Use este identificador para citar ou linkar para este item:
https://ri.ufs.br/jspui/handle/riufs/5815
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Santos, Izabela Andrade dos | - |
dc.date.accessioned | 2017-09-27T13:40:35Z | - |
dc.date.available | 2017-09-27T13:40:35Z | - |
dc.date.issued | 2017-02-16 | - |
dc.identifier.citation | SANTOS, Izabela Andrade dos. Métodos variacionais, desigualdade do tipo Trudinger-Moser e aplicações. 2017. 113 f. Dissertação (Pós-Graduação em Matemática) - Universidade Federal de Sergipe, São Cristóvão, SE, 2017. | por |
dc.identifier.uri | https://ri.ufs.br/handle/riufs/5815 | - |
dc.description.abstract | In this work, we are interested in establishing some variational methods, together with applications, that determine the existence and non uniqueness of weak solutions for the nonlinear elliptic partial differential equation −div (K(x)-u) = K(x)f(u) + h, x E R2, where K is an exponential weight, h is a linear functional and f is the nonlinearity that presents critical exponential growth. First of all, for the sake of convenience of the reader, this study shows detailed proofs of some classic results of the theory that involves these methods as, for example, the deformation and mountain pass theorems; and Ekeland’s variational principle. Second of all, we work with a Trudinger-Moser inequality that is related to a Sobolev space with weight K in order to achieve our aim. | eng |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal de Sergipe | por |
dc.rights | Acesso Aberto | por |
dc.subject | Matemática | por |
dc.subject | Método variacional | por |
dc.subject | Desigualdade de Trudinger-Moser | por |
dc.subject | Soluções fracas | por |
dc.subject | Equações diferenciais | por |
dc.subject | Variational methods | eng |
dc.subject | Trudinger-Moser inequality | eng |
dc.subject | Weak solutions | eng |
dc.title | Métodos variacionais, desigualdade do tipo Trudinger-Moser e aplicações | por |
dc.type | Dissertação | por |
dc.creator.Lattes | http://lattes.cnpq.br/1686744000273354 | por |
dc.contributor.advisor1 | Melo, Wilberclay Gonçalves | - |
dc.description.resumo | Neste trabalho, estamos interessados em apresentar alguns Métodos Variacionais, juntamente com aplicações, que determinam existência e a não unicidade de soluções fracas para uma específica Equação Diferencial Parcial Elíptica não linear −div (K(x)-u) = K(x)f(u) + h, x E R2, onde K é um peso exponencial, h é um funcional linear e f é a não linearidade que apresenta crescimento exponencial crítico. Em um primeiro momento, para uma maior comodidade do leitor, estabelecemos provas detalhadas de alguns resultados clássicos da teoria que contém esses métodos como, por exemplo, os Teoremas da Deformação e do Passo da Montanha; e o Princípio Variacional de Ekeland. Em seguida, trabalhamos com uma Desigualdade do tipo Trudinger-Moser em um Espaço de Sobolev com peso K com o objetivo de alcançarmos nossa meta. | por |
dc.publisher.program | Pós-Graduação em Matemática | por |
dc.subject.cnpq | CIENCIAS EXATAS E DA TERRA::MATEMATICA | por |
dc.publisher.country | Brasil | por |
dc.publisher.initials | UFS | por |
Aparece nas coleções: | Mestrado em Matemática |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
IZABELA_ANDRADE_SANTOS.pdf | 500,16 kB | Adobe PDF | ![]() Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.