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RESUMO

Erros numéricos podem ser obtidos durante a formulagdo do método dos elementos finitos ao
se tentar reproduzir geometrias complexas, a depender do polindmio de interpolacdo, da base
dos pontos nodais, do nimero de elementos e do grau aproximador. Para contornar essas
dificuldades, aproximacdes de alta ordem associadas as bases ortogonais de Lobatto,
Legendre, Tchebychev e da base nodal equidistante sdo aplicadas na anélise de problemas uni
e bidimensionais da elastostatica. Um estudo comparativo entre as bases nodais € feito com o
intuito de verificar a convergéncia a medida que é elevado a ordem polinomial, levando-se em
conta parametros quantificadores como a constante de Lebesgue e o numero de condicdo. A
partir desses pardmetros é realizada uma anélise quanto a capacidade das interpolacdes em
minimizar efeitos oscilatdrios, conhecido como fenbmeno Runge, quando se busca reconstruir
geometrias complexas a partir de polinémios de alto grau. Para o caso do MEF bidimensional,
uma analise da eficiéncia da interpolacdo frente a pardmetros, tais como o numero de
elementos e grau da aproximacdo do dominio é feito a fim de obter méxima eficiéncia com
baixo custo computacional. Exemplos sdo avaliados e constatado a melhora da solucéo
guando € utilizada expansfes espectrais em detrimento da interpolacdo de base igualmente

espacada.

Palavras-chave: Método dos elementos finitos, Polinbmios ortogonais, Elementos espectrais
de alta ordem, Fendbmeno Runge, Constante de Lebesgue.
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1.  INTRODUCAO

A simulacdo computacional vem ganhando significativos avangos no que diz respeito a
modelagem e reproducdo de problemas de sistemas fisicos grandes e complexos. A
engenharia estrutural, ao longo das ultimas decadas, cada vez mais prioriza a eficiéncia e
precisdo na reproducdo de geometrias reais. Precisdo essa adquirida atraves de métodos que
possibilitem a obtencdo de solu¢Bes numéricas com rapida convergéncia. O Método dos
Elementos Finitos (MEF), em geral, possui boa eficiéncia quando se analisa problemas
simples a partir de elementos de baixa ordem, ndo necessitando, assim, a utilizacdo de
elementos mais sofisticados. Entretanto, cada vez mais a mecénica computacional vem se
deparando com problemas de natureza singular, ou seja, de dificil representagdo e de obtencéo
de solucdo, obrigando entdo a utilizacdo de ferramentas que assegurem a qualidade da solucao
fisica do problema. No caso da mecéanica do continuo, essas singularidades podem resultar de
fontes geométricas, tais como entalhes e fraturas, descontinuidades das propriedades dos
materiais, efeitos externos, como carregamentos com descontinuidade acentuada e, também,

devido as condi¢bes de contorno.

A implementacdo de aproximacdes de alta ordem surge como forma de contornar
essas dificuldades encontradas em problemas mais complexos, cuja solu¢cdo numérica é de
dificil reproducdo. Entretanto, encontra-se resisténcia em sua utilizacdo seja por carater
tedrico ou computacional (KARNIADAKIS; SHERWIN, 1999, apud ROCHA; KZAM,
2013). Como forma de assegurar a convergéncia uniforme, a estimativa de erro a posteriori
agora é considerada tdo importante quanto a analise de elementos finitos em si, sendo de
razoavel dificuldade a utilizacdo do MEF sem a tolerancia da capacidade dos resultados.
(ZIENKIEWICZ; RANK, 1987).

Uma forma de estimar esse erro é a adog¢do de parametros quantificadores, como a
constante de Lebesgue, definida como a soma dos valores maximos absolutos das fungdes de
interpolagéo sobre todos os nés (BLYTH; POZRIKIDIS, 2005). Tal erro associado a efeitos
oscilatdrios devido a utilizacdo de aproximacdes de alta ordem € denominado de fenémeno

Runge e pode ser quantificado pela constante de Lebesgue.

Neste trabalho sdo utilizadas aproximagdes de alta ordem, onde os nés séo colocados

cuidadosamente nos zeros dos polinémios ortogonais de Lobatto, Tchebychev, Legendre e da



base igualmente espacada (este ultimo ndo ortogonal), verificando-se a convergéncia na

andlise de problemas elastostaticos unidimensionais e bidimensionais via MEF. Para a

estimativa do erro, o presente trabalho utilizou como parametros quantificadores o nimero de

condicdo e a constante de Lebesgue, ja comentada anteriormente. Desta maneira, busca-se

entdo a identificacédo da distribui¢do de pontos que minimize o erro da interpolacdo. Diante do

explanado acima, este trabalho sera dividido da seguinte maneira.

1.1.  Organizacéo do trabalho

a)

b)

e)

Capitulo 3: Além do que sera exposto no capitulo 2 referente a objetivos gerais e
especificos, na secdo 3 serd abordada a revisdo da Literatura, no item 3.1 é
apresentado uma introdugcdo do método dos elementos finitos, no 3.2 interpolacdo
espectral e 3.3 MEF de alta ordem.

Capitulo 4: Séao feitos comentarios a respeito da interpolacdo de alta ordem, e nos
itens 4.1 e 4.2 aplica-se estratégias de interpolacdo através do estudo da matriz de
Vandermonde e bases nodais, respectivamente. A sec¢do 4.3 traz comentarios sobre o
erro de interpolacdo e a 4.4 e 4.5 traz explicacbes sobre o nimero de condicédo e
interpolacdo sobre dominio triangular.

Capitulo 5: Traz a formulacdo forte e fraca para vigas de Euller-Bernoulli e no item
5.4 é retratado a formulacdo do MEF para 2 dimensdes.

Capitulo 6: Traz a metodologia do trabalho, detalhando todas as etapas até a
obtencdo dos resultados.

Capitulo 7: Traz os principais comentarios decorrentes da analise dos resultados.

Ainda tém-se as referéncias e Apéndices onde sdo expostos a mudanca de varidvel e o

método de integracdo utilizado para o programa unidimensional e bidimensional.



2. OBJETIVOS

2.1. Objetivo geral

Desenvolver e implementar computacionalmente a formulacdo do Método dos Elementos
Finitos aplicados a problemas uni e bidimensionais da elastostética, a partir das fungdes
interpoladoras espectrais de alta ordem.

2.2.  Objetivo especifico

o Desenvolver e implementar computacionalmente algoritmos para geracdo de
elementos unidimensional e bidimensional (triangular) de alta ordem com caracteristica
espectral (Legendre, Lobatto e Tchebychev);

. Desenvolver e implementar computacionalmente algoritmos para geracdo de
elementos unidimensional e bidimensional (triangular) de alta ordem sem caracteristica
espectral (Lagrange);

o Desenvolver e implementar computacionalmente a formulagdo do MEF uni e

bidimensional para problemas da elastostatica aplicando os elementos de alta ordem.
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3. REVISAO DA LITERATURA
Nesta secdo € realizada uma breve revisdo do MEF, tanto na contextualizacdo historica quanto
na aplicagdo de elementos de alta ordem para resolver problemas elastostatico.

3.1.  Breve revisdo histérica do Método dos Elementos Finitos (MEF)

Um ponto l6gico predecessor ao Método dos elementos Finitos € atribuido pelas grandes
realizacOes da escola francesa, tal como Navier e St. Venant, de 1850 a 1875 (Apud
GALLAGHER, 1975). Os conceitos de analise estrutural surgiram durante este periodo,
devido aos esforcos de Maxwell, Castigliano, Mohr e entre outros. Conceitos estes que
representaram a base metodologica, que aproximadamente 80 anos mais tarde, dar-se-ia 0

nome de analise matricial das estruturas.

O progresso no desenvolvimento da teoria e das técnicas que auxiliaram ao surgimento
da andlise dos elementos finitos foi lenta no periodo de 1875 a 1920. Esta lentiddo foi
ocasionada, em grande parte, por limitacGes praticas em resolver equacdes algébricas com
algumas poucas incdgnitas. Sendo que neste periodo, o interesse estrutural estava atrelado aos
problemas de trelicas e porticos baseados em distribuicdo de tensdo com parametros de forcas

incégnitas.

Em aproximadamente 1920, devido aos esforcos de Maney, nos Estados Unidos, e
Ostenfeld, na Dinamarca, a ideia basica de analise de trelicas e porticos passou a ser abordado
tendo os deslocamentos como pardmetros incognitos. Esta ideia apresentou os conceitos
percussores da andlise matricial dos dias atuais. Diversas limita¢cdes no tamanho do problema,
seja ele com incdgnita forca ou deslocamento, continuou até 1932, quando Hard Cross
introduziu o método da distribuicdo de momento. Este método tornou possivel a solucdo de
problemas da analise estrutural com magnitude mais complexas que o mais sofisticado

problema tratado pelas abordagens anteriores.

O metodo da distribuicdo do momento tornou a parte mais importante para a analise
prética das estruturas por durante 25 anos (GAUL; KOGL; WAGNER, 2003).

A apari¢do do primeiro computador digital, por volta de 1950, teve uma contribuicéo

desprezivel para a evolugdo dos conceitos numericos para resolver problemas de Engenharia.
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Esta pouca contribuigdo dos computadores foi devido a dificuldade de codificacéo de
procedimentos bem estabelecidos para a analise estrutural em formato adequado aos
computadores: o formato de matriz. Dois notaveis desenvolvimentos foram publicados, um
por Agryris e Kelsey e o outro por Turner, Clough, Martin e Topp. Essas publica¢cdes uniram
0s conceitos de andlise estrutural e anélise do continuo, tendo como resultado a criacdo de
desenvolvimentos no formato matricial. Estes autores influenciaram no desenvolvimento do
método dos elementos finitos nos anos seguintes. No entanto, pode parecer impreciso atribuir
o0 surgimento do MEF a estes trabalhos, pois caracteristicas importantes do MEF apareceram
até mesmo antes de 1950, nos artigos de Courant, McHenry e Hrenikoff (GAUL; KOGL;
WAGNER, 2003). O trabalho de Courant é particularmente significante, pois este se preocupa
com problemas governados por equacOes aplicaveis a outras situacdes diferentes da mecanica,
ndo apenas a analise estrutural. Entretanto, como este breve histérico é focado no método dos
elementos finitos aplicados a mecanica estrutural, ndo seria nenhuma injustica atribuir as

importancias devidas as duas publicacdes citadas acima.

