Runge é feita a reprodução das 3 bordas do 

triângulo. 

5.4.1. Mapeamento bidimensional 

O mapeamento de um triângulo padrão no plano 𝜉1 − 𝜉2 é realizado pela equação descrita 

abaixo. Considerando que 𝜉1𝑒 𝜉2, são os pontos das bases nodais. Esse mapeamento é feito 

pelas funções: 

 
𝜉1 = 𝜉1̂ −

1

√3
𝜉2̂, 

 

(74) 
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A função de interesse é definida por: 

esta função tem o domínio de validade sobre o triângulo equilátero de lados unitários e o 

centroide do triângulo é (𝜉1
𝑐, 𝜉2

𝑐) = (
1

2
,
1

2√3
). Esta análise bidimensional revela um desempenho 

ruim para os nós distribuídos uniformemente, quando se aumenta o grau da aproximação, 

devido as oscilações nas bordas do intervalo interpolado. Isso é fácil de ser entendido pelo 

fato de que a base equidistante deteriora mais facilmente quando é aumentado o grau da 

aproximação, devido ao fenômeno Runge, que é facilmente visualizado nas extremidades do 

triângulo de grau 20, mostrado na figura 15. Outro fator que vale ressaltar, foi a péssima 

eficiência da base Tchebychev para o grau 20 com relação as outras bases ortogonais. 

 

 

 

 

 

𝜉2 =
2

√3
𝜉2̂. 

 
𝑓(𝜉1̂, 𝜉2̂) =

1

1 + 25(𝜉1̂ − 𝜉1
𝑐)

1

1 + 25(𝜉2̂ − 𝜉2
𝑐)
, 

 

(75) 
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Figura 15. Comparação da distribuição de pontos para as bases nodais com o comportamento analítico 

da função para triângulo padrão á medida que o grau da aproximação é elevado. 

5.4.2. Mapeamento das bordas do triângulo  

As figuras 16, 17 e 18 revelam melhor a deterioração das aproximações, ficando claro que a 

constante de Lebesgue para a base equidistante tem um crescimento muito superior em 

relação as bases ortogonais, principalmente quando é aplicado aproximações de ordem muito 

elevada, como a de 40, constatando-se um erro ilimitado para essa base, diferentemente das 

ortogonais que mantiveram ótima eficiência. Vale ressaltar que para o problema 

bidimensional, a taxa de deterioração da base equidistante se deu mais devagar que no 

unidimensional, podendo ser observado nas figuras abaixo. A figura 15 mapeia a borda onde 

𝜉2 = 0, já a figura 17 mapeia diagonal onde 𝜉2+𝜉1 = 1, a figura 17 mostra a interpolação da 

borda  para 𝜉1 = 0.  
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Figura 16. Comparação entre as bases nodais e a função analítica para uma borda do triângulo padrão. 
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Figura 17.  Comparação entre as bases nodais e a função analítica para uma borda do triângulo padrão. 
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Figura 18. Comparação entre as bases nodais e a função analítica para uma borda do triângulo padrão. 

5.5. Aplicações 

Nesta seção serão avaliadas as estratégias de interpolação apresentadas nas seções anteriores 

aplicadas ao MEF com o intuito de verificar a convergência uniforme da solução para as bases 

nodais estudadas. São tratados problemas físicos uni e bidimensionais. 

5.5.1. MEF unidimensional 

Como forma de avaliação das bases nodais estudadas, é apresentado a seguir, problemas 

físicos unidimensionais. São estudados 3 tipos de geometrias, que posteriormente serão 

submetidas a vários tipos de carregamentos. As geometrias estudadas variam entre uma viga 
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bi apoiada, em balanço e uma viga hiperestática com um engaste e apoio. Todos os exemplos 

hipoteticamente citados possuem comprimento de 1 m e são feitas do mesmo material, 

portanto possuem módulo de elasticidade e Inércia iguais e unitários.  

