Por favor, use este identificador para citar o enlazar este ítem: https://ri.ufs.br/jspui/handle/riufs/16597
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorOliveira, Artur Leandro da Costa-
dc.date.accessioned2022-10-10T13:49:10Z-
dc.date.available2022-10-10T13:49:10Z-
dc.date.issued2022-06-08-
dc.identifier.citationOLIVEIRA, Artur Leandro da Costa. A framework for inverse modeling applied to multi-objective evolutionary algorithms. 2022. 144 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2022.pt_BR
dc.identifier.urihttp://ri.ufs.br/jspui/handle/riufs/16597-
dc.languageengpt_BR
dc.subjectComputaçãopor
dc.subjectAprendizado do computadorpor
dc.subjectLinguagem unificada de modelagempor
dc.subjectUnified modeling language (UML)eng
dc.subjectMulti-objective optimizationeng
dc.subjectMachine learningeng
dc.subjectInverse modelseng
dc.titleA framework for inverse modeling applied to multi-objective evolutionary algorithmspt_BR
dc.typeDissertaçãopt_BR
dc.contributor.advisor1Carvalho, André Britto de-
dc.description.resumoMany-Objective Optimization Problems (MaOPs) are a class of complex optimization problems deined by having more than three objective functions. Traditional Multi-Objective Evolutionary Algorithms (MOEAs) have shown poor scalability in solving this kind of problem. The use of machine learning techniques to enhance optimization algorithms applied to MaOPs has been drawing attention due to their capacity to add domain knowledge during the search process. One method of this kind is inverse modeling, which uses machine learning models to enhance MOEAs diferently, mapping the objective function values to the decision variables. This method has shown a good performance in diverse optimization problems due to the ability to directly predict solutions closed to the Pareto-optimal front, among these methods, we can highlight the Decision Variable Learning (DVL). The strategies involving inverse models found, including the DVL, have some limitations such as the exploration of the performance of diferent machine learning models and the strategies in using the generated knowledge during the search. The main goal of this work is to create a framework that uses an inverse modeling approach coupled to any MOEA found in the literature. More precisely, three main steps were taken to achieve the goals. First, we perform a systematic review of the literature to identify the main uses of machine learning techniques enhancing optimization algorithms. Secondly, we analyze the performance of diferent machine learning methods in the DVL, seeking to understand the main characteristics of inverse modeling through the DVL algorithm. In the last step, we propose a framework that is an extension of the DVL algorithm, based on the knowledge obtained in the systematic review and our analysis of the DVL. This framework results in an algorithm for MaOPs recommended for situations that exist restrictions on the number of evaluations in the objective function.pt_BR
dc.publisher.programPós-Graduação em Ciência da Computaçãopt_BR
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpt_BR
dc.publisher.initialsUniversidade Federal de Sergipept_BR
dc.contributor.advisor-co1Gusmão, Renê Pereira de-
dc.description.localSão Cristóvãopt_BR
Aparece en las colecciones: Mestrado em Ciência da Computação

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ARTUR_LEANDRO_COSTA_OLIVEIRA.pdf3,71 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.