A tecnologia da andlise por elementos finitos teve avan¢os em numerosas fases desde
1950 e para maiores detalhes é aconselhado ver o trabalho de Zienkiewicz (1970). Motivado
por formulacBes de elementos para tensdo plana, pesquisadores estabeleceram elementos
associados para sélidos, placas, vigas, chapas e outras formas estruturais. Uma vez conhecida
a abordagem para a analise linear, estatica e elastica, a atencdao foi destinada a fenbmenos
especiais tais como dinamica, flambagem e nédo linearidades fisicas e geométricas. Este
avanco foi marcado por um periodo de intenso desenvolvimento de programas de

computadores, 0s quais eram destinados a aproximar o MEF as aplicacdes praticas.

Nos dias atuais, muitos pesquisadores continuam a se preocupar com a formulacdo de
novos elementos, ao desenvolvimento de formulacbes do MEF melhoradas, além da criacéo
de novos algoritmos para capturar fendmenos especiais, principalmente, os fenémenos nao-
lineares e de interesses interdisciplinares.

3.2.  Interpolagdo Espectral

Os métodos que utilizam elementos espectrais/hm combinam a flexibilidade geométrica das
técnicas classica dos elementos finitos e do volume finito tipo A com as propriedades
desejaveis de resolucdo dos métodos espectrais. Nesta abordagem, uma expansdo polinomial

de ordem m é aplicada a cada dominio elementar da malha, com poucos elementos, na
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formulagdo de elementos finitos. Esta técnica foi aplicada em muitos estudos fundamentais da
mecanica dos fluidos (SHERWIN; KARNIADAKIS, 1996) e, mais recentemente, ganhou
maior popularidade na modelagem de fen6menos baseados em ondas, tais como no
eletromagnetismo computacional (HESTHAVEN; WARBURTON, 2002) e em problemas de
aguas rasas (BERNARD; REMACLE; COMBIEN; LEGAT; HILLEWAERT, 2009), em

especial quando aplicado dentro de uma formulagdo de Galerkin descontinuo.

Métodos dos elementos espectrais/hm podem ser considerados como uma extensao de
alta ordem do método dos elementos finitos classicos (de baixa ordem) onde a convergéncia
ndo so é possivel através da reducdo do tamanho h caracteristico da malha, mas também
através do aumento da ordem polinomial local m dentro de um subdominio elementar. No
entanto, o conceito de discretizacBes de alta e baixa ordem podem ter diferentes significados
para diversas comunidades cientificas. Por exemplo, nas obras seminais de Zienkiewicz e
Taylor (ZIENKIEWICZ; TAYLOR, 1989) e Hughes (HUGHES, 1987) listam exemplos de
expansbes elementar somente até o terceiro ou, eventualmente, até a quarta ordem,
implicando nestas ordens serem consideradas elevadas para a comunidade de elementos
finitos tipo h. Em contraste, as bibliografias da comunidade de elementos espectrais/hAm
(SZABO; BABUSKA, 1991; KARNIADAKIS; DEVILLE; FISCHER; MUND, 2002;
SHERWIN, 2005; HESTHAVEN; WARBURTON, 2008) mostram exemplos tipicos de
problemas que vao desde aproximacdo de baixa ordem, minimamente considerado como de
quarta ordem, até expansdes polinomiais que vdo de décima a décima-quinta ordem. Na outra
extremidade do espectro, estdo os grupos de pesquisa dos métodos espectrais global
(GOTTLIEB; ORSZAG, 1977) que consideram uma expansdo global de ordem 16 como

sendo relativamente baixa para a aproximacao.

Pode-se perguntar se essas diferentes definices de baixa e alta ordem é apenas
inerente a tradicdo ou folclore de cada uma das comunidades ou se existem razdes mais
praticas para estas distintas interpretacdes. Os proponentes dos metodos de baixa ordem
podem destacar que alguns problemas de interesse pratico sdo tdo geometricamente
complexos que ndo se pode, computacionalmente, dar ao luxo de usar técnicas de alta ordem
em malhas pesadas para capturar a geometria. Alternativamente, os proponentes dos métodos
de alta ordem destacam que, caso o0 problema de interesse possa ser capturado em um dominio
computacional a um custo razoavel, utilizando aproximacdes de ordem superior para solucdes

suficientemente suaves, entdo sua aplicagdo torna-se recomendada, pois irdo proporcionar
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uma precisdo mais alta (VOS; SHERWIN; KIRBY, 2010). Esta maior precisdo é devido ao
fato de que os nos da base de interpolagdo sdo colocados cuidadosamente nas posigdes
correspondentes aos zeros dos polinémios ortogonais, obtendo assim a expansao do elemento
espectral (ROCHA e KZAM, 2013).

Como pode ser observado, hd& uma divergéncia conceitual nas mais diversas
comunidades cientificas do que vem a ser elementos de alta ordem. Entretanto, neste trabalho

é considerado elementos de alta ordem para o espectro de valores de m maior que ordem 4.
3.3.  Método dos elementos Finitos de alta ordem

O Método dos elementos Finitos é atualmente o método numérico mais utilizado para resolver
equacOes diferenciais e sendo o MEF presente em numerosos softwares comerciais
disponiveis no mercado. No MEF, o dominio do problema é dividido em um certo nimero de
subdominios (ou elementos finitos) com a conectividade entre os elementos fornecidas através
de pontos nodais comuns. Func@es de aproximacao por partes para as variaveis desconhecidas
sdo entdo selecionada para cada elemento finito que satisfacam alguns requisitos minimos de
continuidade entre os elementos no contorno, que dependerdo das suposicdes feitas no modelo
matematico basico. O conjunto de equacBes simultaneas, normalmente, com coeficientes
simétricos, obtém-se através da formulacdo fraca da equacdo diferencial obtida pelo método
dos residuos ponderados, ou aplicando a condicdo de estacionaria ao funcional para o

problema, se disponivel.

A qualidade da solucéo aproximada depende da proximidade do modelo finito com o
modelo matematico que representa o problema em anélise. A proximidade é controlada pelos
atributos do problema, pelo algoritmo numérico usado, pela distribuicdo e natureza do grau de
liberdade, pelo nimero de digitos de precisdo utilizado na computacdo, e pelo tipo de
algoritmo utilizado para calcular as integrais e para resolver o sistema de equacgdes. No caso
de problemas elipticos, todo o dominio espacial precisa ser refinado pois as condigdes de
contorno afetam toda a regido. No caso de problemas de valor inicial, o modelo de
refinamento reque estratégias diferentes da utilizada para problemas elipticos, no sentido de
que nos problemas de valor inicial, o futuro ndo afeta o presente e o refinamento pode ser

variado de um estagio para outro, dependendo do comportamento local da solucao.
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No caso de problemas elipticos, a qualidade da solucdo é dependente do modelo
utilizado, ou seja, dependente do tamanho e da ordem dos elementos, assim como da sua
distribuicdo. O uso da forma fraca para a equacdo diferencial (ou, minimizacdo do funcional
no sentido variacional) conduz a resultados em que as derivadas da funcdo aproximadora sao
menos precisas que a propria fungdo, a menos que as derivadas sejam também aproximadas, o
que é menos conveniente na formulagdo classica do MEF. A qualidade da solucdo pode ser
melhorada por refinamento do modelo de elementos finitos, seja por usando mais elementos
de menor tamanho (conhecido como extensdo h), ou por aumentar a ordem da funcdo
aproximadora por partes em uma malha fixa (conhecido como extensédo p), ou, ainda, por uma
combinacgdo 6tima das duas extensfes (conhecido como extensdo hp). Azabo (BABUSKA,
SZABO; KATZ, 1981) e seus colaboradores foram responsaveis, ndo somente por iniciar 0s
estudos das extensdes p e hp, mas também por identificar o conjunto de funcGes base baseada
nos polindmios de Legendre (ou suas integrais) como a melhor escolha a ser usado na
formulacdo do MEF de alta ordem, devido a sua propriedade ortogonal e a sua natureza
hierarquica (BABUSKA; SZABO; KATZ, 1981, BASU; PEANO, 1983). Uma outra
alternativa para melhorar o modelo é realizar a redistribuicdo dos graus de liberdades por
meio de mudancas estratégicas do tamanho dos elementos, reduzindo seus tamanhos e
aumentando a ordem das funcdes de aproximacdo de modo que o nimero total de graus de
liberdade permaneca inalterado (conhecido como extensdo r). Nos elementos que fazem

. . . , - A s p+1
fronteira com ponto singular, ao invés de usar polindmios regulares (u = ijzuij (&) com
-1<£<1e N; como fungdo base), usa-se polinbmios de Legendre, ou de Chebyshev ou de

Jacobi para capturar a singularidade (BASU; JORGE; BADRI; LIN, 2003).

A qualidade da solucdo pode ser verificada, erroneamente, no sentido a posteriori
usando informacdo ndo satisfatéria, como por exemplo, devido a aplicacdes indevidas das
condi¢cdes de contorno naturais, e devido a violacdo dos requisitos de continuidade das
derivadas dos funcionais, assim como, devido ao uso do grau das fungdes aproximadoras
inadequados. Outro indicador indireto pode ser a grandeza do residuo obtido quando a
solucdo aproximada é substituida nas equacdes diferenciais que regem o problema de analise.
Métodos tém sido propostos para estimar o erro por diferentes normas (por exemplo, norma
de energia) em niveis elementar e global usando estimativas melhoradas da solucgéo através de
pos-processamento da solugdo atual. Estimativas pontuais do erro nos valores da fungéo e das

derivadas podem também ser obtidas comparando a solucdo atual com as estimativas
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melhoradas da solucdo. Apds a determinacdo das estimativas do erro global e local, 0 modelo
de elementos finitos pode ser perfeitamente melhorado usando uma das extensdes h, p, hp ou r
(BASU; JORGE; BADRI; LIN, 2003).

3.4. Interpolagdo de alta ordem

Nesta secdo € apresentada a fundamentagéo tetrica para o desenvolvimento dos elementos de
alta ordem por meio da construcdo da matriz de Vandermond generalizada. E ainda
apresentada a construcdo das bases espectrais (Legendre, Lobatto, Tchebthev) e ndo espectral,

Lagrange, para interpolacdes unidimensionais e bidimensionais.
3.4.1. Matriz de Vandermond generalizada

A estratégia para aumentar a ordem polinomial é obtida através da determinacdo da matriz de
Vandermond. Este procedimento é empregado por ser de facil generalizacdo na geracdo de
funcBes de forma para elementos uni e bidimensionais de ordem qualquer. (POZRIKIDIS,
2005, apud, ROCHA E KZAM, 2013).