5.5.1.1. Carregamento simples 

As vigas mostradas na figura 19 foram submetidas a vários tipos de carregamentos, 

classificados como simples à complexos. Os carregamentos simples se caracterizaram por 

serem compostos de uma carga concentrada, carregamento uniformemente distribuído, 

carregamento senoidal ou carregamento triangular. Já o complexo se caracterizou por ser 

formado pela função racional, abordada anteriormente na equação 73. Para a análise pelo 

MEF foram utilizadas aproximações que variaram o grau de 3 a 25, sendo então feito um 

estudo comparativo entre as bases nodais, com o parâmetro quantificador do erro relativo. A 

primeira geometria analisada foi a mais simples, uma viga bi apoiada, e os carregamentos 

analisados foram respectivamente, distribuído uniformemente com módulo de 4000𝑁 e a 

função sin( 𝑥). Pode ser visualizado um erro relativamente maior das bases nodais no grau 3, 

pelo motivo de que essa interpolação apenas reflete valores exatos em 2 nós das extremidades 

dos elementos, portanto para o ponto de deslocamento máximo, onde foi capturado o erro 

relativo, a aproximação com grau 3 não conseguiu obter uma boa eficiência. Entretanto a 

medida que a ordem era elevada, o erro foi se aproximando a zero, com a ressalva de que a 

base equidistante começou a deteriorar a partir do grau 12 para 13, diferentemente das bases 

ortogonais que continuaram com uma excelente eficiência.  
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 Outra geometria estudada foi a de uma viga engastada em balanço, posteriormente 

submetida a uma carga concentrada de módulo de 900 𝑁 (Figura 20). Diferentemente do 

gráfico acima analisado, a base de Tchebychev não conseguiu um bom desempenho frente as 

outras bases ortogonais. As bases de Lobatto e Legendre mantiveram uma boa eficiência com 

a elevação da ordem, em contraste com a base igualmente espaçada, que novamente não 

obteve uma boa eficiência. 

 

Figura 20. Comparação entre as bases nodais com relação ao erro no deslocamento máximo de uma viga 

em balanço com uma carga concentrada na extremidade. 

Figura 19. Comparação entre as bases nodais com relação ao erro no deslocamento máximo de uma viga bi apoiada 

sobre carregamento uniformemente distribuído (á esquerda) e senoidal (á direita).  
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 Por último foi analisado uma viga hiperestática, submetida a um carregamento 

distribuído triangular de módulo de 900 𝑁 que apresentou características semelhantes aos 

gráficos anteriores mostrados (ver Figura 21). 

 

Figura 21.  Comparação entre as bases nodais com relação ao erro no deslocamento máximo de uma viga 

em hiperestática com um carregamento triangular. 

5.5.1.2. Carregamento complexo 

Para o estudo desse tipo de carregamento, foi aplicada uma carga descrita pela função racional 

expressa na equação 73. Foi feito o estudo para 2 tipos de geometrias, uma viga bi apoiada e 

em balanço. Para essas geometrias percebeu-se uma rápida deterioração da base equidistante a 

medida que o grau interpolador era aumentado, em contraste, as bases ortogonais convergiam 

com a elevação desse grau (ver Figura 22). Outro ponto importante foi a baixa convergência 

da base Tchebychev quando a geometria estudada foi a viga em balanço. 
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Figura 22. Comparação entre as bases nodais com relação ao erro no deslocamento máximo de uma viga 

em balanço (à esquerda) e bi apoiada (à direita) com um carregamento racional. 

5.5.2.  MEF bidimensional 

Uma abordagem em duas direções é a seguir apresentado, tendo como parâmetros o grau do 

domínio, do carregamento, o número de elementos, tipo de geometria e tipo de base 

interpoladora. Todas as geometrias hipoteticamente estudadas possuíam propriedades 

similares: módulo de elasticidade igual a 2. 108 Pa , espessura unitária, coeficiente de Poisson 

igual a 0,2 e geometria retangular. 

5.5.2.1. Carregamento simples 

Foi utilizado dois tipos, carga concentrada com módulo de 900 𝑁 e Uniformemente 

distribuído de módulo 4000 𝑁. Devido a difícil visualização do erro, foi feito um estudo 

através da escala logarítmica do erro relativo, observado nas figuras a seguir (Figura 23). A 

primeira figura faz uma análise do erro para um carregamento concentrado em uma viga com 

2 apoios, a análise leva em consideração o erro no ponto de maior deslocamento, ou seja, no 

meio da viga, considerando como parâmetro as bases nodais, o número de elementos e o grau 

interpolador. Pode-se perceber que todas as bases nodais apresentam boa convergência, e a 

quantidade de elementos é um importante fator para uma boa eficiência da solução. Já que a 

medida que foi aumentado de 4 para 36 e depois para 74, a precisão da solução sofre um 

grande crescimento. 
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Figura 23. Comparação entre as bases nodais com relação ao log do erro absoluto no deslocamento 

máximo de uma viga bi apoiada com uma carga concentrada. 

