Por favor, use este identificador para citar o enlazar este ítem: https://ri.ufs.br/jspui/handle/riufs/18181
Tipo de Documento: Tese
Título : Estudo teórico-computacional das propriedades eletrônicas, ópticas e ferroelétricas dos compostos multifuncionais R3c AFeO3 (A= Sc ou In)
Autor : Souza, Jonathan Silva
Fecha de publicación : 27-jul-2023
Director(a): Lima, Adilmo Francisco de
Resumen: A busca por materiais com propriedades ferroelétricas e fotovoltaicas adequadas é um intenso campo de pesquisa em Física dos Materiais. Empregando cálculos baseados da teoria funcional da densidade de spin não colinear, investigamos as propriedades eletrônicas, ópticas e ferroelétricas dos compostos multifuncionais R3c AFeO3 (A = Sc ou In). O objetivo principal desse estudo é de melhor entender do ponto de vista de propriedades fundamentais o potencial desses materiais para aplicações fotovoltaicas e em especial no campo dos ferroelétricos-fotovoltaicos. Devido à falta de informações experimentais sobre essas propriedades, usamos as do composto BiFeO3 isoestrutural que são bem documentado na literatura como referencial para a escolha do valor do Ueff a ser aplicado nos cálculos. Portanto, para aproximar os efeitos de troca e correlação em nossos cálculos foi empregada a aproximação da densidade de spin local incluindo a correção de Hubbard U efetiva (Ueff = 6,0 eV) para os estados 3d do átomo de Fe. Foi determinado que o ScFeO3 e o InFeO3 exibem energias fr band gaps direta de 3,0 eV e 2,6 eV, respectivamente, e absorvem luz visível na parte extrema do espectro solar visível. As massas efetivas dos portadores de carga (m*) são comparáveis às dos semicondutores convencionais comerciais (m* ≤ 0,5 m0) e os valores das energias de dissociação dos éxcitons são baixos (< 2,0 meV). Todas essas propriedades são comparáveis às do BiFeO3 que é um material bastante utilizado em aplicações fotovoltaicas. Portanto, os compostos ScFeO3 e InFeO3 apresentam grande potencial para serem utilizados para futuras aplicações fotovoltaicas. Visando um ajuste das propriedades de interesse do composto InFeO3, foram realizados cálculos autoconsistentes do material sob tensão e compressão no volume da célula unitária. Nossos estudos revelaram que sob condições de tensão no volume da célula unitária, este material apresenta uma energia de band gap ideal para aplicações fotovoltaicas. Em outras palavras, sob tensão de 9% do volume da célula unitária do R3c InFeO3 (a = 5,536 Å e c = 13,808 Å), foi encontrado um band gap de energia direta de 1,74 eV. Para essa estrutura cristalina, verificou-se ainda que o material atinge uma eficiência máxima de fotoconversão que é de 20% para uma espessura de filme fino de aproximadamente 100 nm. Esse valor é 4% a mais do que o do material livre de tensão. Também se verificou que a massa efetiva dos portadores de carga e a energia de ligação do éxciton são significativamente diminuídas em relação ao do material livre de estresse. Esses dois últimos fatos, provavelmente, provavelmente levarão a uma melhor mobilidade dos portadores de carga e mais fácil separação do par elétron-buraco no processo de fotoabsorção de luz do material. Sob esse nível de deformação, a polarização elétrica espontânea foi reduzida para 77,6 μC/cm2 que consiste em um valor ainda superior ao de outros materiais ferroelétricos conhecidos.
Resumen : The search for materials with adequate ferroelectric and photovoltaic properties is an intense field of research in Physics of Materials. Employing calculations based on noncollinear spin density functional theory, we investigate the electronic, optical and ferroelectric properties of the multifunctional R3c AFeO3 (A = Sc or In) compounds. The main objective of this study is to better understand, from the point of view of fundamental properties, the potential of these materials for photovoltaic applications, especially in the field of ferroelectric-photovoltaics. Due to the lack of experimental information about these properties, we used those of an isostructural compound (R3c BiFeO3), which are well documented in the literature as a reference for choosing the Ueff value to be applied in the calculations. Therefore, to approximate the exchange and correlation electronic effects in our calculations, the local spin density approximation including the effective Hubbard U correction (Ueff = 6.0 eV) was used for the 3d states of the Fe atom. It was determined that the ScFeO3 and InFeO3 compound exhibit direct energy band gaps of 3.0 eV and 2.6 eV, respectively, and absorb visible light in the extreme part of the visible solar spectrum. The effective masses of the charge carriers (m*) are comparable to those of conventional commercial semiconductors (m* ≤ 0.5 m0) and the values of excitons dissociation energies are low (< 2.0 meV). All these properties are comparable to those of BiFeO3, which is a material widely used in photovoltaic applications. Therefore, the R3c ScFeO3 and InFeO3 compound have great potential to be used for future photovoltaic applications. Aiming at adjusting the properties of interest of the InFeO3 compound, self-consistent calculations of the material under tension and compression in the volume of the unit cell were performed. Our studies revealed that under tensile strain conditions in the unit cell volume, this material presents an ideal energy band gap for photovoltaic applications. In other words, under tensile strain of 9% of the unit cell volume of R3c InFeO3 (a = 5.536 Å and c = 13.808 Å), a direct energy band gap of 1.74 eV was found. For this crystalline structure, it was also verified that the material reaches a maximum photoconversion efficiency of 20% for a thin film thickness of approximately 100 nm. This value is 4% higher than that of tension-free material. It was also found that the effective mass of the charge carriers and the exciton binding energy are significantly decreased relative to that of the stress-free material. These last two facts will probably lead to better mobility of charge carriers and easier separation of the electron-hole pair in the material's light photoabsorption process. Under this strain level, the spontaneous electrical polarization was reduced to 77.6 μC/cm2 which is a value even higher than that of other known ferroelectric materials.
Palabras clave : Materiais multifuncionais
Estrutura eletrônica
Espectros ópticos
Ferroeletricidade
Cálculos DFT
Multifunctional materials
Electronic structure
Optical spectra
Ferroelectricity
DFT calculations
Área CNPQ: CIENCIAS EXATAS E DA TERRA::FISICA
Patrocinio: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Idioma : por
Institución: Universidade Federal de Sergipe (UFS)
Programa de Posgrado: Pós-Graduação em Física
Citación : SOUZA, Jonathan Silva. Estudo teórico-computacional das propriedades eletrônicas, ópticas e ferroelétricas dos compostos multifuncionais R3c AFeO3 (A= Sc ou In). 2023. 105 f. Tese (Doutorado em Física) – Universidade Federal de Sergipe, São Cristóvão, 2023.
URI : https://ri.ufs.br/jspui/handle/riufs/18181
Aparece en las colecciones: Doutorado em Física

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
JONATHAN_SILVA_SOUZA.pdf2,33 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.