O termo geral do polinémio interpolador é obtido por:

0i(§) =X aiié) = ap + apé + -+ ™. 3

Fish e Belytschko (2007) ressaltam uma propriedade importante das fungdes de forma
denominada delta de Kronecker (5;;). A partir de tal propriedade, conclui-se que essas
fungdes possuem valor unitario nos n6s analisados, enquanto que nos demais ndés, seu valor €

nulo. Matematicamente tem-se:

1, i=j
5”{0, iij}’

ao impor as propriedades da parti¢do da unidade, a equacéo 3 fica escrita como:

n

pi(E=¢&) = Z a;j& = ajp + apn & + -+ A& = i (4)

j=0
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sendo ¢;, as fungbes de forma avaliadas nos pontos i = 1,..., (m + 1), a;; os coeficientes

dos polindmios e §;, 0 delta de Kronecker. Tem-se:

[a'lo alm]ll 1] [1 0]
U | P2 (= ) B P

esta representacdo simbdlica fica:

MV =1, (5)

em que M, é a matriz com os coeficientes dos polinbmios interpoladores, V é a matriz de
Vandermonde e | é a matriz identidade. A matriz que contém as poténcias das coordenadas
adimensionais é denominada de matriz de Vandermonde e os seus coeficientes sdo obtidos

diretamente pelo calculo de sua inversa.

M=V, (6)

calculado os valores dos coeficientes, as funcGes de forma em um ponto de coordenadas

adimensional qualquer, podem ser calculadas a partir:

0i(6) = ) (&)’ )
j=0

3.5. Bases nodais

Na tentativa de obtencdo da funcdo aproximadora para a resolucdo do problema fisico, a base
interpoladora utilizada torna-se de imprescindivel importancia. Uma vez que esta interfere
diretamente na eficiéncia e precisdo da analise numerica, seja por erros cometidos na
representacdo geomeétrica, seja por erros obtidos na resposta mecénica do problema. Uma
correta distribuicdo dos pontos nodais dentro de uma base é fundamental no estudo da
convergéncia uniforme quando se utiliza fungdes de alta ordem. A seguir sdo apresentadas as

bases nodais estudadas durante esse trabalho.

3.5.1. Base nodal igualmente espacada
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Para a construcdo do conjunto de pontos igualmente espacados, {&; e R; —1 < &, < +1}, é

obtido pela expresséo:
§k=85+rk—1), (8)

sendo k =1, ...,(n+ 1), a parti¢do do intervalo, é; = —1, 0 ponto inicial, r = % a razdo da

progressdo e n o grau da interpolagéo.
3.5.2. Base nodal espectral

Para construcdo da base nodal espectral tém-se de fundamental importancia os polindmios
ortogonais, uma vez que a posicao destes pontos da base é obtida pelos zeros dos polinémios

com caracteristica de ortogonalidade.

Os Polinbmios Ortogonais vem sendo utilizados na matematica aplicada para a
resolucdo de diversos problemas, por serem uma base apropriada para a aproximagédo de
fungdes. Entre os principais polindmios ortogonais, sendo estes os utilizados neste trabalho,

tem-se: os polindmios de Legendre, Tchebychev e Lobatto.
3.5.2.1.  Polindmios de Legendre

Os Polindmios de Legendre estdo definidos no intervalo [—1,1], segundo o produto:

1
(f.9) = f F()g()d () ©)
-1

Seus primeiros polinbmios sao:

Py(x) =1,
P, (x) = x,

P,(x) = (3x2 - 1),
Py(x) = %(Sx3 — 3x),

Py(x) = = (35x* — 30x2 + 3).
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De acordo com Pozrikidis (2005), os polinbmios de Legendre podem ser obtidos pela
férmula de recorréncia abaixo, onde P,(x) =1 e P;(x) =x. A figura 1 mostra o

comportamento dos polindmios de Legendre, alem dos polindmios de Lobatto e Tchebychev.

Pn+1(x) = n

(10)

09

0641

03+

0,04

Legendre(s)

034

20,64 _'_.-':

.
3
3

094

Lobatto(s)

3.5.2.2.

40 08 08 04 92 00 02 04 08 08 10 40 08 06 04 02 00 02 04

E
S

Tchebyshev(:)

1.5

»
-

40 08 08 04 02 00 02 04 06 08

06 08 10

Figura 1. Primeiros polindmios das bases ortogonais de Legendre, Tchebychev e Lobatto.

Polindmios de Tchebychev

Séo definidos no intervalo [—1,1] pelo produto:

(T T) = [ J—T n () T () dx,

Seus primeiros polinbmios sdo descritos abaixo:

(11)
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T, = 0,
T, = x,

T, = 2x* — 1,
T; = 4x® — 3x,

T, = 8x* —8x2 + 1.

Sua funcéo de recorréncia segundo Pozrikidis (2005) é:

Thy1(x) = 2x T (x) — Tpoy(x), n = 1, (12)
com, T,(x) =1eT;(x) = x.
3.5.2.3.  Polindbmios de Lobatto

Os polindbmios de Lobatto sdo definidos no intervalo [—1,1] e formados por:
(Lo L) = [1,(1 = 2Ly (O L () dlx, (13)
em que, sua formula de recorréncia segundo Pozrikidis (2005) é:

(14)

Ln(x) = [+ 1) x Prya(x) — (n+DPAX)], n 20,

x2—-1

com, P, e P,,4, polinbmios de Legendre. Os primeiros polindmios de Lobatto sdo descritos

abaixo.
PO = 1,
P, = 3x,

P, =2(5x2 - 1),
P = ;(7x3 — 3x).

A maior razdo para a escolha dos polinbmios de Lobatto é que a interpolacdo nodal

sempre ira variar em uma amplitude de [—1,1]-, independente da ordem polinomial utilizada:
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@i(§) =1, (15)

devido a essa propriedade, as oscilagdes Runge séo suprimidas, acarretando em uma melhor
eficiéncia na interpolacéo e o raio de convergéncia na interpolacdo com respeito ao grau m, é
mais rapido do que qualquer poténcia 1/m (POZRIKIDIS, 2005).

3.6.  Erronainterpolagao

A estimativa do erro mostra-se hoje em dia tdo importante quanto a anélise dos resultados em
si. Considerando uma funcdo f(x) a qual é interpolada por polinémios, B, (x), de grau igual
ou menor a m. A diferenca entre o valor da funcao exata e a fungdo aproximadora é o erro da

interpolagéo.

e(x) = Pp(x) — f(x), (16)

as condicdes de interpolacdo garantem que nos pontos de interpolacdo x;,

e(x;) = 0. (17)

parai=1,2,..,m+1, e(x) tem no minimo m + 1 zeros no dominio de interpolagdo. Em

geral, e(x) # 0 quando x # x;.

Quando a funcdo f(x) é suficientemente suave, o erro ocorrido pela interpolacéo

polinomial é dado por (Davis, 1975).

O

e =)

(x = x) (x = x2) oo (X = X)) (X = Xy 40).
(18)

Segundo Rocha e Kzam (2013), a analise da convergéncia de uma funcdo requer a
utilizacdo de parametros quantificadores da magnitude do erro. Essa medida do erro sera
realizada pela norma maxima de uma funcdo f(x) denotada por ||f(x)l|, ou seja, o valor
absoluto méaximo de f(x). Para todos os polinémios de grau n de aproximagéo de uma funcgao

f(x), existe um polindmio Gtimo, denotado de P9t (x), que exibe o erro minimo |le(x)]l,
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chamado de erro minimax e denotado de p,,[f(x)]. Esse polindmio o6timo ndo

necessariamente € um polindmio de interpolagéo da fungéo f(x).

Considerando para todas as fungdes f(x) com a norma maxima unitéria, ||f(x)|| =1, a

correspondente norma do erro de interpolacao é:

leGoll = 11Bn () = FEOIl = [| (B (0) = BT (0)) + (B C0) = ()|
< [|Pn(0) = B + [P35 @) - F | (19)
= [|Bn () = BRI + pmlf (],

para enfatizar que o polindmio B, (x) aproxima a fungdo f(x), é utilizado como notacéo
Bn(x, ). Em seguida é aplicado o lema de Lebesgue (Karniadakis e Sherwin, 1999), e

desenvolve a desigualdade.

1P G, £) = BREQO| = [P e, £) = P G, B (20)
< N1Ball-[If GO = BREC,

sendo que:

B = max|| B, (f GO, (21)

lle(x)|] maximo é calculado sobre todas as funcdes admissiveis, f(x). Assim,

lleCOIl < (1 + IBnIDpm[f (1. (22)

Para obter um limite para a norma ||B,|,0 polindbmio interpolante é expresso em
termos dos polinbmios da equacdo 5. Relembrando a condi¢do que ||f(x)|| = 1, pode-se

escrever:

m+1

1Bl = max< PWLEE) ) < max (Z |f<xi)||<pl-(x)|> < max(3n (), (23)
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em que:

m+1

In() = ) 19:(0) 24)

é a funcdo de Lebesgue, cujo maximo valor é a constante de Lebesgue,

Am = max(Ip,(x)) (25)

E conhecido que a constante de Lebesgue possui 0 comportamento crescente & medida
gue m tende ao infinito. O teorema de Erdos coloca um limite inferior para o crescimento
possivel da constante (RIVLIN, 1969)

AmS%lnm+1—c, (26)

onde ¢ € uma constante positiva. Assim, a constante de Lebesgue cresce tdo rapido quanto
Inm.Quando os pontos sdo igualmente espacados no intervalo definido, a constante de

Lebesgue cresce rapidamente com o aumento de m, exibindo o comportamento:

Zm
mlogm’ (27)

~

m

E possivel provar que quando os nés de interpolagdo sdo colocados nos zeros dos
polindbmios ortogonais a constante de Lebesgue, cresce muito lentamente a quase taxa
logaritmica ideal segundo Fejér, (1932a) e Fejér, (1932b), apud Rocha e Kzam (2013). Para a
interpolacdo de Lobatto, a analise numérica revela o limite (BOS, 1983; HESTHAVEN e
TENG, 2000, apud ROCHA e KZAM (2013)

2
Ay, < ;ln(m +1) + 0,685. (28)

3.7.  Numero de condicéo

Para a resolucdo de sistemas lineares, um aspecto € bastante significante e deve ser

considerado, quando a solugdo de determinada equacdo € muito sensivel a pequenas
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mudangas nos seus coeficientes. Esse Fendmeno é denominado de mal condicionamento e
esta relacionado a singularidade da matriz dos coeficientes (Franco, 2010). Este aspecto pode

ser quantificado e expresso por meio de:

cond(4) = IANlIANITY, (29)

sendo ||A|| a norma euclidiana da matriz analisada, e ||A]|~! sua inversa. ||A|| pode ser

expresso atraves de:

lAllg = [2Fi-, af (norma euclidiana). (30)