Para a figura abaixo (Figura 24), é analisado um carregamento distribuído na mesma 

configuração de viga anteriormente estudada. Pode se concluir o mesmo aferido 

anteriormente, com a ressalva de que a convergência se deu mais lentamente que a função 

anterior, devido ao tipo de carregamento estudado, sendo possível então afirmar que, mesmo 

se tratando de um carregamento relativamente simples (uniformemente distribuído), quando 

comparado com outros ainda mais simples, obteve uma precisão inferior. 
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Figura 24.  Comparação entre as bases nodais com relação ao log do erro absoluto no deslocamento 

máximo de uma viga bi apoiada com uma carga uniformemente distribuída. 

5.5.2.2. Carregamento complexo 

Assim como no estudo em uma direção, foi analisado o efeito de se trabalhar com um 

carregamento de difícil reprodução descrito pela equação 73. Os mesmos parâmetros 

estudados no tópico anterior também foram abordados nessa seção, em que se priorizou o 

estudo do grau da aproximação do carregamento, frente a aproximação do domínio e da 

quantidade de elementos para o deslocamento máximo em uma viga bi apoiada (Figura 25 - 

27). Nota-se de imediato a boa eficiência das bases ortogonais, em especial a de Lobatto, 

obtendo uma boa taxa de convergência com o aumento da ordem do carregamento. As figuras 

abaixo retratam a eficiência na interpolação das Bases nodais, variando o grau do domínio, do 

carregamento e dos elementos. Percebe-se, assim como visto anteriormente, que a base 

igualmente espaçada apresenta um crescimento muito rápida do erro com o avanço do grau do 
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carregamento, diferentemente das bases ortogonais que mantiveram uma boa eficiência. A 

quantidade de elementos também foi um fator importante para a precisão da solução, já que 

pode ser observado que a mudança do número de elementos, principalmente de 4 para 32 

acarretou numa maior estabilidade da solução, destacando-se o efeito ocasionado 

principalmente com aproximações de ordem mais baixa. Entretanto, com a estabilização, já 

com 36 elementos, foi pouca a diferença quando a quantidade foi modificada para 74. 

Podendo então ser afirmado que um grande número de elementos apenas acarreta um aumento 

no tempo computacional. Em relação a variação da aproximação do domínio, houve  pouco 

avanço entre os graus trabalhados, podendo ser observado uma maior melhora na mudança do 

grau 2 para 6.   

  

 

Figura 25.  Análise bidimensional do erro relativo no deslocamento máximo de uma viga bi apoiada com 

um carregamento racional com grau do domínio = 2. 
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Figura 26. Análise bidimensional do erro relativo no deslocamento máximo de uma viga bi 

apoiada com um carregamento racional com grau do domínio = 6. 
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Figura 27. Análise bidimensional do erro relativo no deslocamento máximo de uma viga bia 

poiada com um carregamento racional com grau do domínio = 10. 
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6. CONCLUSÃO 

Uma nova abordagem foi apresentada para interpolações aplicadas ao MEF para problemas 

uni e bidimensionais da elastostática. Expansões espectrais foram implementadas para 

garantir a eficiência e precisão da solução física de problemas simples e complexos, cujos nós 

de colocação foram posicionados cuidadosamente nos zeros dos polinômios ortogonais de 

Lobatto, Legendre e Tchebychev. Para problemas bidimensionais, foi utilizada a função 

interpolante de Proriol aplicada nas posições selecionadas das bases nodais. Como critério 

quantificador foi apresentado a constante de Lebesgue e o número de condição na norma 

euclidiana. A partir destes parâmetros, foi avalido a convergência das bases nodais frente a 

aproximações de alta ordem para problemas caracterizados por apresentar complexidades em 

sua geometria ou carregamento. Além dos Parâmetros citados acima, utilizou-se da 

abordagem do erro relativo, absoluto e ainda do logaritmo do erro para analisar a eficiência 

das bases frente a diversos problemas da eletrostática. Para o caso do MEF bidimensional, os 

parâmetros de análise foram o número de elementos e o grau da aproximação do domínio 

estudado. Para todos os problemas foram realizados estudos comparativo entre a base 

equidistante e as bases ortogonais com a elevação da ordem do polinômio interpolador frente 

a problemas quase singulares, como é o caso da função racional apresentada anteriormente. 

