Por favor, use este identificador para citar o enlazar este ítem:
https://ri.ufs.br/jspui/handle/riufs/19469
Tipo de Documento: | Dissertação |
Título : | Acquisition of electrocardiogram signals and cardiac arrhythmia detection using neural networks |
Autor : | Souza, Igor Lopes |
Fecha de publicación : | 19-dic-2023 |
Director(a): | Dantas, Daniel Oliveira |
Resumen : | Electrocardiography is a frequently used examination technique for heart disease diagnosis. Represented by the test called electrocardiogram (ECG), electrocardiography is essential in the clinical evaluation of athletes, risk patients who need surgery, and also those who have heart disease. Through electrocardiography, doctors can identify whether the cardiac muscle dysfunctions presented by the patient are of inflammatory or degenerative origin and early diagnose serious diseases that primarily affect the blood vessels and the brain. Thus, the objective of this project is to develop a prototype capable of capturing, analyzing, and classifying a patient’s electrocardiogram signals for the detection and prevention of cardiac arrhythmia in clinical patients. Our ECG signal classification model obtained an accuracy of 98.12% and an F1-score of 99.72% in the classification of ventricular ectopic beats (V). Our ECG acquisition board circuit tested gain output is 28.8V/V and the frequency cut is 40Hz. |
Palabras clave : | Eletrocardiografia (ECG) Coração (doenças diagnóstico) Redes neurais Electrocardiography Acquisition Classification |
Área CNPQ: | CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
Patrocinio: | Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE |
Idioma : | por |
Institución: | Universidade Federal de Sergipe (UFS) |
Programa de Posgrado: | Pós-Graduação em Ciência da Computação |
Citación : | SOUZA, Igor Lopes. Acquisition of electrocardiogram signals and cardiac arrhythmia detection using neural networks. 2023. 52 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2023. |
URI : | https://ri.ufs.br/jspui/handle/riufs/19469 |
Aparece en las colecciones: | Mestrado em Ciência da Computação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
IGOR_LOPES_SOUZA.pdf | 1,58 MB | Adobe PDF | ![]() Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.