3.8. Interpolacdo em dominio triangular

Segundo Pozrikidis (2005), para a interpolacdo de uma funcéo f(&;,¢,), é necessario realizar

uma expansao polinomial sobre a area de um triangulo padrdo no plano paramétrico é; — &,:

f(S(sz) = Qoo
+ a10é1 + ap:éz +

Ay0¢7 + a11&1&, + a6 +

a30é7 + 21658, + 4126185 + ag3é3 +

_1 —_
Amoé1" + a(m—1)151(m )fz + et a1(m—1)f1f§m 2 + agmé&s (30)

cuja soma dos indices i +j dos coeficientes a;; € constante a cada linha e o nimero de

coeficientes é determinado por:

m+ 2 1

N = ( ): “(m+1)(m+2). (31)
2 2

A expanséo polinomial pode ser escrita como:

F&L,E) = Il aiiMi(&, &) .
(32)
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Para o processo de interpolacdo, € introduzido a funcao de interpolacdo cardinal para o

né i, y;(&,,&,), parai = 1,2,...N , com a propriedade:

(&],8)) = 8, (33)

em que J;; € o delta de Kronecker. A interpolacdo polinomial sobre o tridngulo paramétrico

pode ser escrito da seguinte forma:

FEL&) = S wi(& e f(El,€)).
(34)

As funcdes de interpolacéo podem ser apresentadas como combinacdes lineares de um

conjunto N de polindmios independentes, ¢;($;,$,), sendo assim, a fungdo de interpolacdo

cardinal para o nd i de ordem m no plano &; — &, é escrito da seguinte forma :

Yi(€1, &) = end1(§1,62) + eno1P2(81,82) + -+ (3%)
+ c2Pn-1(81,82) c1Pn(61,€2),

onde c; corresponde a N coeficientes de expansdo paro o no desejado, e sendo j = 1,2, ..., N.

@;, € 0 vetor das funcdes de base e para isso.

Diversas sdo as escolhas possiveis, sendo as melhores os polindmios de Appel e
Proriol. Porém estudos realizados por Blyth e Pozrikidis (2005) revelaram que Proriol tem

uma melhor eficiéncia quando comparado ao polinémio de Appel.
3.8.1. Interpolagéo de Proriol

A base mais desejavel segundo Proriol (1957) apud Rocha (2015) é constituida pelo
polindmio de Proriol, o qual € totalmente ortogonal sobre a area do triangulo. Independente da
escolha da base deve-se impor a condigédo de interpolagéo cardinal, que pode ser escrita pela

Equacao (36):

Vic=e, (36)
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em que V, € dado por:

¢:1(61.62) - $1(EY. &)
Vp = : : , (37)
dn (1, 83) o dn (€, ED)

sendo o termo V, a matriz de Vandermonde generalizada N x N com componentes Vy,; =

qbl-(ff, E{). E tendo como coeficientes da expansao:

( Cn

CN—l
Cc = ! C3 ) (38)
L ¢, |

L1

ainda, sendo e; o vetor unitario no espaco de dimensao n associado ao n6. Assim, tem-se que:

Y= ¢ 6. V] e (39)

em que ¢(&;,&,), é o vetor de funcdo da base. Aplicando para todos os nos se tem:

P(1,§2) = ¢ (§1,62). [qu]_l' (40)

entdo rearranjando o problema:

Vo 0(§1,62) = ¢(§1,$2). (41)

Para introduzir o Polinémio de Proriol, inicialmente € mapeado o triangulo contido no
plano &; — &, para o quadrado padrdo —1 < & < 1,—-1 < &, < 1, usando a transformacéo de
Duff, de acordo com Pozrikidis (2005):

g = (1+f'1)(1—€'2), 2 :(1;&)_ (42)

1 4
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U=P*Dcom ordem

O Polindmio de Proriol, PRy, envolve monoémios da forma &7
k+q combinada e com p = 1,2,...,k e ¢ = 1,2, ..., l. Entdo, segundo Rocha (2015). Pode-se

escrever o polinémio de proriol da seguinte maneira:

oo @] @
[ &) (5]

Os primeiros polinémios de Proriol séo:

PROO =1 )
PRy = 28 + &3,
PROl = 3%2 - 1,

PR,y = 687 + 68,8, + & — 68 — 28, + 1,

3.8.2. Base nodal uniforme em dominio triangular

Para polindmio interpolador de grau m, a distribuicdo igualmente espacada é dada por
(POZRIKIDIS, 2005).

py = (i—-1) ’ (44)
m

comi = 1,2,...,m+ 1e v; séo valores adimensionais.

Para garantir a interpolacdo sobre m + 1 pontos, v; = 0 € v,,,; = 1, as linhas dos nds

vertical e horizontal sdo descritas abaixo, comj = 1,2,....,.m + 1.

E=v, & =1-vp (45)

Os nds ao longo da hipotenusa do triangulo estdo localizados pelo movimento vertical
para cima a partir dos nés no eixo &;, ou horizontalmente para a direita a partir dos nés no
eixo &, , 0s nds interiores sdo colocados nas linhas vertical e horizontal, produzindo(&:, £)
(Rocha, 2013). A figura 2 demonstra como ocorre a distribui¢do igualmente espagada dos nos

ao longo do tridangulo retangulo.
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Fonte - Adaptado do Rocha, 2015.
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Figura 2. llustracéo da distribuicao igualmente espacada de nés sobre o tridngulo.

Para i = 1,2,...m+ 1 . As linhas diagonais correspondem a valores constantes da
coordenada baricénctrica é&5 =1 — &, —¢&,, variando de é&3 =04 ¢&; =1 dentro da area do

triangulo. Cada linha diagonal é identificada pelo indice:

k=m+3—i—j, (46)

De acordo com Pozrikidis (2005), para cada no (i, j) formado pela interseccao entre as
linhas i, verticais e as horizontais, j, a expressdo de interpolacdo pode ser escrita como 0

produto entre trés funcdes:

i;(6,8) =8V ED. BTV (). 28V (&), (47)
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em que El.(i"l)(fl) é um polindmio de grau (i — 1) definido por:

=(0) _
E=1,

(&1 — v —v2) . (61— vi2) (1 —vioq) (48)

(Wi = v) (W = v2) . (V; = V) (V; — Vi—1)’

EEi_l)(El) =
parai = 2,3,....m+ 1. E Hj(j_l)(fz) é um polindémio de grau (j — 1) definido por:

HO@E) =1,

_ (&2 —v)(&2 —v2) . (&2 — vj_2) (&2 — vj_1) (49)

")) 4~ )~ )

HI™(&)

paraj = 2,3,...m + 1. E por fim, Z]Ek_l)(f3) é um polindmio de grau (k — 1) definido por:
z0 =1,

Gz v)(E—v2) . (3 — vp2) (€3 — V1), (50)

(e=1)
Ze @s) = (W — V1) Wg = V2) oo (Wi — Vi—2) (Vg — Vg—1)

sendoé; =1—-& — &, parak =23,...,m+ 1.
3.8.3. Bases nodais ortogonais em dominio triangular
Para a distribuicdo nodal das bases ortogonais. Emprega-se 0s nds nos zeros escalados dos

polindbmios ortogonais de grau m — 1, definido por:

v1 =0, v; =1 +ti1) eV =1, (51)

em que t;, parai = 2,3,...,m, sao 0s zeros do polindmio de grau m — 1 distribuidos no

intervalo de (—1,1).

De acordo com Blyth e Pozrikidis (2005), a assimetria da distribuicdo nodal em
relacdo aos trés vértices é uma deficiéncia que pode ser contornada por meio da redistribuicdo
dos nés. Para tanto é realizado o mapeamento para o espaco é! e f{ dado pela Equacao (52),

comi=12,...m+1,j=12,..m+2—-ie k=m+3—i—j. Cabe ressaltar que a
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Equacdo (52) é aplicada apenas aos pontos internos, os dois valores extremos permanecem
inalterados.

i 1 i 1
=t —v—v) & =142y - v -y, 52

A figura abaixo mostra como ocorre a redistribuicao dos pontos do triangulo retangulo

padrdo para o triangulo equilatero:
Fonte - Adaptado do Rocha, 2015.

(a) (b)
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Figura 3. Redistribuicdo dos n6s das bases nodais do triangulo retangulo padrédo para o
equilatero.

3.9. Formulacdo do Método dos Elementos Finitos Elastostatico

Nesta secdo é apresentado a formulacdo do MEF para estruturas unidimensionais e
bidimensionais. Na abordagem unidimensional, € realizado o desenvolvimento formulacional
do MEF para a teoria de vigas de Euller-Bernouli. J& para a abordagem bidimensional, é

realizada a modelagem do MEF para problemas de estado plano.
3.10. Formulagéo Forte para vigas de Euller-Bernoulli: abordagem unidimensional

Para a modelagem matematica existem algumas hipoteses que devem ser consideradas na
formulac&o de vigas de Euller-Bernoulli (ONATE, 2013):

a) O deslocamento vertical v de pontos da secdo transversal sdo pequenos e iguais a

deflex&o de um ponto no eixo neutro da mesma secao;
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b) O deslocamento lateral u de um ponto na se¢éo transversal é nulo;
c) As secOes transversais planas normais ao eixo neutro da viga permanecem ortogo-
nais e planas ao eixo apos a deformacdo;

d) O material é assumido como elastico e isotropico.

A hipotese-chave na teoria de vigas é que sec¢des normais & linha central de uma viga
permanecem retilineas e normais. A figura abaixo mostra uma viga antes e depois de receber

um determinado carregamento.

Fonte - Adaptado do Ofiate, 2013.

h

Eixos
neutros ~

Figura 4. Cinematica da viga de Euler-Bernoulli.