Durante a reprodução de geometrias mais complexas foi verificada uma maior 

deterioração da base igualmente espaçada à medida que o grau aproximador era aumentado. 

Em contraste, as bases ortogonais apresentaram uma boa eficiência com a elevação da ordem 

polinomial, em especial a de Lobatto, que dentre todas as bases foi a que obteve uma maior 

eficiência na interpolação dessas geometrias. Com relação ao estudo bidimensional de alta 

ordem, foi verificado que a utilização da função interpoladora de Proriol nas posições dos nós 

de Lobatto apresentou uma melhor eficiência na interpolação quando comparada com as 

outras bases estudadas. Assim como na abordagem unidimensional, a taxa de deteriorização 

da base equidistante aumentou com a elevação do grau polinomial, porém, em uma 

velocidade menor que no unidimensional para problemas mais complexos. 

Para a análise mecânica via MEF unidimensional, os resultados apresentaram 

características semelhantes aos obtidos na reconstrução das geometrias, sendo importante 

ressaltar um problema relacionado a base de Tchebychev que em algumas situações não 

apresentou boa convergência quando comparada as base de Lobatto e Legendre. Outros 
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parâmetros foram utilizados durante as interpolações aplicadas ao MEF bidimensional, como 

a quantidade de elementos e o grau da aproximação do domínio. À medida que o número de 

elementos era aumentado a precisão da solução crescia até um valor limite, quando alcançado, 

não é aconselhável a utilização de uma maior quantidade de elementos, pois a solução não 

obteve avanços em sua eficiência. Com relação ao grau de aproximação do domínio 

trabalhado, não foi verificado grande influencia do mesmo, pois pouco foi acrescido quanto a 

precisão, acarretando apenas em um maior custo computacional. 

Pelos resultados apresentados, conclui-se que ao se tentar reproduzir geometrias e 

carregamentos complexos, a melhor escolha de bases nodais é a da família ortogonal, em 

especial a de Lobatto, que dentre todas as estudadas, foi a que teve uma melhor eficiência ao 

se empregar expansões espectrais. Por fim, é aconselhável a utilização de aproximações de 

alta ordem em regiões que apresentem singularidades, e de baixa ordem pra regiões suaves. 

Referente à abordagem bidimensional, um estudo a posteriore do erro pode ser indicado a fim 

de se determinar um número adequado de elementos, proporcionando  máxima eficiência 

combinada com menor custo operacional. 
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APÊNDICE A Mudança de variável uni e bidimensional 

A mudança de espaços físico e adimensional é feito através de: 

𝜉 =
2𝑥

𝑙𝑒
− 1, 𝑙𝑜𝑔𝑜 − 1 ≤ 𝜉 ≥ 1, 

portanto derivando a equação acima  é obtido: 

𝑑

𝑑𝑥
=
𝑙

2

𝑑

𝑑𝜉
, 

a matriz de rigidez elementar fica escrita como: 

pode-se concluir que o vetor de forças nodais fica expresso através de: 

Da mesma forma que no unidimensional, o bidimensional procede-se com a obtenção 

das funções de forma, expressas para interpolar uma geometria em  termos das coordenadas 

nodais. A geometria para sólidos 2D é expressada como : 

em que 𝑁𝑖(𝜉1, 𝜉2) são as funções de forma relacionadas ao deslocamento. A expressão acima 

relaciona as coordenadas no espaço físico com o espaço adimensional, e isso é satisfeito 

através do Jacobiano da transformação entre os dois espaços.  

 

 

 

𝐾𝑒 = ∫𝐸𝐼𝐵𝑒
𝑇
𝐵𝑒𝑑𝑥 = ∫𝐸𝐼𝐵𝑒

𝑇
(𝜉)𝐵𝑒(𝜉)

𝑙𝑒

2
𝑑𝜉

1

−1

, (75) 

 

𝑓𝑒 = ∫𝑁𝑡(𝜉)𝑝

1

−1

𝑙𝑒

2
𝑑𝜉. (76) 

 

𝑥 = ∑ 𝑁𝑖(𝜉1, 𝜉2)𝑥𝑖   ;     𝑦 = ∑ 𝑁𝑖(𝜉1, 𝜉2)𝑦𝑖,

𝑚+1

𝑖=1

  

𝑚+1

𝑖=1

 (77) 
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Fonte - Adaptado de Onate, 2013. 

