Use este identificador para citar ou linkar para este item: https://ri.ufs.br/jspui/handle/riufs/17451
Tipo de Documento: Dissertação
Título: Regularidade para funções infinito harmônicas
Autor(es): Sá, Ginaldo de Santana
Data do documento: 12-Mar-2018
Orientador: Prazeres, Disson Soares dos
Coorientador: Cardoso, José Anderson Valença
Resumo: Nesta dissertação, estudamos a regularidade de funções infinitas harmônicas, ou seja, soluções da equação ∆∞u = 0, onde u : U ⊂ R n → R, com U limitado e u ∈ C(U). Mais especificamente, nós mostramos que, sob certas condições, funções infinitas harmônicas são C ^ 1, 1/3.
Abstract: In this dissertation, we study the regularity for infinite harmonic function, that is, solutions of equation ∆∞u = 0, where u : U ⊂ R n → R, with U bounded and u ∈ C(U). More specifically, we have shown that under certain conditions, infinite harmonic function are C ^ 1, 1/3.
Palavras-chave: Equações elípticas degeneradas
Infinito laplaciano
Regularidades
Solução no sentido da viscosidade
Degenerate elliptic equations
Infinity laplacian
Regularities
Viscosity solution
área CNPQ: CIENCIAS EXATAS E DA TERRA::MATEMATICA
Agência de fomento: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Idioma: por
Sigla da Instituição: Universidade Federal de Sergipe
Programa de Pós-graduação: Pós-Graduação em Matemática
Citação: SÁ, Ginaldo de Santana. Regularidade para funções infinito harmônicas. 2018. 54 f. Dissertação (Mestrado em Matemática) – Universidade Federal de Sergipe, São Cristóvão, 2018.
URI: http://ri.ufs.br/jspui/handle/riufs/17451
Aparece nas coleções:Mestrado em Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
GINALDO_SANTANA_SA.pdf379,93 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.