E de féacil compreensdo que antes de receber o carregamento, 0 ponto A esti a uma

posi¢do mais acima, tomando entfo apds o carregamento uma nova posicdo A'. Além disso, a
~ ~ dv , A ’
secdo transversal sofre uma rotacdo 6 = —- € 0 ponto A assume uma nova posicao A .

gerando um deslocamento u, no sentido negativo do eixo x. E G’ passa a ser o ponto
correspondente ao eixo neutro. Pode-se ver que a hipotese de normalidade conclui que a

componente x do deslocamento pela profundidade da viga é:

u = —ysinf(x), (53)

a rotacdo é determinada por:
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aplicando a relacdo tensdo-deslocamento é possivel escrever a equacdo da deformacéo
longitudinal:

d?*v
Exx = _yw'

considerando o caso geral em que a linha central é mais alongada:

dv(x) (54)
dx '’

u(x) = up(x) —y

as deformacdes entdo sdo dadas por:
d?v
Exx = —Y @r

dv
€yy = @= 0,

_ dv+dv_
Voo = T Tax

utilizando a relacdo tensdo-deformacao elastico linear, é possivel escrever:

0,

dum(x) dzv(x)>

O'xx:EExx:E< dx y dx

usando a definicdo do momento como o produto da forca e do braco de momento:
m= —fyaxdi, (55)

ao substituir a lei de Hooke pela expressao da forca temos que:

B du,, (x) d?v(x) 3 , d*v(x)
m——L yE( i -y I dA—fA EdeA,

considerando EI constante sobre a secdo transversal:

d?v(x)
dx

d?v(x) El d*v(x)

dx dx? '

m=F

J, y*dA=EI

em que I/ é o momento de inércia da secéo transversal. Portanto conclui-se:
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d’v(x) (56)

Fonte - Adaptado do Belytschko, 2009.

s

, Vol \
o /
Mix) \ Fix) ‘ Vix+dx) ./ M{x+4x)

Ax !

Figura 5. Equilibrio do corpo rigido

Ao considerarmos o equilibrio vertical da viga mostrada na figura acima, pela soma

das forcas verticais obtemos:

Ax
—v(x+Ax)+vx)+p (x + 7) A(x) =0,

dividindo por A(x) e fazendo A(x) — 0, temos que:

dv

E—P(X) =0,

considerando o equilibrio do momento tem-se:

—m(x) + m(x + A(0)) — v(x + A)AE) + p(D)AGE) "2 = 0,

portanto obtém-se:

d_m —v(x) =0, 7
dx

combinando as duas equagOes pode-se obter:



33

d’m dv ~ 0o

dx? dx

d’m

dxz - p(X) = O'

2 d?v
Ix Efw) -p(x) =0,
se EI for constante tem-se:

d4

A equacdo apresentada acima é denominada de equacdo que governa o problema e
juntamente com as condi¢fes de contorno apresentadas a seguir forma a formulagéao forte para

a teoria de vigas de Euller-bernoulli.

v=vemIlv,

2 _ gemTo,
dx

mn = —EId—Z emI'm,
dx
3
vn = —EIu emI'v.
dx3
3.10.1. Formulacéo Fraca

A determinacdo de uma solucdo aproximada é de fundamental importancia na engenharia, ja
que o desenvolvimento analitico utilizando equacfes diferenciais se torna muito complexo e
menos pratico. O desenvolvimento da formulacdo fraca visa resolver esse problema, sendo
efetuado, multiplicando a equacédo de equilibrio e as condi¢des de contorno por uma funcéo

peso w(x) e integrada no seu dominio correspondente.

J, w[En — peo]d@) = o, (59)
dw _ _o
E(m —m) . =0

w(vn — vl = 0.
Utilizando a técnica de integracdo por partes, podemos escrever a equacao integral

(fraca) equivalente a forma forte da seguinte forma:
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d*w
J 7=

Elgdx = Jwp(x)dx + (Z_:m) . twvlr, paravw € v, D

com:

dv
v= {v;v € H?, v = ﬁemI‘v,a= HemFg},

d
vy = {W;W €EH%w= vemI‘v,%z OemI‘g}.

Sendo H?, o conjunto das funcdes suaves com continuidade cZ.
3.11. MEF unidimensional

Como concluido na secdo anterior, as solucdes tentativa e as fungdes peso precisam ser
funcbGes com grau de continuidade ct. Foi utilizada a classe de funcdo dos polindmios para

garantir os requisitos de interpolacdo, sendo entdo descrito abaixo:

v(x) = ag + a.&+, ..., Fay EMH, (62)

onde ay, ..., a;,4+1 S0 0s coeficientes polinomiais e ¢ sdo pontos adimensionais. Os

deslocamentos e forcas sdo expressos da seguinte maneira:

U1
o |
de = i |

Um+1
Om+1

em que v se refere aos deslocamentos verticais e 6 a rotacGes para cada né do referente

elemento (ver figura 4).
As funcges peso e tentativa sdo interpoladas com as mesmas fungdes de forma ,assim:

ve = Néde weé = New®
pode-se entdo concluir que:
d*Ne d*v®

— Be’ y > =Bede’
X
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a matriz de rigidez elementar €, portanto expressa como:

K¢ = [ EIB® Bedx. (63)

Vetor de forgas:

3|

T
fe= f Ne pdx + (N"’Tv_)| + + an®
D Iy dx

Fonte - Adaptado de Ofiate, 2013.

=

Y, 2

A
L 93 X
'/d.\\? - >

N -/

1 2.

Figura 6. Exemplo de elemento de viga com 4 graus de liberdade.

3.12. Formulagéo do MEF bidimensional

A formulacdo para o método dos elementos finitos bidimensional segue procedimento
semelhante a abordagem unidimensional. Este trabalho fard uma abordagem para problemas
encontrados na categoria de estado plano de tensdo, onde uma das dimensdes é considerada
muito pequena em relacdo a outra, podendo entdo ocorrer uma simplificacdo para efeito de
calculo. Entre os problemas que podem ser abordados utilizando essa anéalise estdo as vigas,

placas e entre outras. O vetor deslocamento em um ponto € representado por:

u(x,y) = [ulxy) vix, ]
O campo de deformacéo para o estado plano de tenséo, derivada da teoria da

elasticidade é dado por:

_au dv
“ox ' Y dy’
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Ju Jdu
Yoy =5t 50 0 Yy =¥2=0.

O vetor deformacao, composto pelas deformacgdes longitudinal e cisalhante, é

escrito da seguinte forma:

B Jdu OJv 6u+6v T
“=lox ay ‘ay Tax’l’

tensao e deformacdo sdo relacionadas por:

o = De, (65)

para o estado plano de tensdo, pode-se determinar

1
D=-"_|v
0

em que v é o mddulo de Poisson e E refere-se ao modulo de Elasticidade.

3.12.1. Discretizacao no estado plano de tensao

A figura abaixo mostra a discretizacdo de um elemento triangular retirado de uma malha de

elementos triangulares para um dado problema no estado plano de tensdes.
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Fonte - Adaptado de Ofiate, 2013.

|

)

Figura 7. Discretizagdo por elementos triangulares.

Para esse elemento triangular, as coordenadas x, y (vemos que x, y, e u, v sdo funcbes
de & e n. Portanto u = u[x(&,n), y(&,1n)] e de modo semelhante, v = v[x(&,1), y(&,n)])

podem Ser expressas como,

u= N1u1 + Nzuz, ...,Nm+1um+1,

(66)
v = val + szz, ...,Nm+1vm+1,
em que m refere-se ao grau da aproximacao utilizada. Pode-se concluir que:
0N 0 N, 0, - ’aNm“ 0o |
, 0x ox ox vy
dN. dN ON.
B LA LA O P/ VR S P¥1 )
dx dy 0y = Ox dy dy dy [|v2
Loy ox dy ox’ Oy ox Va
pode ser aferido entédo que:
€ = Ba(e), (67)

em que:
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B = [BllBZI ...,Bm+1].
3.12.1.1. Formulacdo forte e fraca

Resumo das relacbes que podem ser estabelecidas para elasticidade linear 2D:
1. Equacéo de equilibrio:
0 0 ad
_ [ax ayl
o % %
dy Ox
Segundo Belytschko (2009), a partir do equilibrio de forcas de um corpo de formato
arbitrario e espessura unitaria pode-se obter:

Vie+b=0, ou V.6, +b,=0e ﬁ&’y+by=0 (68)

2. Equacdo cinematica (relagcdo deformacgdo-deslocamento):

€ = Ba®, (69)

3. Equacéo constitutiva (relagdo tensdo-deformacao):

o = De, (70)

em que J, e G, sdo 0s vetores de tragdo ao longo dos eixos x ey, by e b, séo as forcas de

campo ao longo dos eixos x e y. As condi¢des de contorno de deslocamento séo escritas

como:

u = usobre Ty,
sobre qualquer porcao de contorno, o deslocamento ou tragao precisam ser prescritos, entao:

r,Nr, =T.
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Para obter a formulagdo fraca, primeiro é definido as funcdes pesos admissiveis e as
solucBes tentativas, em seguida multiplica-se as equacGes de equilibrio nas direcdes x e y

sobre as funcGes peso correspondentes e integra-se sobre os dominios correspondentes :

a) |, w, V. 6,.dD + [, wxbydD =0 Vw, € U,
b) [, w, V. 3,dD +J, wybydD =0 vw, € Uy,
c) frt wy(t, — G,.1)dl = 0 Yw, € U,,

d) Jp, wy(ty = ,.7)dlr =0 Yw, € U,

em que:

Wy

_ - _ - -
w = w, ]’ W = Wyl + W;jJ.

O teorema de Green € entdo aplicado ao primeiro termo nas equacdes anteriores e

fornece:

I, w, V. 6,.dD = . WyGy.1dl — [ w, V. 6,.dD,
I w,V.3,dD = $. wydy.7dl — [ w,V.3,dD,

adicionando as duas equacoes e lembrando que as funcdes peso w, e w,, desaparecem sobre

I;,, é obtido:

f (Vwy. G + Vw,. G, )dD = 35 (WyG. 7t + Wy G, m)dD + f (Wy. by +wyb,)dD,
D r D

simplificando a expresséo e colocando em forma matricial, pode ser obtido:

J(VSWT)adD = f wTtdl + f wtbdD (71)
D r D
em que:
U={w,ue H ,u=uemTl, }.
Uy={w;,weH,w=0emT, }.

3.13. Interpolagdes de Ordem Superior
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A qualidade da solugdo estd fortemente associada ao nivel de refinamento dos elementos,
podendo ser, pelo aumento do grau m da funcdo interpoladora, pela diminuicdo do tamanho h
do elemento ou ainda uma combinacdo de ambos (hm). Além disso, a escolha da base
influencia fortemente a estabilidade e eficiéncia dos procedimentos numéricos utilizados ao se
reproduzir numericamente a geometria analisada (NOGUEIRA e BITTHENCOURT, 2007).
A obtencdo de interpolacdes de alta ordem segue 0s mesmos passos anteriormente descritos,

mudando-se apenas as fungdes de forma.