 

Figura 27. Figura que caracteriza a mudança do espaço físico para adimensional 

Podemos relacionar 𝑁𝑖 através de termos das corrdenadas adimensionais como : 

{
 

 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 }
 

 
= [𝐽(𝑒)]

−1

{
 

 
𝜕𝑁𝑖
𝜕𝜉1
𝜕𝑁𝑖
𝜕𝜉2}

 

 

=
1

|𝐽(𝑒)|

[
 
 
 
𝜕𝑦

𝜕𝜉2
−
𝜕𝑦

𝜕𝜉1

−
𝜕𝑥

𝜕𝜉2

𝜕𝑥

𝜕𝜉1 ]
 
 
 

{
 

 
𝜕𝑁𝑖
𝜕𝜉1
𝜕𝑁𝑖
𝜕𝜉2}

 

 

, 

onde 𝐽(𝑒) é expresso como:  

𝐽(𝑒) =

[
 
 
 
𝜕𝑥

𝜕𝜉1

𝜕𝑦

𝜕𝜉1
𝜕𝑥

𝜕𝜉2

𝜕𝑦

𝜕𝜉2]
 
 
 

. 

Com as expressões acima expostas, pode-se então expressão a matriz de rigidez 

elementar como: 

 𝑘𝑒 = 𝑡𝑒 ∫ 𝐵𝑇𝐷𝐵𝑑𝐴
𝐴

= 𝑡𝑒 ∫ 𝐵𝑇(𝜉1, 𝜉2)𝐷𝐵(𝜉1, 𝜉2)𝑑𝑒𝑡𝐽𝑑𝐴𝐴
. (78) 
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O vetor de força de corpo pode ser encontrado de modo similar: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑓𝑒 = 𝑡𝑒 ∫ 𝑁𝑡𝑑𝑒𝑡𝑗𝑑𝜉1𝑑𝜉2 {
𝑓𝑥
𝑓𝑦
}

𝐴

 (79) 
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APÊNDICE B – Integração numérica uni e bidimensional 

O emprego do método dos elementos finitos muitas vezes requer a resolução de integrais de 

complexa integração. Portanto faz-se necessário a utilização de ferramentas que possas 

contornar essa dificuldade computacionalmente. A matemática  oferece inúmeros métodos de 

integração, entretanto o utilizado nesse trabalho foi o de Gauss-Legendre devido a sua 

simplicidade de implementação e alta taxa de convergência. Segundo esse método, 

podemos determinar a integral através de: 

com  𝑛𝑖𝑛𝑡  pontos de integração, 𝑤𝑖 corresponde ao peso de integração associado ao 

ponto de integração 𝜉𝑖 , pertencente ao intervalo de [−1, +1]. 

Para a integração bidimensional, utiliza-se o mesmo  recurso da quadratura de Gauss-

Legendre estudado anteriormente. Os pontos de Gauss para a região triangular diferem dos 

pontos para uma região quadrada. Para a matriz de rigidez a integração numérica converge de 

modo a obter um valor bastante próximo do analítico. 

A expressão acima demonstra como se dá o procedimento de cáuclo numérico da 

matriz de rigidez elementar. Onde 𝑛𝑖𝑛𝑡  são o número de pontos de integração de Gauss-

Legendre e 𝜉1
𝑖 , 𝜉2

𝑖  são os pontos de gauss. 

 

 

∫𝑓(𝜉𝑖)𝑑𝜉𝑖 =∑𝑤𝑖𝑓(𝜉
𝑖) ≈ ∑𝑤𝑖𝑓(𝜉

𝑖)

𝑛𝑖𝑛𝑡

𝑖=1

∞

𝑖=1

𝑏

𝑎

, (80) 

 𝑘𝑒 = 𝑡𝑒 ∫ 𝐵𝑇𝐷𝐵𝑑𝐴
𝐴

= 𝑡𝑒 ∑ 𝐵𝑇(𝜉1
𝑖 , 𝜉2

𝑖)𝐷𝐵(𝜉1
𝑖 , 𝜉2

𝑖)𝑑𝑒𝑡𝐽
𝑛𝑖𝑛𝑡
𝑖=1 . (81) 


