Please use this identifier to cite or link to this item:
Document Type: Artigo
Title: Statistical-Mechanical foundation of the ubiquity of lévy distributions in nature
Authors: Souza, André Maurício Conceição de
Tsallis, Constantino
Levy, Silvio V. F.
Maynard, Roger
Issue Date: Nov-1995
Abstract: We show that the use of the recently proposed thermostatistics based on the generalized entropic form Sq≡k(1-Σipiq)/(q-1) (where q∈R, with q=1 corresponding to the Boltzmann-Gibbs-Shannon entropy -kΣipi ln pi), together with the Lévy-Gnedenko generalization of the central limit theorem, provide a basic step towards the understanding of why Lévy distributions are ubiquitous in nature. A consistent experimental verification is proposed.
Keywords: Entropia de Boltzmann-Gibbs-Shannon
ISSN: 1079-7114
Publisher / Institution : American Physical Society
Citation: SOUZA, A. M. C. et al. Statistical-Mechanical foundation of the ubiquity Of levy distributiosin nature. Physical Review Letters, v. 75, n. 20, nov. 1995. Disponível em: <>. Acesso em: 18 abr. 2013.
License: © 1995 The American Physical Society
Appears in Collections:DFI - Artigos de periódicos

Files in This Item:
File Description SizeFormat 
Statistical-MechanicalFoundation.pdf247,15 kBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.