3.14. MEF de alta ordem

Tanto para elementos bidimensionais quanto para unidimensionais, 0s conceitos apresentados
anteriormente podem ser facilmente estendidos para elementos isoparamétricos de alta ordem.
Somente as fungdes de forma N serdo alteradas, mantendo as exigéncias expostas
anteriormente. Vale ressaltar que para o estudo unidimensional os delocamentos podem ser
obtidos em apenas uma direcdo (vertical ou horizontal), ja pra o bidimensional é feito um
mapeamento nessas duas direcGes. Portanto para a formulacdo isoparamétrica, podemos

expressar as coordenadas de um ponto dentro do elemento em termos nodais como:

x = Nix1 + Noxy + -+ N1 X1,
Yy =Ny +Npy; + -+ Nypr1Vm1-

A geracdo de rigidez do elemento segue 0s mesmos passos de rotina:

u = Ngq,
€ = Bq,

K¢ =t, fA BT (§1,82)DB (&1, §;)det]dA. (71)
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4. METODOLOGIA

A reproducgédo de geometrias complexas exige a utilizagdo de ferramentas que assegurem a
eficiéncia na interpolacdo. Expansdes espectrais sdo entdo implementadas com o intuito de
garantir a convergéncia uniforme da solucdo fisica do problema. Para problemas uni e
bidimensionais do MEF os ndés de colocagdo espectrais sdo posicionados nos zeros dos
polindmios de Lobatto, Tchebychev e Legendre, com base no estudo feito por Blyth e
Pozrikidis (2005), em que um conjunto triangular de Lobatto, construido por regras simples,
goza de propriedades de convergéncia na interpolacdo comparaveis ao conjunto de pontos
mais desejaveis de Fekete, garantindo uma boa precisdo na reproducdo de problemas de dificil
modelagem numérica. Entretanto a implementagdo de alta ordem do método dos elementos
finitos € muitas vezes dificultada devido ao seu carater tedrico e computacional,
especificamente a versao m do FEM precisa de alta qualidade na integracdo numeérica e
diferenciacdo numeérica, funcdes de forma apropriadas, continuidade inter-elemento C°,
numeracdo dos graus de liberdade, aplica¢fes das condi¢des de contorno e pds-processamento
dos resultados (NOGUEIRA; BITTENCOURT, 2007).

Diante do exposto acima, neste projeto sdo utilizadas expansdes espectrais onde 0s nos
de colocacdo serdo dispostos nos zeros dos polindmios ortogonais de Lobatto, Tchebychev e
Legendre, frente aos nos distribuidos uniformemente. Sera feito um estudo comparativo entre
essas bases, com o intuito de verificar a convergéncia uniforme a medida que o grau
aproximador é elevado. Como parametro para quantificar o desempenho dos conjuntos
nodais, é utilizada a constante de Lebesgue, definida como a maxima soma dos valores
absolutos das fungdes de interpolacdo dos ndés (BLYTH; POZRIKIDIS, 2005) e o nimero de

condic&o pela norma euclidiana.

A implementacdo computacional de alta ordem espectral para as bases ortogonais e
equidistante € realizada na linguagem Fortran. As geometrias reproduzidas, desde funcao
racional, trigonométrica e polinomial , sdo analisadas em um estudo comparativo para
resultados que utilizam tanto elementos de baixa ordem quanto de alta ordem. Além do estudo
de interpolacdo, é feito uma aplicacdo ao MEF unidimensional e bidimensional para
problemas elastostaticos, onde serdo aplicadas expansGes espectrais, posicionando-se
cuidadosamente os nos sobre os zeros dos polindmios ortogonais. No caso bidimensional sera

utilizada a funcdo interpolante de Proriol.
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Para o desenvolvimento da formulagdo serd utilizada a teoria classica de vigas de
Euler-Bernoulli e por fim os resultados do presente trabalho sdo comparados com estudos ja
feitos por autores que utilizaram tanto elementos de baixa quanto altar ordem, como é o caso
nos estudos feitos por Rocha; Kzam (2013) e Pozrikidis (2006).

4.1. Cronograma

A tabela a seguir representa o cronograma de atividades ao longo do primeiro até o 12° més,
completando 1 ano de duracdo. A parte colorida indica qual atividade foi feita em cada més e

em seguida é apresentada cada atividade.

Tabela 1. Cronograma do projeto ao longe de 12 meses.

A-1
A-2
A-3
A-4

A-5
A6 I
A-7
A-8
JPrevisto -Desenvolvido

e Atividade (A-1): Revisdo bibliogréfica,

e Atividade (A-2): Construcdo e implementacdo computacional dos elementos uni e
bidimensionais de alta ordem,

e Atividade (A-3): Estudo comparativo entre as func¢des aproximadoras,

e Atividade (A-4): Implementacdo computacional do MEF espectral de alta ordem,

e Atividade (A-5): Validacao para o MEF de alta ordem,

e Atividade (A-6): Escrita do relatério parcial,

e Atividade (A-7): Escrita do relatorio final,

e Atividade (A-8): Preparacgéo de artigos para congressos e/ou revistas internacionais.
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5. RESULTADOS E DISCUSSAO

Nesta secdo sdo apresentados alguns exemplos de problemas utilizados como forma de
validagdo computacional. Inicialmente foi feito um estudo da reproducdo de geometrias, tanto
simples quanto complexas, a partir das bases nodais anteriormente apresentadas. Apos isso foi
feito uma andlise do erro por meio de parametros como a constante de Lebesgue e 0 numero
de condicdo. A seguir é introduzido os resultados encontrados para interpolacdes de alta

ordem aplicadas ao MEF unidimensional e bidimensional para problemas elastostaticos.

5.1. Interpolagéo para funcéo trigonométrica e polinomial

Para ilustrar a eficiéncia na reproducdo de geometrias simples, é feito um estudo comparativo
entre as bases nodais para uma geometria senoidal (Figura 8) e polinomial (Figura 9). A
figura 8 mostra essa reproducdo para as 4 bases nodais, podendo entdo ser verificado uma
melhor convergéncia para aproximacfes superiores ao grau 3. As fungbes reproduzidas

foram:

F(x) =sin(x) ; F(x) =x0 +x>+x3+5 (72)

Por serem geometrias relativamente simples, a convergéncia ocorre rapidamente,

sendo facil a verificacdo de uma boa eficiéncia entre todas as bases nodais.
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Figura 8. Reproducdo da geometria senoidal para as bases nodais empregando-se polindmios de alta e
baixa ordem.
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Figura 9. Reproducdo da geometria senoidal para as bases nodais empregando-se polinémios de alta e
baixa ordem.

Os erros apresentados sao de dificel percepcao, por isso, a figura 10 mostra na escala

logaritimica, o erro absoluto em detrimento do aumento do grau de aproximacdo. E de facil

compreensdo que com 0 aumento do grau interpolante, o erro diminui gradativamente, sendo

que a base de Lobatto é a que apresenta menores erros. Outra analise realizada é com relacéo

a menor velocidade de convergéncia da aproximacdo para a funcdo senoidal com relagdo a

polinomial. Mostrando que mesmo sendo uma funcgdo relativamente simples, quando

comparada com outra ainda mais simples, mostra uma menor preciséo.
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Figura 10. Erro na escala logaritmica na reprodugéo da funcéo senoidal (a esquerda) e polinomial (a
direita) para polindmios de baixa e alta ordem.

5.2. Fenbmeno Runge

Considerando a fungdo analitica a ser aproximada:

1 (73)

TO =1

E feito um estudo do fendmeno Runge, a partir da convergéncia entre as bases
ortogonais, equiparando-as com a equidistante. O intervalo de mapeamento se da em [—1,1],
sendo possivel observar o péssimo desempenho da base igualmente espacada. Esse

desempenho esta localizado nas regides proximas as bordas, como pode ser visto na figura 11.



1,04 = Fungdo analitica
: = = Base Equidistante
0.8 e diccdico Chadolib L LN e Base Lobatto
‘ : =+=+ Base Legendre
= = = Base Tchebychev
0,6 - .Grau =35
=
L 044 -
0,24 -
0,0 Kt tlihrder
~ -

LJ ' L) I L\ L] L) AJ A
10 -08 -06 -04 -02 00 02 04 06 08 10

1,0 4

|
i
i
0844~
|
064 )
)
1

F(2)

1
024 it
il
0'0_-71"7"’"

0,4 4-—y-tbetd -

= Fungdo analitica
= = Base Equidistante
Tresannnes Base Lobatto
_i.=+=+ Base Legendre
= = = Base Tchebychev
T Grau=15

Al ¥ | ; o) L) Ll ‘
10 08 -06 04 02 00 02 04 06 08 10

F(2)

F(2)

47

1°_W ! ’ i Fungdo analitica )
'R - = Base Equidistante)
1 b i Jroasssseee Base Lobatto
0,84 Li.. ool g .i..=+== Base Legendre
! | = = = Base Tchebychev
i \ i . Grau= 10
0,6 - 4 H
g
0,44 i1
i b
|
i l..f:..
(1) 8 M c1Xr DR S
) H il
L] T L] L] T L) L} L] L]
10 08 -06 04 02 00 02 04 06 08 10
T ‘ £
1,041 l’ i == Fungdo analitica
. \ - = Base Equidistante
1! \ ieseesees Base Lobatto
0,8 - A ' i.=-+=- Base Legendre
| ' = = = Base Tchebychev
1 " Grau =20
0,64 |.l L
1.t , )
! Pl
0,44t i oI SO SR B N
Iy 1!
11 : [
0,24~ 15 D, PRI ,‘, TR R
| SRR
4t H pi |
0,041 i g e S S
| I i L (B
T L]

AJ Al L) Ll L L] v
10 -08 -06 04 -02 00 02 04 06 08 10

Figura 11. Efeito da distribuicio da base na interpolacéo polinomial racional (fenémeno Runge).

Para reproduzir o desempenho da base equidistante frente as ortogonais, a figura a

seguir relaciona o erro absoluto a medida que o grau aproximador é aumentado (Figura 12).

Fica clara a alta taxa de deterioracdo da base equidistante com o0 aumento do grau polinomial.
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Figura 12. Erro absoluto na reproducéo da funcéo racional entre as bases nodais.

Para quantificar o efeito Runge, a seguir é plotada a constante de Lebesgue versus o
grau do polindmio interpolador (Figura 13). Considerando os valores obtidos pela imagem
mostrada abaixo, percebe-se uma grande velocidade no crescimento para a base equidistante,
enguanto que para Lobatto, Legendre e Tchebychev essa constante cresce muito lentamente,
tornando entdo o erro limitado. Dentre as ortogonais, Lobatto foi a que obteve a melhor

eficiéncia.
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Figura 13. Gréfico da constante de Lebesgue para as bases nodais.

