Please use this identifier to cite or link to this item:
https://ri.ufs.br/jspui/handle/riufs/16599
Document Type: | Dissertação |
Title: | Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar |
Authors: | Vasconcelos, Nathanael Oliveira |
Issue Date: | 22-Aug-2019 |
Advisor: | Rodrigues Júnior, Methanias Colaço |
Resumo : | Contexto: A evasão é, certamente, um dos grandes problemas que afligem as instituições de ensino em geral, uma vez que as perdas ocasionadas pelo abandono do aluno são desperdícios sociais, acadêmicos e econômicos. A busca de suas causas tem sido objeto de muitos trabalhos e pesquisas educacionais em todo mundo. No campo prático, diversas organizações de ensino norteiam as suas decisões estratégicas para o controle da taxa de evasão, entretanto, no Brasil, ainda são poucos os trabalhos publicados nesta área de pesquisa. Como consequência, fica evidente a necessidade de aumentar a compreensão do problema e de suas causas, com a adoção de medidas mais eficazes para identificar e entender os principais fatores que podem contribuir com o insucesso dos estudantes. Objetivo: Este trabalho teve por propósito fazer duas análises experimentais dos algoritmos de mineração de dados mais utilizados na área de educação, avaliando o que melhor se adequa ao contexto de abandono do ensino em duas instituições federais, bem como implementar um método de uso do melhor modelo, o qual auxiliará o processo de apoio à decisão e à mitigação da evasão escolar. Método: Foram planejados e executados dois experimentos controlados "in vivo", para comparar a eficácia dos classificadores selecionados. Em seguida, foi realizado um estudo de caso com interface criada para aplicar o algoritmo que obteve a melhor eficácia. Resultados: Os resultados evidenciaram que existem diferenças significativas entre os algoritmos utilizados, e que, apesar do SVM possuir a maior média das métricas de eficácia, estatisticamente, após a metanálise dos experimentos, os algoritmos MLP e Random Forest, respectivamente, obtiveram resultados semelhantes de acurácia (85,38%, 84,40% e 84,13%). Para medida-F, a significância estatística foi igual apenas para o MLP (84,42%, 83,44%). Conclusões: Esta dissertação expôs a necessidade de aumentar a adoção de medidas para identificar e entender os principais fatores que podem contribuir com o insucesso dos estudantes. Após duas análises experimentais, foi evidenciado que existem diferenças significativas entre os três primeiros colocados e os demais algoritmos avaliados, sendo o SVM, pelo seu pequeno destaque, selecionado para ser aplicado em um estudo de caso de atendimento a um dos itens do planejamento estratégico da Universidade Federal de Sergipe – UFS. |
Abstract: | Context: Dropout is certainly one of the major problems that plague educational institutions in general, since, as a result of student dropout, they are social, academic and economic assets. A search for their actions has been the subject of much educational work and research around the world. In the practical field, the various American high school associations had their guidelines focused on the dropout rate control, however, in Brazil, there is still little work done in this area of research. As a result, there is the ability to increase understanding of the problem and its causes by adopting more effective measures to identify and understand the key factors that may contribute to student failure. Objective: This work had the purpose of conducting experiments of more advanced data mining algorithms in the area of education, aiming to improve the educational context of the high school dropout of two federal institutions, as well as to implement a method of using the best model, which supports the decision support process and the school dropout mitigation. Method: Two in vivo controlled experiments were developed and performed to compare the selected classifiers. Then, a case study with interface created to apply the algorithm that obtained the best result was performed. Results: The results showed the differences between the algorithms used and, despite the SVM, had a higher average of the accumulation metrics, statistically, after a meta-analysis of the experiments, the algorithms MLP and Random forest, respectively, obtained similar accuracy results (85.38 %, 84.40 % and 84.13 %). For F-measure, a statistical significance was equal only for the MLP (84.42 %, 83.44 %). Conclusions: This dissertation exposes the need to increase the admission of measures to identify and understand the main factors that may contribute to students’ failure. The two experimental tests were examined and introduced by the success criteria, being the SVM, the selected differential, selected to be applied in a case study of one of the planning items. Federal University of Sergipe - UFS. |
Keywords: | Computação Evasão Mineração de dados educacionais Algoritmos de classificação Experimentação School dropout Educational data mining Classification algorithms Experimentation |
Subject CNPQ: | CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
Language: | por |
Institution: | Universidade Federal de Sergipe |
Program Affiliation: | Pós-Graduação em Ciência da Computação |
Citation: | VASCONCELOS, Nathanael Oliveira. Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar. 2019. 69 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2019. |
URI: | http://ri.ufs.br/jspui/handle/riufs/16599 |
Appears in Collections: | Mestrado em Ciência da Computação |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
NATHANAEL_OLIVEIRA_VASCONCELOS.pdf | 1,98 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.