5.3. Condicionamento das bases ortogonais
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Em seguida é avaliado o condicionamento da matriz de Vandermonde, a medida que é
aumentado o grau de aproximagdo do polinémio interpolador, a figura 14, traz esse conceito
aplicando a norma euclidiana, equacao 29, proporcionando uma quantificacdo do erro para as
bases ortogonais e equidistante. E possivel perceber que para a base com nos equidistantes, o
ndmero de condicdo cresce em uma velocidade ilimitada com o aumento do grau de

interpolacéo, j& para as bases ortogonais, esse valor cresce mais lentamente.

1000

Base Equidistante
-------- Base Legendre
1 =— = Base Lobatto
=-=- Base Tchebychev

800 4

Nuamero de Condicdo

Grau da aproximacgiio

Figura 14. Namero de condicéo para as bases nodais.
5.4. Interpolacédo triangular de ordem qualquer

A secdo a seguir apresenta 0 mapeamento de uma geometria complexa para o problema
bidimensional. A fim de destacar o fenémeno Runge é feita a reproducdo das 3 bordas do

triangulo.
5.4.1. Mapeamento bidimensional

O mapeamento de um tridngulo padrdo no plano & — &, é realizado pela equagdo descrita
abaixo. Considerando que é;e &,, sdo 0s pontos das bases nodais. Esse mapeamento é feito

pelas fungoes:

$1 =

hAY)
|
sl
A

(74)
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2
$ = ﬁfz
A funcéo de interesse é definida por:
F(6.6) = —— :
o2l 4 25(8 — €91+ 25(5, — &) (75)

esta funcdo tem o dominio de validade sobre o tridngulo equilatero de lados unitéarios e o

1 1 T .- .
;,75). Esta analise bidimensional revela um desempenho

ruim para os nds distribuidos uniformemente, quando se aumenta o grau da aproximacao,

centroide do triangulo é (£, &5) =

devido as oscilagcdes nas bordas do intervalo interpolado. Isso é facil de ser entendido pelo
fato de que a base equidistante deteriora mais facilmente quando é aumentado o grau da
aproximacéo, devido ao fendbmeno Runge, que é facilmente visualizado nas extremidades do
triangulo de grau 20, mostrado na figura 15. Outro fator que vale ressaltar, foi a péssima

eficiéncia da base Tchebychev para o grau 20 com relacéo as outras bases ortogonais.
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Figura 15. Comparacao da distribuicdo de pontos para as bases hodais com o comportamento analitico
da funcéo para triangulo padréo & medida que o grau da aproximagao é elevado.

5.4.2. Mapeamento das bordas do triangulo

As figuras 16, 17 e 18 revelam melhor a deterioracdo das aproximacdes, ficando claro que a
constante de Lebesgue para a base equidistante tem um crescimento muito superior em
relacdo as bases ortogonais, principalmente quando é aplicado aproximacdes de ordem muito
elevada, como a de 40, constatando-se um erro ilimitado para essa base, diferentemente das
ortogonais que mantiveram Otima eficiéncia. Vale ressaltar que para o problema
bidimensional, a taxa de deterioracdo da base equidistante se deu mais devagar que no
unidimensional, podendo ser observado nas figuras abaixo. A figura 15 mapeia a borda onde
&, =0, ja a figura 17 mapeia diagonal onde ¢,+&; = 1, a figura 17 mostra a interpolacéo da

borda para é; = 0.
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Figura 16. Comparacéo entre as bases nodais e a func¢éo analitica para uma borda do triangulo padrao.



03

0,3

53

024

]

Fungdo analitica

= = Base Equidismnlc'

====Base Lobatto

- = - Base Legendre
Grau =6

....:=e=+ Base Tchebychev i oo

0,24

wk”

0,0

]

; Ll L L) A v L) v L)
00 01 02 03 04 05 06 07 08 09 10

" Grau=20

= Fun¢do analitica

Base Lobatto
Base Equidistante %
Base Legendre
Base Tchebychev

T 0,0

; ‘ L) . L) ' A ' A T L
00 01 02 03 04 05 06 07 08 09 10

| I
2,04 i i i {2 )
Fungdo analitica \
T 25351 e 3 5 B o e Expuitiistmnte 2114 :
1,5+ ! 2308 R, SO L Base Lobatto i !
I ==+ Base Legendre |
t = = = Base Tchebychev o
1,01 I Grau =40 ] |
o ]! :
w (] |
| |

054" : i -
1 |
1 h I
0,0+ li + ;
1 1
ke b LS VR KO W OO (O 0 fobp

L) L) Ll L) o) L) A A
o0 01 02 03 04 05 06 07 08 09 10

bt |

”

Figura 17. Comparacao entre as bases nodais e a funcdo analitica para uma borda do triangulo padré&o.
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Figura 18. Comparacdo entre as bases nodais e a fungéo analitica para uma borda do triangulo padréo.

5.5. Aplicacgdes

Nesta secdo serdo avaliadas as estratégias de interpolacdo apresentadas nas secdes anteriores

aplicadas ao MEF com o intuito de verificar a convergéncia uniforme da solucéo para as bases

nodais estudadas. Sao tratados problemas fisicos uni e bidimensionais.

5.5.1. MEF unidimensional

Como forma de avaliagcdo das bases nodais estudadas, é apresentado a seguir, problemas

fisicos unidimensionais. Sdo estudados 3 tipos de geometrias, que posteriormente serdo

submetidas a varios tipos de carregamentos. As geometrias estudadas variam entre uma viga
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bi apoiada, em balango e uma viga hiperestatica com um engaste e apoio. Todos 0s exemplos
hipoteticamente citados possuem comprimento de 1 m e sdo feitas do mesmo material,

portanto possuem modulo de elasticidade e Inércia iguais e unitarios.

5.5.1.1. Carregamento simples

As vigas mostradas na figura 19 foram submetidas a varios tipos de carregamentos,
classificados como simples a complexos. Os carregamentos simples se caracterizaram por
serem compostos de uma carga concentrada, carregamento uniformemente distribuido,
carregamento senoidal ou carregamento triangular. JA4 o complexo se caracterizou por ser
formado pela funcdo racional, abordada anteriormente na equacdo 73. Para a andlise pelo
MEF foram utilizadas aproximac@es que variaram o grau de 3 a 25, sendo entdo feito um
estudo comparativo entre as bases nodais, com o parametro quantificador do erro relativo. A
primeira geometria analisada foi a mais simples, uma viga bi apoiada, e 0s carregamentos
analisados foram respectivamente, distribuido uniformemente com modulo de 4000N e a
fungéo sin( x). Pode ser visualizado um erro relativamente maior das bases nodais no grau 3,
pelo motivo de que essa interpolacdo apenas reflete valores exatos em 2 nds das extremidades
dos elementos, portanto para o ponto de deslocamento maximo, onde foi capturado o erro
relativo, a aproximagdo com grau 3 ndo conseguiu obter uma boa eficiéncia. Entretanto a
medida que a ordem era elevada, o erro foi se aproximando a zero, com a ressalva de que a
base equidistante comecou a deteriorar a partir do grau 12 para 13, diferentemente das bases

ortogonais que continuaram com uma excelente eficiéncia.
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Figura 19. Comparagcéo entre as bases nodais com relacéo ao erro no deslocamento méximo de uma viga bi apoiada
sobre carregamento uniformemente distribuido (a esquerda) e senoidal (a direita).

Outra geometria estudada foi a de uma viga engastada em balanco, posteriormente
submetida a uma carga concentrada de modulo de 900 N (Figura 20). Diferentemente do
grafico acima analisado, a base de Tchebychev ndo conseguiu um bom desempenho frente as
outras bases ortogonais. As bases de Lobatto e Legendre mantiveram uma boa eficiéncia com
a elevacdo da ordem, em contraste com a base igualmente espacada, que novamente ndo

obteve uma boa eficiéncia.
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Figura 20. Comparacédo entre as bases nodais com relacao ao erro no deslocamento maximo de uma viga
em balanco com uma carga concentrada na extremidade.
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Por dltimo foi analisado uma viga hiperestatica, submetida a um carregamento
distribuido triangular de médulo de 900 N que apresentou caracteristicas semelhantes aos

gréaficos anteriores mostrados (ver Figura 21).
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0,5

Grau da Aproximacgao

Figura 21. Comparagéo entre as bases nodais com relagdo ao erro no deslocamento maximo de uma viga
em hiperestéatica com um carregamento triangular.

5.5.1.2. Carregamento complexo

Para o estudo desse tipo de carregamento, foi aplicada uma carga descrita pela funcéo racional
expressa na equacao 73. Foi feito o estudo para 2 tipos de geometrias, uma viga bi apoiada e
em balanco. Para essas geometrias percebeu-se uma rapida deterioracao da base equidistante a
medida que o grau interpolador era aumentado, em contraste, as bases ortogonais convergiam
com a elevacédo desse grau (ver Figura 22). Outro ponto importante foi a baixa convergéncia
da base Tchebychev quando a geometria estudada foi a viga em balanco.
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Figura 22. Comparacdo entre as bases nodais com relagéo ao erro no deslocamento maximo de uma viga
em balanco (& esquerda) e bi apoiada (a direita) com um carregamento racional.

5.5.2. MEF bidimensional

Uma abordagem em duas direcdes € a seguir apresentado, tendo como parametros o grau do
dominio, do carregamento, 0 nimero de elementos, tipo de geometria e tipo de base
interpoladora. Todas as geometrias hipoteticamente estudadas possuiam propriedades
similares: modulo de elasticidade igual a 2. 108 Pa , espessura unitaria, coeficiente de Poisson

igual a 0,2 e geometria retangular.

5.5.2.1. Carregamento simples

Foi utilizado dois tipos, carga concentrada com modulo de 900 N e Uniformemente
distribuido de moédulo 4000 N. Devido a dificil visualizacdo do erro, foi feito um estudo
através da escala logaritmica do erro relativo, observado nas figuras a seguir (Figura 23). A
primeira figura faz uma analise do erro para um carregamento concentrado em uma viga com
2 apoios, a analise leva em consideracao o erro no ponto de maior deslocamento, ou seja, no
meio da viga, considerando como parametro as bases nodais, 0 nimero de elementos e o grau
interpolador. Pode-se perceber que todas as bases nodais apresentam boa convergéncia, e a
quantidade de elementos é um importante fator para uma boa eficiéncia da solucdo. Ja que a
medida que foi aumentado de 4 para 36 e depois para 74, a precisdo da solucdo sofre um

grande crescimento.
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Figura 23. Comparacdo entre as bases nodais com relacdo ao log do erro absoluto no deslocamento
maximo de uma viga bi apoiada com uma carga concentrada.

Para a figura abaixo (Figura 24), é analisado um carregamento distribuido na mesma

configuracdo de viga anteriormente estudada. Pode se concluir o mesmo aferido

anteriormente, com a ressalva de que a convergéncia se deu mais lentamente que a funcéo

anterior, devido ao tipo de carregamento estudado, sendo possivel entdo afirmar que, mesmo

se tratando de um carregamento relativamente simples (uniformemente distribuido), quando

comparado com outros ainda mais simples, obteve uma precisédo inferior.
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Figura 24. Comparacéo entre as bases nodais com relagdo ao log do erro absoluto no deslocamento
maximo de uma viga bi apoiada com uma carga uniformemente distribuida.

5.5.2.2. Carregamento complexo

Assim como no estudo em uma direcdo, foi analisado o efeito de se trabalhar com um

carregamento de dificil reproducdo descrito pela equacdo 73. Os mesmos parametros

estudados no tdépico anterior também foram abordados nessa se¢do, em que se priorizou o

estudo do grau da aproximacdo do carregamento, frente a aproximacdo do dominio e da

guantidade de elementos para o deslocamento maximo em uma viga bi apoiada (Figura 25 -

27). Nota-se de imediato a boa eficiéncia das bases ortogonais, em especial a de Lobatto,

obtendo uma boa taxa de convergéncia com o aumento da ordem do carregamento. As figuras

abaixo retratam a eficiéncia na interpolacdo das Bases nodais, variando o grau do dominio, do

carregamento e dos elementos. Percebe-se, assim como visto anteriormente, que a base

igualmente espacada apresenta um crescimento muito rapida do erro com o avango do grau do
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carregamento, diferentemente das bases ortogonais que mantiveram uma boa eficiéncia. A
quantidade de elementos também foi um fator importante para a precisdo da solucdo, ja que
pode ser observado que a mudanca do numero de elementos, principalmente de 4 para 32
acarretou numa maior estabilidade da solucdo, destacando-se o efeito ocasionado
principalmente com aproximagdes de ordem mais baixa. Entretanto, com a estabilizacéo, ja
com 36 elementos, foi pouca a diferenca quando a quantidade foi modificada para 74.
Podendo entdo ser afirmado que um grande nimero de elementos apenas acarreta um aumento
no tempo computacional. Em relacdo a variacdo da aproximacéo do dominio, houve pouco
avanco entre os graus trabalhados, podendo ser observado uma maior melhora na mudanca do

grau 2 para 6.
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Figura 25. Andlise bidimensional do erro relativo no deslocamento maximo de uma viga bi apoiada com
um carregamento racional com grau do dominio = 2.
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Figura 26. Andlise bidimensional do erro relativo no deslocamento maximo de uma viga bi
apoiada com um carregamento racional com grau do dominio = 6.
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Figura 27. Anélise bidimensional do erro relativo no deslocamento maximo de uma viga bia
poiada com um carregamento racional com grau do dominio = 10.
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6. CONCLUSAO

Uma nova abordagem foi apresentada para interpolagcdes aplicadas ao MEF para problemas
uni e bidimensionais da elastostatica. Expansdes espectrais foram implementadas para
garantir a eficiéncia e precisao da solucéo fisica de problemas simples e complexos, cujos nos
de colocagdo foram posicionados cuidadosamente nos zeros dos polindbmios ortogonais de
Lobatto, Legendre e Tchebychev. Para problemas bidimensionais, foi utilizada a funcéo
interpolante de Proriol aplicada nas posicdes selecionadas das bases nodais. Como critério
quantificador foi apresentado a constante de Lebesgue e o nimero de condi¢cdo na norma
euclidiana. A partir destes parametros, foi avalido a convergéncia das bases nodais frente a
aproximagoes de alta ordem para problemas caracterizados por apresentar complexidades em
sua geometria ou carregamento. Além dos Pardmetros citados acima, utilizou-se da
abordagem do erro relativo, absoluto e ainda do logaritmo do erro para analisar a eficiéncia
das bases frente a diversos problemas da eletrostatica. Para o caso do MEF bidimensional, os
pardmetros de analise foram o nimero de elementos e o grau da aproximacdo do dominio
estudado. Para todos os problemas foram realizados estudos comparativo entre a base
equidistante e as bases ortogonais com a elevacdo da ordem do polindmio interpolador frente

a problemas quase singulares, como é o caso da fun¢do racional apresentada anteriormente.

Durante a reproducdo de geometrias mais complexas foi verificada uma maior
deterioracdo da base igualmente espacada a medida que o grau aproximador era aumentado.
Em contraste, as bases ortogonais apresentaram uma boa eficiéncia com a elevacédo da ordem
polinomial, em especial a de Lobatto, que dentre todas as bases foi a que obteve uma maior
eficiéncia na interpolagdo dessas geometrias. Com relagdo ao estudo bidimensional de alta
ordem, foi verificado que a utilizacdo da funcdo interpoladora de Proriol nas posi¢cdes dos nos
de Lobatto apresentou uma melhor eficiéncia na interpolacdo quando comparada com as
outras bases estudadas. Assim como na abordagem unidimensional, a taxa de deteriorizagdo
da base equidistante aumentou com a elevacdo do grau polinomial, porem, em uma

velocidade menor que no unidimensional para problemas mais complexos.

Para a andlise mecéanica via MEF unidimensional, os resultados apresentaram
caracteristicas semelhantes aos obtidos na reconstrugcdo das geometrias, sendo importante
ressaltar um problema relacionado a base de Tchebychev que em algumas situagfes nédo

apresentou boa convergéncia quando comparada as base de Lobatto e Legendre. Outros
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parametros foram utilizados durante as interpolacdes aplicadas ao MEF bidimensional, como
a quantidade de elementos e o grau da aproximacio do dominio. A medida que o nimero de
elementos era aumentado a precisdo da solucédo crescia até um valor limite, quando alcancado,
ndo é aconselhavel a utilizacdo de uma maior quantidade de elementos, pois a solucdo nao
obteve avangos em sua eficiéncia. Com relacdo ao grau de aproximacgdo do dominio
trabalhado, nédo foi verificado grande influencia do mesmo, pois pouco foi acrescido quanto a

precisdo, acarretando apenas em um maior custo computacional.

Pelos resultados apresentados, conclui-se que ao se tentar reproduzir geometrias e
carregamentos complexos, a melhor escolha de bases nodais € a da familia ortogonal, em
especial a de Lobatto, que dentre todas as estudadas, foi a que teve uma melhor eficiéncia ao
se empregar expansdes espectrais. Por fim, é aconselhavel a utilizacdo de aproximacdes de
alta ordem em regides que apresentem singularidades, e de baixa ordem pra regides suaves.
Referente a abordagem bidimensional, um estudo a posteriore do erro pode ser indicado a fim
de se determinar um numero adequado de elementos, proporcionando maxima eficiéncia

combinada com menor custo operacional.
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APENDICE A Mudanca de variavel uni e bidimensional

A mudanca de espacos fisico e adimensional ¢ feito atraves de:

2x
Ezl—e—l,logo—1S521,

portanto derivando a equacao acima ¢é obtido:

d 1Ld

dx _ 2d¢

a matriz de rigidez elementar fica escrita como:

, . I°
Ke = jEIBe Bedx = jEIBe ©B©) 5 &,

-1

pode-se concluir que o vetor de forcas nodais fica expresso atraves de:

1

le
fo= [ Wop s

-1
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(75)

(76)

Da mesma forma que no unidimensional, o bidimensional procede-se com a obtencéo

das funcGes de forma, expressas para interpolar uma geometria em termos das coordenadas

nodais. A geometria para solidos 2D é expressada como :

m+1 m+1

X = ; Ni(§1,8)x 5 y= ; N;(£1, &)y

(77)

em que N;(&;,&,) sdo as fungdes de forma relacionadas ao deslocamento. A expressdo acima

relaciona as coordenadas no espaco fisico com o espaco adimensional, e isso é satisfeito

através do Jacobiano da transformacdo entre os dois espagos.
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Fonte - Adaptado de Onate, 2013.

Actual geometry Normalized geometry

Figura 27. Figura que caracteriza a mudanca do espagco fisico para adimensional

Podemos relacionar N; através de termos das corrdenadas adimensionais como :

dN; oN; [ 6_y _6_y] dN;
! axl _ ey { afll _ 13 o { aal
aNi - aNl - |](e)| _ dx 0x aNl ’

5y oz, oz, o0& 115z,

onde J(® ¢ expresso como:

o oy
](e)z[afl 3|
or oy
0S5, 0%

Com as expressdes acima expostas, pode-se entdo expressdo a matriz de rigidez

elementar como:

k¢ =t. [, B'DBdA =t, [, B"(§1,§:)DB(&;,¢z)det]dA. (78)



O vetor de forga de corpo pode ser encontrado de modo similar:

o= tef N'detjdé,dé, {]]Z;}
A
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(79)
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APENDICE B - Integraco numérica uni e bidimensional

O emprego do método dos elementos finitos muitas vezes requer a resolucéo de integrais de
complexa integracdo. Portanto faz-se necessario a utilizacdo de ferramentas que possas
contornar essa dificuldade computacionalmente. A matematica oferece inUmeros métodos de
integracdo, entretanto o utilizado nesse trabalho foi o de Gauss-Legendre devido a sua
simplicidade de implementacéo e alta taxa de convergéncia. Segundo esse método,

podemos determinar a integral através de:

Nint

b 0
[ re9agt =Y wrer = Y wireeh, #0)
a i=1 i=1

com n;,; pontos de integracao, w; corresponde ao peso de integracdo associado ao

ponto de integracdo &', pertencente ao intervalo de [—1, +1].

Para a integracdo bidimensional, utiliza-se 0 mesmo recurso da quadratura de Gauss-
Legendre estudado anteriormente. Os pontos de Gauss para a regido triangular diferem dos
pontos para uma regido quadrada. Para a matriz de rigidez a integragdo numérica converge de

modo a obter um valor bastante préximo do analitico.

¢ =t. [, B'DBdA =t, ¥, B"(§1,§3)DB (81, §3)det/. (81)

A expressao acima demonstra como se da o procedimento de cauclo numérico da
matriz de rigidez elementar. Onde n;,,; S0 0 nimero de pontos de integracdo de Gauss-

Legendre e &£, & sdo os pontos de gauss.



